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Some combinatorics

Partitions:

= (5, 4, 4, 2) = λ

Compositions:

= (4, 2, 5, 4) = α

For a composition α,

let |α| be the size (# boxes) of α;

let `(α) be the length (# parts) of α; and

let α̃ be the rearrangement of the parts of α into decreasing order.

For example, |α| = 15, `(α) = 4, and α̃ = λ.

For compositions α and β, we say α refines β, written α 4 β, if β can
be built by combining adjacent parts of α. For example,

4 , 64
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Let Sym be the ring of symmetric functions.

Many favorite bases indexed by integer partitions λ ` n:
• Monomial symmetric functions

mλ =
∑
α̃=λ

i1<i2<···<i`

xα1
i1
xα2
i2
· · ·xα`i`

• Complete homogeneous symmetric functions

hr =
∑
|α|=r

i1<i2<···<i`

xα1
i1
xα2
i2
· · ·xα`i` =

∑
|λ|=r

mλ, hλ = hλ1hλ2 · · · .

• Elementary symmetric functions

er =
∑

1≤i1<i2<···<ir

xi1 · · ·xir = m(1,1,...,1) eλ = eλ1eλ2 · · · .

? Power sum symmetric functions

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · ·



We have a scalar product 〈, 〉 : Sym⊗ Sym→ C defined by

〈hλ,mµ〉 = δλ,µ,

so that the homogeneous and monomial functions are dual.

Under
this pairing, we have

〈pλ, pµ〉 = zλδλµ,

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.

Generating functions:

H(t) =
∑
k≥0

hkt
k =

∏
i≥1

(1− xit)−1

E(t) =
∑
k≥0

ekt
k =

∏
i≥1

(1 + xit)

Note H(t) = 1/E(−t).

P (t) =
∑
k≥0

pkt
k =

d

dt
ln(H(t)) =

d

dt
ln(1/E(−t))
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The ring of noncommutative symmetric functions NSym is the
C-algebra generated freely by e1, e2, . . . .

Analogous bases indexed by compositions α.

• Noncommutative elementary: eα = eα1 · · · eα` . Ab(eα) = eα̃

• Noncom. homog.: hα = hα1 · · ·hα` , where hi is defined by. . .

if E(t) =
∑
k≥0

ekt
k and H(t) =

∑
k≥0

hkt
k,

then H(t) = 1/E(−t). (Recall: H(t) = 1/E(−t) in Sym).
Ab(hα) = hα̃

? Noncommutative power sums: two choices, ψ and φ!

In Sym: In NSym:

Type 1: P (t) = d
dt ln(H(t)) d

dtH(t) = H(t)Ψ(t)

Type 2: H(t) = exp
(∫
P (t)dt

)
H(t) = exp

(∫
Φ(t)dt

)
Not the same! (No unique notion of log derivative for power series
with noncommutative coefficients.) But

Ab(ψα) = pα̃ = Ab(φα)
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The ring of quasisymmetric functions QSym is a subring of
C[[x1, x2, . . . ]] consisting of series where the coefficients on the
monomials

xα1
1 xα2

2 · · ·x
α`
` and xα1

i1
xα2
i2
· · ·xα`i`

are the same, for all i1 < i2 < · · · < i`. In particular, Sym ⊂ QSym.

For example,∑
i<j

xix
2
j = x1x

2
2 + x1x

2
3 + x2x

2
3 + · · ·

= M

is quasisymmetric but not symmetric (the coef. on x21x2 is 0).

Bases of QSym are also indexed by compositions. Namely, the
monomial basis has a natural analog:

Mα =
∑

i1<i2<···<i`(α)

xα1
i1
xα2
i2
· · ·xα`i` , so that mλ =

∑
α̃=λ

Mα.
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The rings NSym and QSym have Hopf algebra structures that are
dual to each other under a pairing

〈, 〉 : NSym⊗QSym→ C
analogous to the pairing in Sym.

Namely

〈hλ,mµ〉 = δλ,µ in Sym⊗ Sym,

〈hα,Mβ〉 = δα,β in NSym⊗QSym.

Recall in Sym, the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

Question: What is dual to ψ in QSym? to φ?
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Type 1
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

In NSym, the type 1 power sum basis ψ is defined by the generating
function relation

d

dt
H(t) = H(t)Ψ(t).

This is equivalent to

hα =
∑
β4α

1

π(β, α)
ψβ,

where π(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

ψ∗α =
∑
β<α

1

π(α, β)
Mβ.

Define
Ψα = zα̃ψ

∗
α, so that 〈ψα,Ψβ〉 = zα̃δαβ.
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Computing coefficients
Ψα = zα̃

∑
β<α

1

π(α, β)
Mβ.

For example, we saw that

4

First, for each block, we compute the product of the partial sums:

π

( )
=
∣∣ ∣∣ · ∣∣∣ ∣∣∣ · ∣∣∣∣ ∣∣∣∣ = 1 · 3 · 4

Then, for α refining β, the coefficient of Mβ in ψ∗α is 1/π(α, β), where

π

 ,

 = π

( )
π
( )

π
( )

π

( )

= (1 · 3 · 4)(2)(5)(1 · 2 · 4)
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As another example, z = 2,

Ψ = z ψ∗ = 2

(
1

2
M +

1

3
M

)
,

Ψ = z ψ∗ = 2

(
1

2
M +

1

6
M

)
.

So

Ψ + Ψ = M +M +M

= m +m = m m = p2p1 = p .

Theorem (BDHMN)

Type 1 QSym power sums refine Sym power sums:

pλ =
∑
α̃=λ

Ψα.
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Theorem: pλ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ.

Proof outline: For compositions α and β, define Oα,β be the set of
ordered set partitions (B1, · · · , B`(β)) of {1, · · · , `(α)} satisfying

βj =
∑
i∈Bj

αi for 1 ≤ j ≤ `(β).

For example, if

α = and β = ,

then Oα,β contains ({1, 3}, {2}) and ({2}, {1, 3}).

It has been shown that

pλ =
∑

part’n µ

|Oλ,µ|mµ, so that pλ =
∑

comp β

|Oλ,β|Mβ.



Theorem: pλ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ.

Proof outline: For compositions α and β, define Oα,β be the set of
ordered set partitions (B1, · · · , B`(β)) of {1, · · · , `(α)} satisfying

βj =
∑
i∈Bj

αi for 1 ≤ j ≤ `(β).

For example, if

α = and β = ,

then Oα,β contains ({1, 3}, {2}) and ({2}, {1, 3}).

It has been shown that

pλ =
∑

part’n µ

|Oλ,µ|mµ, so that pλ =
∑

comp β

|Oλ,β|Mβ.



Theorem: pλ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ.

Proof outline: For compositions α and β, define Oα,β be the set of
ordered set partitions (B1, · · · , B`(β)) of {1, · · · , `(α)} satisfying

βj =
∑
i∈Bj

αi for 1 ≤ j ≤ `(β).

For example, if

α = and β = ,

then Oα,β contains ({1, 3}, {2}) and ({2}, {1, 3}).

It has been shown that

pλ =
∑

part’n µ

|Oλ,µ|mµ, so that pλ =
∑

comp β

|Oλ,β|Mβ.



Theorem: pλ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ.

Proof outline: For compositions α and β, define Oα,β be the set of
ordered set partitions (B1, · · · , B`(β)) of {1, · · · , `(α)} satisfying

βj =
∑
i∈Bj

αi for 1 ≤ j ≤ `(β).

It has been shown that

pλ =
∑

part’n µ

|Oλ,µ|mµ, so that pλ =
∑

comp β

|Oλ,β|Mβ.

We combinatorially prove, for a fixed partition λ with size n, and a
fixed composition β, that

|Oλβ| · |Sλn | =

|Oλβ|
n!

zλ
=
∑
α4β
α̃=λ

n!

π(α, β)
,

where Sλn = {σ ∈ Sn of cycle type λ}.
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Two ways of thinking about permutations:
I In one-line notation:

σ = 571423689

is the permutation sending

1 7→ 5, 2 7→ 7, 3 7→ 1, and so on. . .

I In cycle notation:

σ = (152763)(4)(8)(9).

Several equivalent ways to write in cycle notation. We say σ is
written in standard form if

largest element of each cycle is last, and
cycles ordered increasingly according to largest element

Ex: (4)(631527)(8)(9)
I Let α 4 β of size n, and let σ ∈ Sn. We say σ is consistent with
α 4 β if. . .

Ex: let α = (1, 1, 2, 1, 3, 1) and β = (2, 2, 5)
Start in one-line notation: 571423689
Split according to β: 57||14||23689
Add parentheses according to α: (5)(7)||(14)||(2)(368)(9)

If the permutations in each partition are in standard form, then σ
is consistent.
Non-example: 571428369 → (5)(7)||(14)||(2)(836)(9)
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Cons(1,2,1)4(1,2,1) = {1234, 1243, 1342, 2134, 2143, 2341, 3124,

3142, 3241, 4123, 4132, 4231},

π((1, 2, 1), (1, 2, 1)) = 2

Cons(1,2,1)4(1,3) = {1234, 2134, 3124, 4123},

π((1, 2, 1), (1, 3)) = 2 · 3

Cons(1,2,1)4(3,1) = {1234, 1243, 1342, 2134, 2143, 2341, 3142, 3241},

π((1, 2, 1), (3, 1)) = 1 · 3

Cons(1,2,1)4(4) = {1234, 2134}

π((1, 2, 1), (4)) = 1 · 3 · 4

Lemma
Fix α 4 β of size n Then

n! = |Consα4β| · π(α, β).
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Lemma
Fix α 4 β of size n Then

n! = |Consα4β| · π(α, β).

Proof: Let

Aα4β =

`(β)∏
i=1

`(α(i))∏
j=1

Z/a(i)j Z

, where a
(i)
j =

j∑
r=1

α(i)
r ,

so that |Aα4β| = π(α, β). Then there is a bijection

Sn → Consα4β ×Aα4β.
(For each permutation written in one-line notation, “cycle” into consistency

with α 4 β, and record cycles with elements of Aα4β . See slides from

“Discrete Math Day” October 2017.)

Lemma
Fix α 4 β of size n Then

|Oα4β| · |Sλn | =
∑
α4β
α̃=λ

|Consα4β|.

(Similar proof.)

Therefore

|Oλβ| · |Sλn | =
∑
α4β
α̃=λ

n!

π(α, β)
,

so that

pλ =
∑

comp β

|Oλ,β|Mβ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ,

as desired.
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Type 2
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ.

In NSym, the type 2 power sum basis is defined by the generating
function relation

H(t) = exp

(∫
Φ(t)dt

)

This is equivalent to

hα =
∑
β4α

1

sp(β, α)
φβ,

where sp(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

φ∗α =
∑
β<α

1

sp(α, β)
Mβ.

Define
Φα = zα̃φ

∗
α, so that 〈φα,Φβ〉 = zαδαβ.
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Computing coefficients
Φα = zα̃

∑
β<α

1

sp(α, β)
Mβ.

For example, we saw that

4

First, for each block, we compute sp(γ) = `(γ)!
∏
k γj :

sp

( )
= 3!(1 · 2 · 1)

Then, for α refining β, the coefficient of Mβ in ψ∗α is 1/sp(α, β),
where

sp

 ,

 = sp

( )
sp
( )

sp
( )

sp

( )

= 3!(1 · 2 · 1) · 1!(2) · 1!(5) · 3!(1 · 1 · 2)
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As another example, z = 2,

Φ = z φ∗ = 2

(
1

2
M +

1

4
M

)
,

Φ = z φ∗ = 2

(
1

2
M +

1

4
M

)
.

So

Φ + Φ = M +M +M

= m +m = m m = p2p1 = p .

Theorem (BDHMN)

Type 2 QSym power sums refine Sym power sums:

pλ =
∑
α̃=λ

Φα.
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Other results

We also give

• Transition matrices between type 1 and type 2, and to
fundamentals.

• Combinatorial proofs of product formulas for type 1 and 2:

ΨαΨβ =
zαzβ
zα·β

∑
γ∈α�β

Ψwd(γ), ΦαΦβ =
zαzβ
zα·β

∑
γ∈α�β

Φwd(γ).

• Some comments about plethysm, and other algebraic connections.

See arXiv:1710.11613 for more details.

Thanks!


