Quasisymmetric power sums

Zajj Daugherty

The City College of New York

Joint work with
Cristina Ballantine, Angela Hicks, Sarah Mason, and Elizabeth Niese

Some combinatorics

Partitions:
$\rightleftarrows=(5,4,4,2)=\lambda$

Compositions:

Some combinatorics

Partitions:

Compositions:

For a composition α, let $|\alpha|$ be the size (\# boxes) of α; let $\ell(\alpha)$ be the length (\# parts) of α; and
let $\tilde{\alpha}$ be the rearrangement of the parts of α into decreasing order.
For example, $|\alpha|=15, \ell(\alpha)=4$, and $\tilde{\alpha}=\lambda$.

Some combinatorics

Partitions:

$$
\Downarrow=(5,4,4,2)=\lambda
$$

Compositions:

$$
\square=(4,2,5,4)=\alpha
$$

For a composition α,
let $|\alpha|$ be the size (\# boxes) of α;
let $\ell(\alpha)$ be the length (\# parts) of α; and
let $\tilde{\alpha}$ be the rearrangement of the parts of α into decreasing order.
For example, $|\alpha|=15, \ell(\alpha)=4$, and $\tilde{\alpha}=\lambda$.
For compositions α and β, we say α refines β, written $\alpha \preccurlyeq \beta$, if β can be built by combining adjacent parts of α. For example,

Let Sym be the ring of symmetric functions.
Many favorite bases indexed by integer partitions $\lambda \vdash n$:

- Monomial symmetric functions

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

- Complete homogeneous symmetric functions

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}=\sum_{|\lambda|=r} m_{\lambda}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots
$$

- Elementary symmetric functions

$$
e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} \cdots x_{i_{r}}=m_{(1,1, \ldots, 1)} \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

\star Power sum symmetric functions

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

We have a scalar product $\langle\rangle:, \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \mathbb{C}$ defined by

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

so that the homogeneous and monomial functions are dual.

We have a scalar product $\langle\rangle:, \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \mathbb{C}$ defined by

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

so that the homogeneous and monomial functions are dual. Under this pairing, we have

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

where z_{λ} is the size of the stabilizer of a permutation of cycle type λ :

$$
z_{\lambda}=\prod_{k} a_{k}!k^{a_{k}}, \quad a_{k}=\#\{\text { pts of length } k\} \quad \text { Ex: } z_{\square}=2!3^{2}
$$

We have a scalar product $\langle\rangle:, \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \mathbb{C}$ defined by

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu},
$$

so that the homogeneous and monomial functions are dual. Under this pairing, we have

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

where z_{λ} is the size of the stabilizer of a permutation of cycle type λ :

$$
z_{\lambda}=\prod_{k} a_{k}!k^{a_{k}}, \quad a_{k}=\#\{\text { pts of length } k\} \quad \text { Ex: } z_{\square}=2!3^{2}
$$

Generating functions:

$$
\begin{gathered}
H(t)=\sum_{k \geq 0} h_{k} t^{k}=\prod_{i \geq 1}\left(1-x_{i} t\right)^{-1} \\
E(t)=\sum_{k \geq 0} e_{k} t^{k}=\prod_{i \geq 1}\left(1+x_{i} t\right)
\end{gathered}
$$

Note $H(t)=1 / E(-t)$.

$$
P(t)=\sum_{k \geq 0} p_{k} t^{k}=\frac{d}{d t} \ln (H(t))=\frac{d}{d t} \ln (1 / E(-t))
$$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated freely by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated freely by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncommutative elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$.

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated freely by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncommutative elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}} . \quad \mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated freely by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$

Analogous bases indexed by compositions α.

- Noncommutative elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated freely by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$

Analogous bases indexed by compositions α.

- Noncommutative elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

* Noncommutative power sums: two choices, ψ and ϕ !

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated freely by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncommutative elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

\star Noncommutative power sums: two choices, ψ and ϕ !

$$
\begin{array}{lcc}
& \text { In Sym: } & \text { In NSym: } \\
\text { Type 1: } & P(t)=\frac{d}{d t} \ln (H(t)) & \frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \boldsymbol{\Psi}(t) \\
\text { Type 2: } & H(t)=\exp \left(\int P(t) d t\right) & \mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
\end{array}
$$

Not the same! (No unique notion of log derivative for power series with noncommutative coefficients.) But

$$
\mathcal{A} b\left(\psi_{\alpha}\right)=p_{\tilde{\alpha}}=\mathcal{A b}\left(\phi_{\alpha}\right)
$$

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions.

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{\ell(\alpha)}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { so that } \quad m_{\lambda}=\sum_{\tilde{\alpha}=\lambda} M_{\alpha} .
$$

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots=M_{\square}
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{\ell(\alpha)}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { so that } \quad m_{\lambda}=\sum_{\tilde{\alpha}=\lambda} M_{\alpha} .
$$

The rings NSym and QSym have Hopf algebra structures that are dual to each other under a pairing

$$
\langle,\rangle: \operatorname{NSym} \otimes \operatorname{QSym} \rightarrow \mathbb{C}
$$

analogous to the pairing in Sym.

The rings NSym and QSym have Hopf algebra structures that are dual to each other under a pairing

$$
\langle,\rangle: \mathrm{NSym} \otimes \operatorname{QSym} \rightarrow \mathbb{C}
$$

analogous to the pairing in Sym. Namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

The rings NSym and QSym have Hopf algebra structures that are dual to each other under a pairing

$$
\langle,\rangle: \mathrm{NSym} \otimes \mathrm{QSym} \rightarrow \mathbb{C}
$$

analogous to the pairing in Sym. Namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

Recall in Sym, the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

The rings NSym and QSym have Hopf algebra structures that are dual to each other under a pairing

$$
\langle,\rangle: \mathrm{NSym} \otimes \mathrm{QSym} \rightarrow \mathbb{C}
$$

analogous to the pairing in Sym. Namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

Recall in Sym, the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

Question: What is dual to ψ in QSym? to ϕ ?

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis ψ is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
$$

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis ψ is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta}
$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$.

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis ψ is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta}
$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\psi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis ψ is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta}
$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\psi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

Define

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \psi_{\alpha}^{*}, \quad \text { so that } \quad\left\langle\psi_{\alpha}, \Psi_{\beta}\right\rangle=z_{\tilde{\alpha}} \delta_{\alpha \beta} .
$$

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta} .
$$

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

First, for each block, we compute the product of the partial sums:

$$
\pi(\square)=|\square| \cdot|\square| \cdot|\square|=1 \cdot 3 \cdot 4
$$

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

First, for each block, we compute the product of the partial sums:

$$
\pi(\square)=|\square| \cdot|\square| \cdot|\square|=1 \cdot 3 \cdot 4
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \pi(\alpha, \beta)$, where

$$
\begin{aligned}
\pi\left(\begin{array}{l}
\square \\
\square
\end{array}, \stackrel{\square}{\square}\right) & =\pi(\square) \pi(\square) \pi(\square \square \square) \pi(\square) \\
& =(1 \cdot 3 \cdot 4)(2)(5)(1 \cdot 2 \cdot 4)
\end{aligned}
$$

Computing coefficients

First, for each block, we compute the product of the partial sums:

$$
\pi(\boxminus)=|\square| \cdot|\boxminus| \cdot|\nabla|=1 \cdot 3 \cdot 4
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \pi(\alpha, \beta)$, where

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right), \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right) .
\end{aligned}
$$

Computing coefficients

First, for each block, we compute the product of the partial sums:

$$
\pi(\boxminus)=|\square| \cdot|\boxminus| \cdot|\nabla|=1 \cdot 3 \cdot 4
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \pi(\alpha, \beta)$, where

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right) .
\end{aligned}
$$

So

$$
\Psi_{\square}+\Psi_{\square}=M_{\square}+M_{\square}+M_{\square \square}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\Psi_{\square}+\Psi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{2} p_{1}=p_{\square}
\end{aligned}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\Psi_{\square}+\Psi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{2} p_{1}=p_{\square}
\end{aligned}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right), \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& \qquad \begin{array}{l}
\Psi_{\square}+\Psi_{\square}
\end{array}=M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{2} p_{1}=p_{\square} .
\end{aligned}
$$

Type 1 QSym power sums refine Sym power sums:

$$
p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

For example, if

$$
\alpha=\boxminus \quad \text { and } \quad \beta=\boxplus
$$

then $\mathcal{O}_{\alpha, \beta}$ contains $(\{1,3\},\{2\})$ and $(\{2\},\{1,3\})$.

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

For example, if

$$
\alpha=\boxminus \quad \text { and } \quad \beta=\boxplus
$$

then $\mathcal{O}_{\alpha, \beta}$ contains $(\{1,3\},\{2\})$ and $(\{2\},\{1,3\})$.
It has been shown that

$$
p_{\lambda}=\sum_{\text {part'n } \mu}\left|\mathcal{O}_{\lambda, \mu}\right| m_{\mu}, \quad \text { so that } \quad p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta} .
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

It has been shown that

$$
p_{\lambda}=\sum_{\text {part'n } \mu}\left|\mathcal{O}_{\lambda, \mu}\right| m_{\mu}, \quad \text { so that } \quad p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta} .
$$

We combinatorially prove, for a fixed partition λ with size n, and a fixed composition β, that

$$
\left|\mathcal{O}_{\lambda \beta}\right| \frac{n!}{z_{\lambda}}=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}} \frac{n!}{\pi(\alpha, \beta)},
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

It has been shown that

$$
p_{\lambda}=\sum_{\text {part'n } \mu}\left|\mathcal{O}_{\lambda, \mu}\right| m_{\mu}, \quad \text { so that } \quad p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta} .
$$

We combinatorially prove, for a fixed partition λ with size n, and a fixed composition β, that

$$
\left|\mathcal{O}_{\lambda \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\left|\mathcal{O}_{\lambda \beta}\right| \frac{n!}{z_{\lambda}}=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}} \frac{n!}{\pi(\alpha, \beta)},
$$

where $S_{n}^{\lambda}=\left\{\sigma \in S_{n}\right.$ of cycle type $\left.\lambda\right\}$.

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on. . }
$$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on. . }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on. . }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
Split according to β :

571423689
$57\|14\| 23689$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
Split according to β :
Add parentheses according to α :
571423689
57\| $\mid 14 \| 23689$
$(5)(7)\|(14)\|(2)(368)(9)$
- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
571423689
Split according to β :
57\|14\|23689
Add parentheses according to α :
$(5)(7)\|(14)\|(2)(368)(9)$
If the permutations in each partition are in standard form, then σ is consistent.
- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
571423689
Split according to β :
$57\|14\| 23689$
Add parentheses according to α :
$(5)(7)\|(14)\|(2)(368)(9)$
If the permutations in each partition are in standard form, then σ is consistent.

$$
\text { Non-example: } 571428369 \quad \rightarrow \quad(5)(7)\|(14)\|(2)(836)(9)
$$

$$
\begin{gathered}
\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,2,1)}=\{1234,1243,1342,2134,2143,2341,3124, \\
3142,3241,4123,4132,4231\},
\end{gathered}
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,3)}=\{1234,2134,3124,4123\}$,
$\operatorname{Cons}_{(1,2,1)_{\preccurlyeq(3,1)}}=\{1234,1243,1342,2134,2143,2341,3142,3241\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(4)}=\{1234,2134\}$

$$
\begin{gathered}
\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,2,1)}=\{1234,1243,1342,2134,2143,2341,3124, \\
3142,3241,4123,4132,4231\},
\end{gathered}
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,3)}=\{1234,2134,3124,4123\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(3,1)}=\{1234,1243,1342,2134,2143,2341,3142,3241\}$,

$$
\operatorname{Cons}_{(1,2,1) \preccurlyeq(4)}=\{1234,2134\}
$$

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,2,1)}=\{1234,1243,1342,2134,2143,2341,3124$, $3142,3241,4123,4132,4231\}$,

$$
\pi((1,2,1),(1,2,1))=2
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,3)}=\{1234,2134,3124,4123\}$,

$$
\pi((1,2,1),(1,3))=2 \cdot 3
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(3,1)}=\{1234,1243,1342,2134,2143,2341,3142,3241\}$,

$$
\pi((1,2,1),(3,1))=1 \cdot 3
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(4)}=\{1234,2134\}$

$$
\pi((1,2,1),(4))=1 \cdot 3 \cdot 4
$$

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\prod_{i=1}^{\ell(\beta)}\left(\prod_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$. Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta} .
$$

(For each permutation written in one-line notation, "cycle" into consistency with $\alpha \preccurlyeq \beta$, and record cycles with elements of $A_{\alpha \preccurlyeq \beta}$. See slides from "Discrete Math Day" October 2017.)

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\prod_{i=1}^{\ell(\beta)}\left(\prod_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$. Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta} .
$$

(For each permutation written in one-line notation, "cycle" into consistency with $\alpha \preccurlyeq \beta$, and record cycles with elements of $A_{\alpha \preccurlyeq \beta}$. See slides from "Discrete Math Day" October 2017.)
Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
\left|\mathcal{O}_{\alpha \preccurlyeq \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\sum_{\substack{\alpha \preccurlyeq \beta \\ \bar{\alpha}=\lambda}}\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| .
$$

(Similar proof.)

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
\left|\mathcal{O}_{\alpha \preccurlyeq \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\sum_{\substack{\alpha \preccurlyeq \beta \\ \bar{\alpha}=\lambda}}\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| .
$$

(Similar proof.)
Therefore

$$
\left|\mathcal{O}_{\lambda \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}} \frac{n!}{\pi(\alpha, \beta)},
$$

so that
$p_{\lambda}=\sum_{\operatorname{comp} \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$, as desired.

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
$$

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\operatorname{sp}(\beta, \alpha)} \phi_{\beta},
$$

where $\operatorname{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$.

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \mathbf{\Phi}(t) d t\right)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\operatorname{sp}(\beta, \alpha)} \phi_{\beta},
$$

where $\operatorname{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\phi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\operatorname{sp}(\beta, \alpha)} \phi_{\beta},
$$

where $\operatorname{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\phi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

Define

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \phi_{\alpha}^{*}, \quad \text { so that } \quad\left\langle\phi_{\alpha}, \Phi_{\beta}\right\rangle=z_{\alpha} \delta_{\alpha \beta}
$$

Computing coefficients

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

Computing coefficients

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta} .
$$

For example, we saw that

First, for each block, we compute $\operatorname{sp}(\gamma)=\ell(\gamma)!\prod_{k} \gamma_{j}$:

$$
\operatorname{sp}(\square)=3!(1 \cdot 2 \cdot 1)
$$

Computing coefficients

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

First, for each block, we compute $\operatorname{sp}(\gamma)=\ell(\gamma)!\prod_{k} \gamma_{j}$:

$$
\operatorname{sp}(\square)=3!(1 \cdot 2 \cdot 1)
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \operatorname{sp}(\alpha, \beta)$, where

Computing coefficients

$$
\operatorname{sp}(\boxplus)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right), \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) .
\end{aligned}
$$

Computing coefficients

$$
\operatorname{sp}(\boxplus)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right), \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) .
\end{aligned}
$$

So

$$
\Phi_{\square}+\Phi_{\square}=M_{\square}+M_{\square}+M_{\square \square}
$$

Computing coefficients

$$
\operatorname{sp}(\nexists)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right), \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\Phi_{\square}+\Phi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{2} p_{1}=p_{\square} .
\end{aligned}
$$

Computing coefficients

$$
\operatorname{sp}(\nexists)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right), \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\Phi_{\square}+\Phi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{2} p_{1}=p_{\square} .
\end{aligned}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square \square}\right) \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square \square}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\Phi_{\square}+\Phi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{2} p_{1}=p_{\square}
\end{aligned}
$$

Theorem (BDHMN)
Type 2 QSym power sums refine Sym power sums:

$$
p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Phi_{\alpha} .
$$

Other results

We also give

- Transition matrices between type 1 and type 2 , and to fundamentals.
- Combinatorial proofs of product formulas for type 1 and 2:

$$
\Psi_{\alpha} \Psi_{\beta}=\frac{z_{\alpha} z_{\beta}}{z_{\alpha \cdot \beta}} \sum_{\gamma \in \alpha \amalg \beta} \Psi_{\mathrm{wd}(\gamma)}, \quad \Phi_{\alpha} \Phi_{\beta}=\frac{z_{\alpha} z_{\beta}}{z_{\alpha \cdot \beta}} \sum_{\gamma \in \alpha \amalg \beta} \Phi_{\mathrm{wd}(\gamma)}
$$

- Some comments about plethysm, and other algebraic connections.

See arXiv:1710.11613 for more details.

Thanks!

