The affine signed Brauer algebra

Zajj Daugherty Joint with M. Balagovic, I. Entova-Aizenbud, I. Halacheva, J. Hennig, M. S. Im, G. Letzter, E. Norton, V. Serganova, and C. Stroppel

> arXiv:1801.04178 (See also arXiv:1610.08470)

> > April 22, 2018

A Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ with a super Lie bracket

$$[,]:\mathfrak{g}\otimes\mathfrak{g}\rightarrow\mathfrak{g}$$

satisfying

$$[x,y] = -(-1)^{\bar{x}\bar{y}}[y,x]$$

and

$$[x, [y, z]]] = [[x, y], z] + (-1)^{\bar{x}\bar{y}}[y, [x, z]],$$

where x, y, z are each homogeneous, and \bar{x} means degree.

A Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ with a super Lie bracket

$$[,]:\mathfrak{g}\otimes\mathfrak{g}\rightarrow\mathfrak{g}$$

satisfying

$$[x,y] = -(-1)^{\bar{x}\bar{y}}[y,x]$$

and

$$[x, [y, z]]] = [[x, y], z] + (-1)^{\bar{x}\bar{y}}[y, [x, z]],$$

where x, y, z are each homogeneous, and \bar{x} means degree.

Three types: basic, Cartan type, and strange (two families: periplectic and queer).

A Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with a super Lie bracket

$$[,]:\mathfrak{g}\otimes\mathfrak{g}\rightarrow\mathfrak{g}$$

satisfying

$$[x,y] = -(-1)^{\bar{x}\bar{y}}[y,x]$$

and

$$[x, [y, z]]] = [[x, y], z] + (-1)^{\bar{x}\bar{y}}[y, [x, z]],$$

where x, y, z are each homogeneous, and \bar{x} means degree.

Three types: basic, Cartan type, and strange (two families: periplectic and queer).

Let $V = V_0 \oplus V_1 = \mathbb{C}^{m|n}$ be a \mathbb{Z}_2 -graded vector space over \mathbb{C} .

A Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with a super Lie bracket

$$[,]:\mathfrak{g}\otimes\mathfrak{g}\rightarrow\mathfrak{g}$$

satisfying

$$[x,y] = -(-1)^{\bar{x}\bar{y}}[y,x]$$

and

$$[x, [y, z]]] = [[x, y], z] + (-1)^{\bar{x}\bar{y}}[y, [x, z]],$$

where x, y, z are each homogeneous, and \bar{x} means degree.

Three types: basic, Cartan type, and strange (two families: periplectic and queer).

Let $V = V_0 \oplus V_1 = \mathbb{C}^{m|n}$ be a \mathbb{Z}_2 -graded vector space over \mathbb{C} .

The general linear Lie superalgebra is

 $\mathfrak{gl}(m|n) = \mathrm{End}(V)$

A Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with a super Lie bracket $[,]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.

Three types: basic, Cartan type, and strange (two families: periplectic and queer).

Let $V = V_0 \oplus V_1 = \mathbb{C}^{m|n}$ be a \mathbb{Z}_2 -graded vector space over \mathbb{C} . For (homogeneous) $v \in V_i$, write $\bar{v} = i$ for its degree.

The general linear Lie superalgebra is

$$\mathfrak{gl}(m|n) = \operatorname{End}(V) = \mathfrak{g}_0 \oplus \mathfrak{g}_1,$$

where

$$\mathfrak{g}_0 = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \middle| A \in \operatorname{End}(V_0), D \in \operatorname{End}(V_1) \right\},$$
$$\mathfrak{g}_1 = \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \middle| B \in \operatorname{Hom}(V_1, V_0), C \in \operatorname{Hom}(V_0, V_1) \right\}.$$

A Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with a super Lie bracket $[,]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.

Three types: basic, Cartan type, and strange (two families: periplectic and queer).

Let $V = V_0 \oplus V_1 = \mathbb{C}^{m|n}$ be a \mathbb{Z}_2 -graded vector space over \mathbb{C} . For (homogeneous) $v \in V_i$, write $\bar{v} = i$ for its degree.

The general linear Lie superalgebra is

$$\mathfrak{gl}(m|n) = \operatorname{End}(V) = \mathfrak{g}_0 \oplus \mathfrak{g}_1,$$

where

$$\mathfrak{g}_0 = \left\{ \begin{pmatrix} A & 0\\ 0 & D \end{pmatrix} \middle| A \in \operatorname{End}(V_0), D \in \operatorname{End}(V_1) \right\},$$
$$\mathfrak{g}_1 = \left\{ \begin{pmatrix} 0 & B\\ C & 0 \end{pmatrix} \middle| B \in \operatorname{Hom}(V_1, V_0), C \in \operatorname{Hom}(V_0, V_1) \right\}.$$
Bracket: $[x, y] = xy - (-1)^{\bar{x}\bar{y}}yx.$

Let $\beta: V \otimes V \to \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

 $\beta(v,w) = (-1)^{\overline{v}\overline{w}}\beta(w,v)$ (supersymmetric).

Let $\beta: V \otimes V \to \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

 $\beta(v,w) = (-1)^{\overline{v}\overline{w}}\beta(w,v)$ (supersymmetric).

The periplectic Lie superalgebra is

 $\mathfrak{p}(V) = \mathfrak{p}(n) = \{x \in \mathrm{End}(V) \mid \beta(xv, w) + (-1)^{\bar{x}\bar{v}}\beta(v, xw) = 0\}.$

Let $\beta: V \otimes V \to \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

 $\beta(v,w) = (-1)^{\overline{v}\overline{w}}\beta(w,v)$ (supersymmetric).

The periplectic Lie superalgebra is

 $\mathfrak{p}(V) = \mathfrak{p}(n) = \{x \in \operatorname{End}(V) \mid \beta(xv, w) + (-1)^{\overline{x}\overline{v}}\beta(v, xw) = 0\}.$ Specifically, we have

$$\mathfrak{p}(n) \cong \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \in \mathfrak{gl}(n|n) \mid B = B^t, C = -C^t \right\}.$$

Let $\beta: V \otimes V \to \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$\beta(v,w) = (-1)^{\overline{v}\overline{w}}\beta(w,v)$$
 (supersymmetric).

The periplectic Lie superalgebra is

 $\mathfrak{p}(V) = \mathfrak{p}(n) = \{x \in \operatorname{End}(V) \mid \beta(xv, w) + (-1)^{\overline{x}\overline{v}}\beta(v, xw) = 0\}.$ Specifically, we have

$$\mathfrak{p}(n) \cong \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \in \mathfrak{gl}(n|n) \mid B = B^t, C = -C^t \right\}.$$

Then, as vector spaces $\mathfrak{p}(n) = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$, where

$$\begin{split} \mathfrak{g}_0 &= \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} \right\} \cong \mathfrak{gl}(n) \\ \mathfrak{g}_1 &= \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \right\}, \quad \mathfrak{g}_{-1} = \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \right\}. \end{split}$$

Let $\beta: V \otimes V \to \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$\beta(v,w) = (-1)^{\overline{v}\overline{w}}\beta(w,v)$$
 (supersymmetric).

The periplectic Lie superalgebra is

 $\mathfrak{p}(V) = \mathfrak{p}(n) = \{x \in \operatorname{End}(V) \mid \beta(xv, w) + (-1)^{\overline{x}\overline{v}}\beta(v, xw) = 0\}.$ Specifically, we have

$$\mathfrak{p}(n) \cong \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \in \mathfrak{gl}(n|n) \mid B = B^t, C = -C^t \right\}.$$

Then, as vector spaces $\mathfrak{p}(n) = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$, where

$$\begin{split} \mathfrak{g}_0 &= \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} \right\} \cong \mathfrak{gl}(n) \\ \mathfrak{g}_1 &= \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \right\}, \quad \mathfrak{g}_{-1} = \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \right\}. \end{split}$$

Goal: Study the representation theory of $\mathfrak{p}(n)$.

Let $\beta: V \otimes V \to \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$\beta(v,w) = (-1)^{\overline{v}\overline{w}}\beta(w,v)$$
 (supersymmetric).

The periplectic Lie superalgebra is

 $\mathfrak{p}(V) = \mathfrak{p}(n) = \{x \in \operatorname{End}(V) \mid \beta(xv, w) + (-1)^{\overline{x}\overline{v}}\beta(v, xw) = 0\}.$ Specifically, we have

$$\mathfrak{p}(n) \cong \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \in \mathfrak{gl}(n|n) \mid B = B^t, C = -C^t \right\}.$$

Then, as vector spaces $\mathfrak{p}(n) = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$, where

$$\begin{aligned} \mathfrak{g}_0 &= \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} \right\} \cong \mathfrak{gl}(n) \\ \mathfrak{g}_1 &= \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \right\}, \quad \mathfrak{g}_{-1} &= \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \right\}. \end{aligned}$$

Goal: Study the representation theory of $\mathfrak{p}(n)$. In particular, study the category \mathcal{F}_n of finite-dimensional integrable representations. Highest weight category!

Key ingredients for other cases: a large center in $\mathcal{U}\mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Key ingredients for other cases: a large center in $\mathcal{U}\mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U}\mathfrak{g}$ on

 $M \otimes V \otimes V \otimes \dots \otimes V = M \otimes V^{\otimes d},$

where V is g's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}(M \otimes V^{\otimes d})$ that commute with the g-action. Many commuting operators are generated by taking coproducts of central elements.

Key ingredients for other cases: a large center in $\mathcal{U}\mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U}\mathfrak{g}$ on

 $M \otimes V \otimes V \otimes \dots \otimes V = M \otimes V^{\otimes d},$

where V is g's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}(M \otimes V^{\otimes d})$ that commute with the g-action. Many commuting operators are generated by taking coproducts of central elements.

Example: If $\mathfrak{g} = \mathfrak{so}(V)$ or $\mathfrak{sp}(V)$, then the commuting operators generate the degenerate affine Brauer algebra; when $\mathfrak{g} = \mathfrak{sl}(V)$, you get the graded Hecke algebra of type A.

Key ingredients for other cases: a large center in $\mathcal{U}\mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U}\mathfrak{g}$ on

 $M \otimes V \otimes V \otimes \dots \otimes V = M \otimes V^{\otimes d},$

where V is g's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}(M \otimes V^{\otimes d})$ that commute with the g-action. Many commuting operators are generated by taking coproducts of central elements.

Example: If $\mathfrak{g} = \mathfrak{so}(V)$ or $\mathfrak{sp}(V)$, then the commuting operators generate the degenerate affine Brauer algebra; when $\mathfrak{g} = \mathfrak{sl}(V)$, you get the graded Hecke algebra of type A.

Obstruction: The center of $\mathcal{U}\mathfrak{p}(V)$ is trivial!

Key ingredients for other cases: a large center in $\mathcal{U}\mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U}\mathfrak{g}$ on

 $M \otimes V \otimes V \otimes \dots \otimes V = M \otimes V^{\otimes d},$

where V is g's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}(M \otimes V^{\otimes d})$ that commute with the g-action. Many commuting operators are generated by taking coproducts of central elements.

Example: If $\mathfrak{g} = \mathfrak{so}(V)$ or $\mathfrak{sp}(V)$, then the commuting operators generate the degenerate affine Brauer algebra; when $\mathfrak{g} = \mathfrak{sl}(V)$, you get the graded Hecke algebra of type A.

Obstruction: The center of $\mathcal{U}\mathfrak{p}(V)$ is trivial! But we'll figure it out anyway...

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto (-1)^{p(v)p(w)} w \otimes v$, and $e = \beta^* \circ \beta : v \otimes w \mapsto \beta(v, w)c$, where c spans the (super) sign module.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto (-1)^{p(v)p(w)} w \otimes v$, and $e = \beta^* \circ \beta : v \otimes w \mapsto \beta(v, w)c$, where c spans the (super) sign module.

•

Draw:

$$s =$$
 and $e =$

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto (-1)^{p(v)p(w)} w \otimes v$, and $e = \beta^* \circ \beta : v \otimes w \mapsto \beta(v, w)c$, where c spans the (super) sign module.

٠

Draw:

$$s =$$
 and $e =$

Relation: $e \circ s = e = -s \circ e$.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto (-1)^{p(v)p(w)} w \otimes v$, and $e = \beta^* \circ \beta : v \otimes w \mapsto \beta(v, w)c$, where c spans the (super) sign module.

Draw:

Relation: $e \circ s = e = -s \circ e$.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto (-1)^{p(v)p(w)} w \otimes v$, and $e = \beta^* \circ \beta : v \otimes w \mapsto \beta(v, w)c$, where c spans the (super) sign module.

Draw:

$$s = X$$
 and $e = X$ (marked Brauer)

Relation: $e \circ s = e = -s \circ e$. Also, $e^2 = 0$. (non-semisimple case)

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_d(\delta, \epsilon)$, $\epsilon = \pm 1$, is the space spanned by marked Brauer diagrams

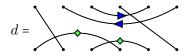


caps get one ♦ each, cups get one ► or ◄ each, no two markings at same height.

with equivalence up to isotopy except for the local relations

for any adjacent markings D and D (meaning no markings of height between these two).

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_d(\delta, \epsilon)$, $\epsilon = \pm 1$, is the space spanned by marked Brauer diagrams

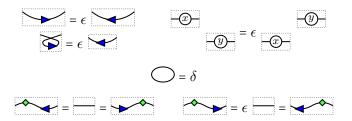


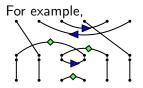
caps get one ♦ each, cups get one ► or ◄ each, no two markings at same height.

with equivalence up to isotopy except for the local relations

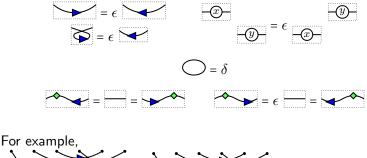
for any adjacent markings (*) and (*) (meaning no markings of height between these two). Multiplication is given by vertical concatenation, with relations $\bigcirc = \delta$,

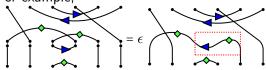
(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_d(\delta, \epsilon)$, $\epsilon = \pm 1$, is the space spanned by marked Brauer diagrams...



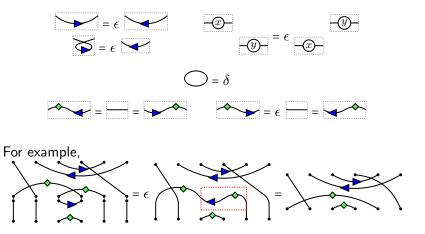


(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_d(\delta, \epsilon)$, $\epsilon = \pm 1$, is the space spanned by marked Brauer diagrams...

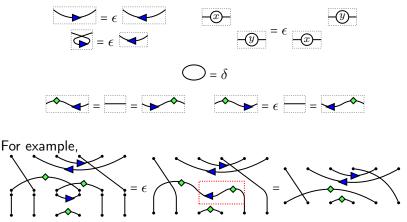




(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_d(\delta, \epsilon)$, $\epsilon = \pm 1$, is the space spanned by marked Brauer diagrams...



(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_d(\delta,\epsilon)$, $\epsilon = \pm 1$, is the space spanned by marked Brauer diagrams...



Note:

(1) $B_d(\delta, 1)$ = classical Brauer.

(2) If $\epsilon = -1$, then multiplication is well-defined exactly when $\delta = 0$. This case is called the signed Brauer algebra.

The marked Brauer algebra $B_d(\delta, \epsilon)$ is generated by $s_i = \bigcup_{i=1}^{i} \cdots \bigcup_{i=1}^{i+1} \cdots \bigcup_{i=1}^{i} and e_i = \bigcup_{i=1}^{i} \cdots \bigcup_{i=1}^{i+1} \cdots \bigcup_{i=1}^{i}$,

for i = 1, ..., k - 1.

The marked Brauer algebra $B_d(\delta, \epsilon)$ is generated by $s_i = \bigcup_{i=1}^{i} \cdots \bigcup_{i=1}^{i+1} \cdots \bigcup_{i=1}^{i} and e_i = \bigcup_{i=1}^{i} \cdots \bigcup_{i=1}^{i+1} \cdots \bigcup_{i=1}^{i}$,

for i = 1, ..., k - 1. Let $\mathfrak{g} = \mathfrak{gl}(V)^{\beta}$ (β -invariants) with $V = V_0 \oplus V_1$ (for β non-deg, homog, super symmetric, bilinear).

The marked Brauer algebra $B_d(\delta, \epsilon)$ is generated by $s_i = \bigcup_{i \to i} \bigcup_{i=1}^{i} \cdots \bigcup_{i \to i} \text{ and } e_i = \bigcup_{i \to i} \bigcup_{i=1}^{i} \cdots \bigcup_{i \to i}$,

for i = 1, ..., k - 1. Let $\mathfrak{g} = \mathfrak{gl}(V)^{\beta}$ (β -invariants) with $V = V_0 \oplus V_1$ (for β non-deg, homog, super symmetric, bilinear). If

$$\beta^* : \mathbb{C} \to V \otimes V \quad \text{and} \quad \begin{array}{c} s : V \otimes V \to V \otimes V \\ u \otimes v \quad \mapsto (-1)^{\bar{u}\bar{v}} v \otimes u \end{array}$$

The marked Brauer algebra $B_d(\delta, \epsilon)$ is generated by $s_i = \bigcup_{i=1}^{i} \cdots \bigcup_{i=1}^{i+1} \cdots \bigcup_{i=1}^{i} and e_i = \bigcup_{i=1}^{i} \cdots \bigcup_{i=1}^{i+1} \cdots \bigcup_{i=1}^{i}$,

for i = 1, ..., k - 1. Let $\mathfrak{g} = \mathfrak{gl}(V)^{\beta}$ (β -invariants) with $V = V_0 \oplus V_1$ (for β non-deg, homog, super symmetric, bilinear). If

$$\beta^*: \mathbb{C} \to V \otimes V \quad \text{ and } \quad \begin{array}{c} s: V \otimes V \to V \otimes V \\ u \otimes v \quad \mapsto (-1)^{\bar{u}\bar{v}} v \otimes u, \end{array}$$

then the map

$$\begin{split} e_i &\mapsto 1^{\otimes i-1} \otimes \beta^* \beta \otimes 1^{d-i-1}, \quad s_i \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{d-i-1}, \\ \text{for } i = 1, \dots, d-1, \text{ gives} \\ & B_d(\delta, \epsilon) \to \operatorname{End}_{\mathfrak{g}}(V^{\otimes d}) \\ \text{when } \delta = \dim V_0 - \dim V_1 \text{ and } \epsilon = (-1)^{\bar{\beta}} \text{ [KT14]}. \end{split}$$

Classical: Jucys-Murphy elements and the Casimir For i < j, let

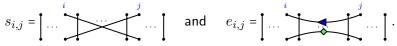
Classical: Jucys-Murphy elements and the Casimir For i < j, let

The Brauer algebra $B_d(\delta) = B_d(\delta, 1)$ has Jucys-Murphy elements

$$x_j = c + \sum_{i=1}^{j-1} s_{i,j} - e_{i,j}, \quad c \in \mathbb{C}, \ j = 1, \dots, d,$$

that pairwise commute (Nazarov 1996).

Classical: Jucys-Murphy elements and the Casimir For i < j, let



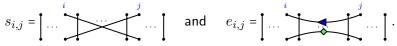
The Brauer algebra $B_d(\delta) = B_d(\delta, 1)$ has Jucys-Murphy elements

$$x_j = c + \sum_{i=1}^{j-1} s_{i,j} - e_{i,j}, \quad c \in \mathbb{C}, \ j = 1, \dots, d,$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version by

 $\mathbb{V}_d(\delta) = \mathbb{C}[y_1, \dots, y_d] \otimes B_d(\delta) \otimes \mathbb{C}[y_1, \dots, y_d]/(\text{relations}).$

Classical: Jucys-Murphy elements and the Casimir For i < j, let



The Brauer algebra $B_d(\delta) = B_d(\delta, 1)$ has Jucys-Murphy elements

$$x_j = c + \sum_{i=1}^{j-1} s_{i,j} - e_{i,j}, \quad c \in \mathbb{C}, \ j = 1, \dots, d,$$

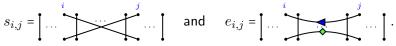
that pairwise commute (Nazarov 1996). Define the degenerate affine version by

 $\mathbb{W}_d(\delta) = \mathbb{C}[y_1, \dots, y_d] \otimes B_d(\delta) \otimes \mathbb{C}[y_1, \dots, y_d]/(\text{relations}).$ Action on tensor space: Fix $\mathfrak{g} = \mathfrak{so}(V)$ or $\mathfrak{sp}(V)$. Let $\Omega \in \mathcal{U}\mathfrak{g} \otimes \mathcal{U}\mathfrak{g}$ be the split Casimir invariant, given by

$$\Omega = 2 \sum_{b \in \Lambda} b \otimes b^*,$$

where Λ is a basis of \mathfrak{g} , and $\{b^* \mid b \in \Lambda\}$ is the dual basis w.r.t. β .

Classical: Jucys-Murphy elements and the Casimir For i < j, let



The Brauer algebra $B_d(\delta) = B_d(\delta, 1)$ has Jucys-Murphy elements

$$x_j = c + \sum_{i=1}^{j-1} s_{i,j} - e_{i,j}, \quad c \in \mathbb{C}, \ j = 1, \dots, d,$$

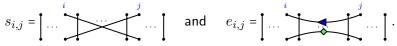
that pairwise commute (Nazarov 1996). Define the degenerate affine version by

 $\mathbb{W}_d(\delta) = \mathbb{C}[y_1, \dots, y_d] \otimes B_d(\delta) \otimes \mathbb{C}[y_1, \dots, y_d]/(\text{relations}).$ Action on tensor space: Fix $\mathfrak{g} = \mathfrak{so}(V)$ or $\mathfrak{sp}(V)$. Let $\Omega \in \mathcal{U}\mathfrak{g} \otimes \mathcal{U}\mathfrak{g}$ be the split Casimir invariant, given by

$$\Omega = 2 \sum_{b \in \Lambda} b \otimes b^*,$$

where Λ is a basis of \mathfrak{g} , and $\{b^* \mid b \in \Lambda\}$ is the dual basis w.r.t. β . Then Ω acts on $V \otimes V$ as as $s_1 - e_1$.

Classical: Jucys-Murphy elements and the Casimir For i < j, let



The Brauer algebra $B_d(\delta) = B_d(\delta, 1)$ has Jucys-Murphy elements

$$x_j = c + \sum_{i=1}^{j-1} s_{i,j} - e_{i,j}, \quad c \in \mathbb{C}, \ j = 1, \dots, d,$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version by

 $\mathbb{W}_d(\delta) = \mathbb{C}[y_1, \dots, y_d] \otimes B_d(\delta) \otimes \mathbb{C}[y_1, \dots, y_d]/(\text{relations}).$ Action on tensor space: Fix $\mathfrak{g} = \mathfrak{so}(V)$ or $\mathfrak{sp}(V)$. Let $\Omega \in \mathcal{U}\mathfrak{g} \otimes \mathcal{U}\mathfrak{g}$ be the split Casimir invariant, given by

$$\Omega = 2 \sum_{b \in \Lambda} b \otimes b^*,$$

where Λ is a basis of \mathfrak{g} , and $\{b^* \mid b \in \Lambda\}$ is the dual basis w.r.t. β . Then Ω acts on $V \otimes V$ as as $s_1 - e_1$. So the action of x_j on $V^{\otimes d}$ is the same as that of $\sum_{i=1}^{j-1} \Omega_{i,j}$.

Classical: Action on $M \otimes V^{\otimes d}$

Define the degenerate affine version by

$$\mathbb{W}_d(\delta) = \mathbb{C}[y_1, \dots, y_d] \otimes B_d(\delta) \otimes \mathbb{C}[y_1, \dots, y_d] / (\text{relations}),$$

where relations for the y_i 's are those satisfied between the x_i 's in $B_d(\delta)$. Let M be a g-simple module, and let

$$y_j$$
 act on $M \otimes V^{\otimes d}$ by $\sum_{i=0}^{j-1} \Omega_{i,j}$.

Classical: Action on $M \otimes V^{\otimes d}$

Define the degenerate affine version by

$$\mathbb{W}_d(\delta) = \mathbb{C}[y_1, \dots, y_d] \otimes B_d(\delta) \otimes \mathbb{C}[y_1, \dots, y_d] / (\text{relations}),$$

where relations for the y_i 's are those satisfied between the x_i 's in $B_d(\delta)$. Let M be a g-simple module, and let

$$y_j$$
 act on $M \otimes V^{\otimes d}$ by $\sum_{i=0}^{j-1} \Omega_{i,j}$.

Then letting the finite part act on $V^{\otimes d}$ as before, and as the identity on M, we have a representation

$$\mathbb{W}_d(\delta) \to \operatorname{End}_{\mathfrak{g}}(M \otimes V^{\otimes d}).$$

But back to periplectic land...

The center is trivial, so there's no Casimir element in $\mathcal{U}\mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U}\mathfrak{p}(n) \otimes \mathcal{U}\mathfrak{p}(n)$.

But back to periplectic land...

The center is trivial, so there's no Casimir element in $\mathcal{U}\mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U}\mathfrak{p}(n) \otimes \mathcal{U}\mathfrak{p}(n)$.

Key observation: With respect to the inner product

$$\langle x, y \rangle = \operatorname{str}(xy) = \operatorname{tr}(xy|_{V_0}) - \operatorname{tr}(xy|_{V_1}),$$

on $\mathfrak{gl}(n|n)$, we have

$$\mathfrak{p}(n)^* = \mathfrak{p}(n)^{\perp}$$
 so $\mathfrak{gl}(n|n) = \mathfrak{p}(n) \oplus \mathfrak{p}(n)^*$.

But back to periplectic land...

The center is trivial, so there's no Casimir element in $\mathcal{U}\mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U}\mathfrak{p}(n) \otimes \mathcal{U}\mathfrak{p}(n)$.

Key observation: With respect to the inner product

$$\langle x, y \rangle = \operatorname{str}(xy) = \operatorname{tr}(xy|_{V_0}) - \operatorname{tr}(xy|_{V_1}),$$

on $\mathfrak{gl}(n|n)$, we have

 $\mathfrak{p}(n)^* = \mathfrak{p}(n)^{\perp}$ so $\mathfrak{gl}(n|n) = \mathfrak{p}(n) \oplus \mathfrak{p}(n)^*$.

We define the split (fake) Casimir element of

$$\mathfrak{p}(n) \otimes \mathfrak{p}(n)^* \subset \mathfrak{p}(n) \otimes \mathfrak{gl}(n|n)$$

by

$$\Omega = 2\sum b \otimes b^*,$$

where the sum is over a basis of p(n) and its dual in $p(n)^*$.

But back to periplectic land...

The center is trivial, so there's no Casimir element in $\mathcal{U}\mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U}\mathfrak{p}(n) \otimes \mathcal{U}\mathfrak{p}(n)$.

Key observation: With respect to the inner product

$$\langle x, y \rangle = \operatorname{str}(xy) = \operatorname{tr}(xy|_{V_0}) - \operatorname{tr}(xy|_{V_1}),$$

on $\mathfrak{gl}(n|n)$, we have

 $\mathfrak{p}(n)^* = \mathfrak{p}(n)^{\perp}$ so $\mathfrak{gl}(n|n) = \mathfrak{p}(n) \oplus \mathfrak{p}(n)^*$.

We define the split (fake) Casimir element of

$$\mathfrak{p}(n) \otimes \mathfrak{p}(n)^* \subset \mathfrak{p}(n) \otimes \mathfrak{gl}(n|n)$$

by

$$\Omega = 2\sum b\otimes b^*,$$

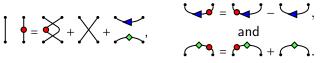
where the sum is over a basis of $\mathfrak{p}(n)$ and its dual in $\mathfrak{p}(n)^*$.

Then for any $\mathfrak{p}(n)$ -module M, Ω acts on $M \otimes V$, and that action commutes with the action of $\mathfrak{p}(n)$. [BDEHHILNSS]

$$y_i = \begin{bmatrix} & \dots & \begin{bmatrix} & i \\ & \bullet & \end{bmatrix} & \dots & \begin{bmatrix} & i \\ & \bullet & \end{bmatrix}$$

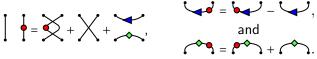
$$y_i = \begin{bmatrix} & \dots & \end{bmatrix} \stackrel{i}{\bullet} \begin{bmatrix} & \dots & \end{bmatrix}$$

Define the affine signed Brauer algebra s \mathbb{W}_d as the algebra generated by $B_d(0,-1)$ and y_1, \ldots, y_d , together with relations



$$y_i = \begin{bmatrix} & \dots & \end{bmatrix} \stackrel{i}{\bullet} \begin{bmatrix} & \dots & \end{bmatrix}$$

Define the affine signed Brauer algebra s \mathbb{W}_d as the algebra generated by $B_d(0,-1)$ and y_1, \ldots, y_d , together with relations

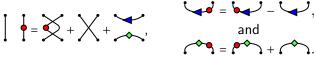


Some results: ([BDEHHILNSS-2])

- Presentation of s₩_d and related algebras/categories.
- Action on tensor space and translation functors.
- Filtrations and specializations.
- Basis and spanning sets.
- Center.

$$y_i = \begin{bmatrix} & \dots & \begin{bmatrix} & i \\ \bullet & \bullet & \bullet \end{bmatrix} \dots \end{bmatrix}$$

Define the affine signed Brauer algebra s \mathbb{W}_d as the algebra generated by $B_d(0,-1)$ and y_1,\ldots,y_d , together with relations



Some results: ([BDEHHILNSS-2])

- Presentation of s₩_d and related algebras/categories.
- Action on tensor space and translation functors.
- Filtrations and specializations.
- Basis and spanning sets.
- Center.

Many other result about the category of finite-dimensional integrable p(V)-modules itself in [BDEHHILNSS-1] as well!

Women in Noncommutative Algebra and Representation Theory (WINART) Banff, 2016