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Lie superalgebras
A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 with a
super Lie bracket

[, ] ∶ g⊗ g→ g

satisfying

[x, y] = −(−1)x̄ȳ[y, x]
and

[x, [y, z]]] = [[x, y], z] + (−1)x̄ȳ[y, [x, z]],
where x, y, z are each homogeneous, and x̄ means degree.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm∣n be a Z2-graded vector space over C.

The general linear Lie superalgebra is

gl(m∣n) = End(V ) = g0 ⊕ g1,

where

Bracket: [x, y] = xy − (−1)x̄ȳyx.
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Lie superalgebras
A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 with a
super Lie bracket [, ] ∶ g⊗ g→ g satisfying a super symmetry and
super Jacobi identity.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm∣n be a Z2-graded vector space over C.
For (homogeneous) v ∈ Vi, write v̄ = i for its degree.

The general linear Lie superalgebra is

gl(m∣n) = End(V ) = g0 ⊕ g1,

where

g0 = {(A 0
0 D

) ∣ A ∈ End(V0),D ∈ End(V1)} ,

g1 = {(0 B
C 0

) ∣ B ∈ Hom(V1, V0),C ∈ Hom(V0, V1)} .

Bracket: [x, y] = xy − (−1)x̄ȳyx.
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Lie superalgebras
Let β ∶ V ⊗ V → C be an odd, nondegenerate, homogeneous,
bilinear form satisfying

β(v,w) = (−1)v̄w̄β(w, v) (supersymmetric).

The periplectic Lie superalgebra is

p(V ) = p(n) = {x ∈ End(V ) ∣ β(xv,w) + (−1)x̄v̄β(v, xw) = 0}.
Specifically, we have

p(n) ≅ {(A B
C −At) ∈ gl(n∣n) ∣ B = Bt,C = −Ct} .

Then, as vector spaces p(n) = g0 ⊕ g1 ⊕ g−1, where

g0 = {(A 0
0 −At)} ≅ gl(n)

g1 = {(0 B
0 0

)} , g−1 = {(0 0
C 0

)} .

Goal: Study the representation theory of p(n). In particular, study
the category Fn of finite-dimensional integrable representations.
Highest weight category!
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Translation functors

Key ingredients for other cases: a large center in Ug, and
translation functors given by tensoring with the natural
representation followed by the projection onto a block.

Namely, you study the action of Ug on

M ⊗ V ⊗ V ⊗⋯⊗ V =M ⊗ V ⊗d,

where V is g’s favorite module, and M is another simple module,
by constructing operators in Endg(M ⊗ V ⊗d) that commute with
the g-action. Many commuting operators are generated by taking
coproducts of central elements.
Example: If g = so(V ) or sp(V ), then the commuting operators
generate the degenerate affine Brauer algebra; when g = sl(V ), you
get the graded Hecke algebra of type A.

Obstruction: The center of Up(V ) is trivial! But we’ll figure it out
anyway. . .
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Example: V ⊗ V

The algebra Endp(V )(V ⊗ V ) is 3-dimensional with basis 1,

s ∶ v ⊗w ↦ (−1)p(v)p(w)w ⊗ v, and e = β∗ ○ β ∶ v ⊗w ↦ β(v,w)c,
where c spans the (super) sign module.

Draw:

s = and e = .

(marked Brauer)

Relation: e ○ s = e = −s ○ e. Also, e2 = 0. (non-semisimple case)
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(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra
Bd(δ, ε), ε = ±1, is the space spanned by marked Brauer diagrams

d =
caps get one each,
cups get one or each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

= ε
= ε

and
x

y
= ε

x

y

for any adjacent markings x and y (meaning no markings of
height between these two).

Multiplication is given by vertical

concatenation, with relations = δ,

= = and = ε = .
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(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra
Bd(δ, ε), ε = ±1, is the space spanned by marked Brauer
diagrams. . .

= ε
= ε

x

y
= ε

x

y

= δ

= = = ε =

For example,

= ε =

Note:
(1) Bd(δ,1) = classical Brauer.
(2) If ε = −1, then multiplication is well-defined exactly when δ = 0.

This case is called the signed Brauer algebra.
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Centralizer algebras

The marked Brauer algebra Bd(δ, ε) is generated by

si =
i i+1

i+1

. . . . . . and ei =
i i+1

i+1

. . . . . . ,

for i = 1, . . . , k − 1.

Let g = gl(V )β (β-invariants) with V = V0 ⊕ V1 (for β non-deg,
homog, super symmetric, bilinear). If

β∗ ∶ C→ V ⊗ V and
s ∶ V ⊗ V → V ⊗ V

u⊗ v ↦ (−1)ūv̄v ⊗ u,
then the map

ei ↦ 1⊗i−1 ⊗ β∗β ⊗ 1d−i−1, si ↦ 1⊗i−1 ⊗ s⊗ 1d−i−1,

for i = 1, . . . , d − 1, gives

Bd(δ, ε)→ Endg(V ⊗d)
when δ = dimV0 − dimV1 and ε = (−1)β̄ [KT14].
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Classical: Jucys-Murphy elements and the Casimir
For i < j, let

si,j =
i j

. . . . . .
. . . and ei,j =

i j

. . . . . .. . . .

The Brauer algebra Bd(δ) = Bd(δ,1) has Jucys-Murphy elements

xj = c +
j−1

∑
i=1

si,j − ei,j , c ∈ C, j = 1, . . . , d,

that pairwise commute (Nazarov 1996). Define the degenerate
affine version by

⩔d(δ) = C[y1, . . . , yd]⊗Bd(δ)⊗C[y1, . . . , yd]/(relations).

Action on tensor space: Fix g = so(V ) or sp(V ). Let Ω ∈ Ug⊗ Ug
be the split Casimir invariant, given by

Ω = 2∑
b∈Λ

b⊗ b∗,

where Λ is a basis of g, and {b∗ ∣ b ∈ Λ} is the dual basis w.r.t. β.
Then Ω acts on V ⊗ V as as s1 − e1. So the action of xj on V ⊗d is

the same as that of ∑j−1
i=1 Ωi,j .
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Action on tensor space: Fix g = so(V ) or sp(V ). Let Ω ∈ Ug⊗ Ug
be the split Casimir invariant, given by

Ω = 2∑
b∈Λ

b⊗ b∗,

where Λ is a basis of g, and {b∗ ∣ b ∈ Λ} is the dual basis w.r.t. β.
Then Ω acts on V ⊗ V as as s1 − e1. So the action of xj on V ⊗d is

the same as that of ∑j−1
i=1 Ωi,j .
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Classical: Action on M ⊗ V ⊗d

Define the degenerate affine version by

⩔d(δ) = C[y1, . . . , yd]⊗Bd(δ)⊗C[y1, . . . , yd]/(relations),

where relations for the yi’s are those satisfied between the xi’s in
Bd(δ). Let M be a g-simple module, and let

yj act on M ⊗ V ⊗d by
j−1

∑
i=0

Ωi,j .

Then letting the finite part act on V ⊗d as before, and as the
identity on M , we have a representation

⩔d(δ)→ Endg(M ⊗ V ⊗d).
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Periplectic J-M elements and action on tensor space

But back to periplectic land. . .
The center is trivial, so there’s no Casimir element in Up(n), and
there’s no split Casimir in Up(n)⊗ Up(n).

Key observation: With respect to the inner product

⟨x, y⟩ = str(xy) = tr (xy∣V0) − tr (xy∣V1) ,
on gl(n∣n), we have

p(n)∗ = p(n)⊥ so gl(n∣n) = p(n)⊕ p(n)∗.
We define the split (fake) Casimir element of

p(n)⊗ p(n)∗ ⊂ p(n)⊗ gl(n∣n)
by

Ω = 2∑ b⊗ b∗,
where the sum is over a basis of p(n) and its dual in p(n)∗.

Then for any p(n)-module M , Ω acts on M ⊗ V , and that action
commutes with the action of p(n). [BDEHHILNSS]
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Draw Jucys-Murphy elements as

yi = ⋯ ⋯
i

Define the affine signed Brauer algebra s⩔d as the algebra
generated by Bd(0,−1) and y1, . . . , yd, together with relations

= + + ,

= − ,

and

= + .

Some results: ([BDEHHILNSS-2])

• Presentation of s⩔d and related algebras/categories.

• Action on tensor space and translation functors.

• Filtrations and specializations.

• Basis and spanning sets.

• Center.

Many other result about the category of finite-dimensional
integrable p(V )-modules itself in [BDEHHILNSS-1] as well!
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