## The affine signed Brauer algebra

Zajj Daugherty<br>Joint with M. Balagovic, I. Entova-Aizenbud, I. Halacheva,<br>J. Hennig, M. S. Im, G. Letzter, E. Norton,<br>V. Serganova, and C. Stroppel<br>arXiv:1801.04178<br>(See also arXiv:1610.08470)

April 22, 2018

## Lie superalgebras

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where $x, y, z$ are each homogeneous, and $\bar{x}$ means degree.

## Lie superalgebras

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where $x, y, z$ are each homogeneous, and $\bar{x}$ means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).

## Lie superalgebras

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where $x, y, z$ are each homogeneous, and $\bar{x}$ means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a $\mathbb{Z}_{2}$-graded vector space over $\mathbb{C}$.

## Lie superalgebras

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where $x, y, z$ are each homogeneous, and $\bar{x}$ means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a $\mathbb{Z}_{2}$-graded vector space over $\mathbb{C}$.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)
$$

## Lie superalgebras

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a $\mathbb{Z}_{2}$-graded vector space over $\mathbb{C}$.
For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \right\rvert\, A \in \operatorname{End}\left(V_{0}\right), D \in \operatorname{End}\left(V_{1}\right)\right\}, \\
\mathfrak{g}_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Hom}\left(V_{1}, V_{0}\right), C \in \operatorname{Hom}\left(V_{0}, V_{1}\right)\right\} .
\end{gathered}
$$

## Lie superalgebras

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a $\mathbb{Z}_{2}$-graded vector space over $\mathbb{C}$.
For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \right\rvert\, A \in \operatorname{End}\left(V_{0}\right), D \in \operatorname{End}\left(V_{1}\right)\right\}, \\
\mathfrak{g}_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Hom}\left(V_{1}, V_{0}\right), C \in \operatorname{Hom}\left(V_{0}, V_{1}\right)\right\} .
\end{gathered}
$$

Bracket: $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.

## Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v}} \bar{w} \beta(w, v) \quad \text { (supersymmetric). }
$$

## Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

## Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

## Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\}
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}(n) \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{cc}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

## Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\}
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}(n) \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{cc}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Goal: Study the representation theory of $\mathfrak{p}(n)$.

## Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be an odd, nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\}
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}(n) \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{cc}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Goal: Study the representation theory of $\mathfrak{p}(n)$. In particular, study the category $\mathcal{F}_{n}$ of finite-dimensional integrable representations. Highest weight category!

## Translation functors

Key ingredients for other cases: a large center in $\mathcal{U} \mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

## Translation functors

Key ingredients for other cases: a large center in $\mathcal{U g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where $V$ is $\mathfrak{g}$ 's favorite module, and $M$ is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the $\mathfrak{g}$-action. Many commuting operators are generated by taking coproducts of central elements.

## Translation functors

Key ingredients for other cases: a large center in $\mathcal{U} \mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where $V$ is $\mathfrak{g}$ 's favorite module, and $M$ is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the $\mathfrak{g}$-action. Many commuting operators are generated by taking coproducts of central elements.
Example: If $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$, then the commuting operators generate the degenerate affine Brauer algebra; when $\mathfrak{g}=\mathfrak{s l}(V)$, you get the graded Hecke algebra of type A.

## Translation functors

Key ingredients for other cases: a large center in $\mathcal{U g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where $V$ is $\mathfrak{g}$ 's favorite module, and $M$ is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the $\mathfrak{g}$-action. Many commuting operators are generated by taking coproducts of central elements.
Example: If $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$, then the commuting operators generate the degenerate affine Brauer algebra; when $\mathfrak{g}=\mathfrak{s l}(V)$, you get the graded Hecke algebra of type A.
Obstruction: The center of $\mathcal{U} \mathfrak{p}(V)$ is trivial!

## Translation functors

Key ingredients for other cases: a large center in $\mathcal{U g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block.

Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where $V$ is $\mathfrak{g}$ 's favorite module, and $M$ is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the $\mathfrak{g}$-action. Many commuting operators are generated by taking coproducts of central elements.
Example: If $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$, then the commuting operators generate the degenerate affine Brauer algebra; when $\mathfrak{g}=\mathfrak{s l}(V)$, you get the graded Hecke algebra of type A.
Obstruction: The center of $\mathcal{U} p(V)$ is trivial! But we'll figure it out anyway...

## Example: $V \otimes V$

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$, where $c$ spans the (super) sign module.

## Example: $V \otimes V$

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$, where $c$ spans the (super) sign module.

Draw:

$$
s=\varnothing \text { and } \quad e=
$$

## Example: $V \otimes V$

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$, where $c$ spans the (super) sign module.

Draw:

$$
s=\varnothing \text { and } e=
$$

Relation: $e \circ s=e=-s \circ e$.

## Example: $V \otimes V$

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$, where $c$ spans the (super) sign module.

Draw:

$$
s=X \text { and } e=\sim
$$

(marked Brauer)
Relation: $e \circ s=e=-s \circ e$.

## Example: $V \otimes V$

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$, where $c$ spans the (super) sign module.

Draw:

$$
s=X \text { and } e=\text { (marked Brauer) }
$$

Relation: $e \circ s=e=-s \circ e$. Also, $e^{2}=0 . \quad$ (non-semisimple case)
(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one $\diamond$ each, cups get one $\boldsymbol{\sim}$ or each, no two markings at same height.
with equivalence up to isotopy except for the local relations

for any adjacent markings © and (2) (meaning no markings of height between these two).
(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one $\diamond$ each, cups get one or $\varangle$ each, no two markings at same height.
with equivalence up to isotopy except for the local relations

for any adjacent markings © and (2) (meaning no markings of height between these two). Multiplication is given by vertical concatenation, with relations $\bigcirc=\delta$,

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams...


$$
\text { -(2)- }_{\text {-(x)- }}^{\text {-(2)- }}
$$

$$
O=\delta
$$




For example,

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams...

$$
\zeta=\epsilon \Psi
$$

$$
\text { -(2)- }_{\text {-(x)- }}^{\text {-(2)- }}
$$

$$
O=\delta
$$



For example,

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams...


$$
\text { -(2)- }_{\text {-(x)- }}^{\text {-(2)- }}
$$

$$
O=\delta
$$



For example,

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams...


> -(x) -(y) -

$$
O=\delta
$$

$$
\stackrel{\Delta}{\boldsymbol{\Delta}}=\overrightarrow{\boldsymbol{\Delta}}
$$



For example,


Note:
(1) $B_{d}(\delta, 1)=$ classical Brauer.
(2) If $\epsilon=-1$, then multiplication is well-defined exactly when $\delta=0$.

This case is called the signed Brauer algebra.

## Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
s_{i}=\left|\cdots \chi^{i+1} \cdots\right| \text { and } e_{i}=\left|\cdots \sim_{\sim}^{i+1} \cdots\right|
$$

$$
\text { for } i=1, \ldots, k-1 \text {. }
$$

## Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.s_{i}=\right\rceil \cdots \sum_{0}^{i+1} \cdots \quad \text { and } e_{i}=1 \cdots \underbrace{i+1}_{\infty} \cdots
$$

for $i=1, \ldots, k-1$.
Let $\mathfrak{g}=\mathfrak{g l}(V)^{\beta}$ ( $\beta$-invariants) with $V=V_{0} \oplus V_{1}$ (for $\beta$ non-deg, homog, super symmetric, bilinear).

## Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.s_{i}=\right\rceil \cdots \sum^{i+1} \cdots \quad \text { and } e_{i}=\lceil\cdots \underbrace{i+1}_{\infty} \cdots
$$

for $i=1, \ldots, k-1$.
Let $\mathfrak{g}=\mathfrak{g l}(V)^{\beta}$ ( $\beta$-invariants) with $V=V_{0} \oplus V_{1}$ (for $\beta$ non-deg, homog, super symmetric, bilinear). If

$$
\begin{aligned}
& \beta^{*}: \mathbb{C} \rightarrow V \otimes V \quad \text { and } \\
& s: V \otimes V \rightarrow V \otimes V \\
& u \otimes v \quad \mapsto(-1)^{\bar{u} \bar{v}} v \otimes u
\end{aligned}
$$

## Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.s_{i}=\right\rceil \cdots \sum_{0}^{i+1} \cdots \text { and } e_{i}=!\cdots \underbrace{i+1}_{\infty} \cdots
$$

for $i=1, \ldots, k-1$.
Let $\mathfrak{g}=\mathfrak{g l}(V)^{\beta}$ ( $\beta$-invariants) with $V=V_{0} \oplus V_{1}$ (for $\beta$ non-deg, homog, super symmetric, bilinear). If

$$
\begin{aligned}
& \beta^{*}: \mathbb{C} \rightarrow V \otimes V \quad \text { and } \\
& s: V \otimes V \rightarrow V \otimes V \\
& u \otimes v \mapsto(-1)^{\bar{u} \bar{v}} v \otimes u,
\end{aligned}
$$

then the map

$$
e_{i} \mapsto 1^{\otimes i-1} \otimes \beta^{*} \beta \otimes 1^{d-i-1}, \quad s_{i} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{d-i-1}
$$

for $i=1, \ldots, d-1$, gives

$$
B_{d}(\delta, \epsilon) \rightarrow \operatorname{End}_{\mathfrak{g}}\left(V^{\otimes d}\right)
$$

when $\delta=\operatorname{dim} V_{0}-\operatorname{dim} V_{1}$ and $\epsilon=(-1)^{\bar{\beta}}$ [KT14].

Classical: Jucys-Murphy elements and the Casimir For $i<j$, let

$$
s_{i, j}=\mid \ldots \underbrace{i}_{0}
$$

Classical: Jucys-Murphy elements and the Casimir
For $i<j$, let


The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, d
$$

that pairwise commute (Nazarov 1996).

Classical: Jucys-Murphy elements and the Casimir
For $i<j$, let


The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, d
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version by

$$
\mathbb{W}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{d}\right] /(\text { relations }) .
$$

## Classical: Jucys-Murphy elements and the Casimir

For $i<j$, let


The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, d,
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version by

$$
\mathbb{W}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{d}\right] /(\text { relations }) .
$$

Action on tensor space: Fix $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$. Let $\Omega \in \mathcal{U} \mathfrak{g} \otimes \mathcal{U} \mathfrak{g}$ be the split Casimir invariant, given by

$$
\Omega=2 \sum_{b \in \Lambda} b \otimes b^{*}
$$

where $\Lambda$ is a basis of $\mathfrak{g}$, and $\left\{b^{*} \mid b \in \Lambda\right\}$ is the dual basis w.r.t. $\beta$.

## Classical: Jucys-Murphy elements and the Casimir

For $i<j$, let


The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, d,
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version by

$$
\mathbb{W}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{d}\right] /(\text { relations }) .
$$

Action on tensor space: Fix $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$. Let $\Omega \in \mathcal{U} \mathfrak{g} \otimes \mathcal{U} \mathfrak{g}$ be the split Casimir invariant, given by

$$
\Omega=2 \sum_{b \in \Lambda} b \otimes b^{*},
$$

where $\Lambda$ is a basis of $\mathfrak{g}$, and $\left\{b^{*} \mid b \in \Lambda\right\}$ is the dual basis w.r.t. $\beta$. Then $\Omega$ acts on $V \otimes V$ as as $s_{1}-e_{1}$.

## Classical: Jucys-Murphy elements and the Casimir

For $i<j$, let


The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, d,
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version by

$$
\mathbb{W}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{d}\right] /(\text { relations }) .
$$

Action on tensor space: Fix $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$. Let $\Omega \in \mathcal{U} \mathfrak{g} \otimes \mathcal{U} \mathfrak{g}$ be the split Casimir invariant, given by

$$
\Omega=2 \sum_{b \in \Lambda} b \otimes b^{*},
$$

where $\Lambda$ is a basis of $\mathfrak{g}$, and $\left\{b^{*} \mid b \in \Lambda\right\}$ is the dual basis w.r.t. $\beta$. Then $\Omega$ acts on $V \otimes V$ as as $s_{1}-e_{1}$. So the action of $x_{j}$ on $V^{\otimes d}$ is the same as that of $\sum_{i=1}^{j-1} \Omega_{i, j}$.

## Classical: Action on $M \otimes V^{\otimes d}$

Define the degenerate affine version by

$$
\mathbb{W}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{d}\right] /(\text { relations })
$$

where relations for the $y_{i}$ 's are those satisfied between the $x_{i}$ 's in $B_{d}(\delta)$. Let $M$ be a $\mathfrak{g}$-simple module, and let

$$
y_{j} \text { act on } M \otimes V^{\otimes d} \text { by } \sum_{i=0}^{j-1} \Omega_{i, j} \text {. }
$$

## Classical: Action on $M \otimes V^{\otimes d}$

Define the degenerate affine version by

$$
\mathbb{W}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) \otimes \mathbb{C}\left[y_{1}, \ldots, y_{d}\right] /(\text { relations })
$$

where relations for the $y_{i}$ 's are those satisfied between the $x_{i}$ 's in $B_{d}(\delta)$. Let $M$ be a $\mathfrak{g}$-simple module, and let

$$
y_{j} \text { act on } M \otimes V^{\otimes d} \text { by } \sum_{i=0}^{j-1} \Omega_{i, j} \text {. }
$$

Then letting the finite part act on $V^{\otimes d}$ as before, and as the identity on $M$, we have a representation

$$
\mathbb{W}_{d}(\delta) \rightarrow \operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)
$$

## Periplectic J-M elements and action on tensor space

But back to periplectic land...
The center is trivial, so there's no Casimir element in $\mathcal{U} \mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U} \mathfrak{p}(n) \otimes \mathcal{U} \mathfrak{p}(n)$.

## Periplectic J-M elements and action on tensor space

But back to periplectic land...
The center is trivial, so there's no Casimir element in $\mathcal{U} \mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U p}(n) \otimes \mathcal{U} \mathfrak{p}(n)$.

Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

## Periplectic J-M elements and action on tensor space

But back to periplectic land...
The center is trivial, so there's no Casimir element in $\mathcal{U} \mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U p}(n) \otimes \mathcal{U} \mathfrak{p}(n)$.

Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

We define the split (fake) Casimir element of

$$
\mathfrak{p}(n) \otimes \mathfrak{p}(n)^{*} \subset \mathfrak{p}(n) \otimes \mathfrak{g l}(n \mid n)
$$

by

$$
\Omega=2 \sum b \otimes b^{*}
$$

where the sum is over a basis of $\mathfrak{p}(n)$ and its dual in $\mathfrak{p}(n)^{*}$.

## Periplectic J-M elements and action on tensor space

But back to periplectic land...
The center is trivial, so there's no Casimir element in $\mathcal{U} \mathfrak{p}(n)$, and there's no split Casimir in $\mathcal{U p}(n) \otimes \mathcal{U} \mathfrak{p}(n)$.

Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

We define the split (fake) Casimir element of

$$
\mathfrak{p}(n) \otimes \mathfrak{p}(n)^{*} \subset \mathfrak{p}(n) \otimes \mathfrak{g l}(n \mid n)
$$

by

$$
\Omega=2 \sum b \otimes b^{*},
$$

where the sum is over a basis of $\mathfrak{p}(n)$ and its dual in $\mathfrak{p}(n)^{*}$.
Then for any $\mathfrak{p}(n)$-module $M, \Omega$ acts on $M \otimes V$, and that action commutes with the action of $\mathfrak{p}(n)$. [BDEHHILNSS]

Draw Jucys-Murphy elements as

$$
\left.\left.\left.y_{i}=\emptyset \quad \ldots \quad j \quad\right\rfloor \quad\right\rfloor \quad\right\rfloor
$$

Draw Jucys-Murphy elements as

Define the affine signed Brauer algebra $s \mathbb{W}_{d}$ as the algebra generated by $B_{d}(0,-1)$ and $y_{1}, \ldots, y_{d}$, together with relations

$$
1!=x+x+\infty
$$



Draw Jucys-Murphy elements as

$$
y_{i}=\left\lceil\cdots \quad \left\lvert\, \begin{array}{l}
i \\
\vdots \\
!
\end{array}\right.\right]
$$

Define the affine signed Brauer algebra $s W_{d}$ as the algebra generated by $B_{d}(0,-1)$ and $y_{1}, \ldots, y_{d}$, together with relations

$$
i=3+X+\infty
$$



Some results: ([BDEHHILNSS-2])

- Presentation of $s W_{d}$ and related algebras/categories.
- Action on tensor space and translation functors.
- Filtrations and specializations.
- Basis and spanning sets.
- Center.

Draw Jucys-Murphy elements as

$$
y_{i}=\left\lceil\cdots \left\lceil\begin{array}{llll}
i \\
& \vdots & \cdots
\end{array}\right.\right.
$$

Define the affine signed Brauer algebra $s W_{d}$ as the algebra generated by $B_{d}(0,-1)$ and $y_{1}, \ldots, y_{d}$, together with relations

$$
i=3+X+\infty
$$



Some results: ([BDEHHILNSS-2])

- Presentation of $s W_{d}$ and related algebras/categories.
- Action on tensor space and translation functors.
- Filtrations and specializations.
- Basis and spanning sets.
- Center.

Many other result about the category of finite-dimensional integrable $\mathfrak{p}(V)$-modules itself in [BDEHHILNSS-1] as well!

## Women in Noncommutative Algebra and Representation Theory (WINART) Banff, 2016

