Representations of the periplectic Lie superalgebra $\mathfrak{p}(n)$

Zajj Daugherty
Joint with M. Balagovic, I. Entova-Aizenbud, I. Halacheva,
J. Hennig, M. S. Im, G. Letzter E. Norton,
V. Serganova, and C. Stroppel

arXiv:1610.08470

November 28, 2017

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]]
$$

where x, y, z are each homogeneous, and \bar{x} means degree.

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where x, y, z are each homogeneous, and \bar{x} means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]]
$$

where x, y, z are each homogeneous, and \bar{x} means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]]
$$

where x, y, z are each homogeneous, and \bar{x} means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)
$$

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \right\rvert\, A \in \operatorname{End}\left(V_{0}\right), D \in \operatorname{End}\left(V_{1}\right)\right\} \\
\mathfrak{g}_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Hom}\left(V_{1}, V_{0}\right), C \in \operatorname{Hom}\left(V_{0}, V_{1}\right)\right\} .
\end{gathered}
$$

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \right\rvert\, A \in \operatorname{End}\left(V_{0}\right), D \in \operatorname{End}\left(V_{1}\right)\right\} \\
\mathfrak{g}_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Hom}\left(V_{1}, V_{0}\right), C \in \operatorname{Hom}\left(V_{0}, V_{1}\right)\right\} .
\end{gathered}
$$

Bracket: $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.

Lie superalgebras

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For homogeneous v, write \bar{v} for its degree.
$\mathfrak{g l}(m \mid n)=\operatorname{End}(V)$ with bracket $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.

Lie superalgebras

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For homogeneous v, write \bar{v} for its degree.
$\mathfrak{g l}(m \mid n)=\operatorname{End}(V)$ with bracket $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.
Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Lie superalgebras

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For homogeneous v, write \bar{v} for its degree.
$\mathfrak{g l}(m \mid n)=\operatorname{End}(V)$ with bracket $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.
Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Then

$$
\mathfrak{g}=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\}
$$

is a Lie superalgebra (\mathbb{Z}_{2}-graded).

Lie superalgebras

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For homogeneous v, write \bar{v} for its degree.
$\mathfrak{g l}(m \mid n)=\operatorname{End}(V)$ with bracket $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.
Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Then

$$
\mathfrak{g}=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\}
$$

is a Lie superalgebra (\mathbb{Z}_{2}-graded).
Ex. If β is even, $\mathfrak{g}=\mathfrak{o s p}(V)$ the orthosymplectic Lie superalgebra (if $V_{1}=0, \mathfrak{g}=\mathfrak{s o}(V)$; and if $V_{0}=0, \mathfrak{g}=\mathfrak{s p}(V)$).

Lie superalgebras

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For homogeneous v, write \bar{v} for its degree.
$\mathfrak{g l}(m \mid n)=\operatorname{End}(V)$ with bracket $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.
Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Then

$$
\mathfrak{g}=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\}
$$

is a Lie superalgebra (\mathbb{Z}_{2}-graded).
Ex. If β is even, $\mathfrak{g}=\mathfrak{o s p}(V)$ the orthosymplectic Lie superalgebra (if $V_{1}=0, \mathfrak{g}=\mathfrak{s o}(V)$; and if $V_{0}=0, \mathfrak{g}=\mathfrak{s p}(V)$).

Ex. If β is odd, we need $m=n$. Then $\mathfrak{g}=\mathfrak{p}(V)=\mathfrak{p}(n)$ the periplectic Lie superalgebra.

Periplectic Lie superalgebra

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{n \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. If $\beta: V \otimes V \rightarrow \mathbb{C}$ is an odd, nondegenerate, homogeneous, super symmetric bilinear form, then

$$
\beta(v, w)=0 \quad \text { if } \quad \bar{v}=\bar{w} .
$$

Periplectic Lie superalgebra

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{n \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. If $\beta: V \otimes V \rightarrow \mathbb{C}$ is an odd, nondegenerate, homogeneous, super symmetric bilinear form, then

$$
\beta(v, w)=0 \quad \text { if } \quad \bar{v}=\bar{w} .
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Periplectic Lie superalgebra

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{n \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. If $\beta: V \otimes V \rightarrow \mathbb{C}$ is an odd, nondegenerate, homogeneous, super symmetric bilinear form, then

$$
\beta(v, w)=0 \quad \text { if } \quad \bar{v}=\bar{w} .
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Periplectic Lie superalgebra

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{n \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
If $\beta: V \otimes V \rightarrow \mathbb{C}$ is an odd, nondegenerate, homogeneous, super symmetric bilinear form, then

$$
\beta(v, w)=0 \quad \text { if } \quad \bar{v}=\bar{w} .
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}_{n} \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Periplectic Lie superalgebra

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{n \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
If $\beta: V \otimes V \rightarrow \mathbb{C}$ is an odd, nondegenerate, homogeneous, super symmetric bilinear form, then

$$
\beta(v, w)=0 \quad \text { if } \quad \bar{v}=\bar{w}
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}_{n} \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Goal: Study the representation theory of $\mathfrak{p}(n)$.

Periplectic Lie superalgebra

Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{n \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
If $\beta: V \otimes V \rightarrow \mathbb{C}$ is an odd, nondegenerate, homogeneous, super symmetric bilinear form, then

$$
\beta(v, w)=0 \quad \text { if } \quad \bar{v}=\bar{w}
$$

The periplectic Lie superalgebra is

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}_{n} \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Goal: Study the representation theory of $\mathfrak{p}(n)$. In particular, study the category \mathcal{F}_{n} of finite-dimensional integrable representations.

Let \mathcal{F}_{n} be the category of finite-dimensional integrable representations.
Fact: There is no duality functor that preserves simple objects.

Let \mathcal{F}_{n} be the category of finite-dimensional integrable representations.
Fact: There is no duality functor that preserves simple objects. Although projective modules are also injective and tilting, the standard and costandard modules have different combinatorics!
Call these thick and thin Kac modules, respectively.

Let \mathcal{F}_{n} be the category of finite-dimensional integrable representations.
Fact: There is no duality functor that preserves simple objects. Although projective modules are also injective and tilting, the standard and costandard modules have different combinatorics!
Call these thick and thin Kac modules, respectively.
Weights: The cartan is the set of diagonal matrices of $\mathfrak{g}_{0} \cong \mathfrak{g l}(n)$. So the dominant weights are indexed by

$$
\lambda=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}, \quad \lambda_{i} \in \mathbb{Z}
$$

Let \mathcal{F}_{n} be the category of finite-dimensional integrable representations.
Fact: There is no duality functor that preserves simple objects. Although projective modules are also injective and tilting, the standard and costandard modules have different combinatorics!
Call these thick and thin Kac modules, respectively.
Weights: The cartan is the set of diagonal matrices of $\mathfrak{g}_{0} \cong \mathfrak{g l}(n)$. So the dominant weights are indexed by

$$
\lambda=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}, \quad \lambda_{i} \in \mathbb{Z}
$$

Highest weight modules: Let $V(\lambda)$ and $L(\lambda)$ be the simple \mathfrak{g}_{0} and $\mathfrak{p}(n)$-modules, respectively, of highest weight λ.

Let \mathcal{F}_{n} be the category of finite-dimensional integrable representations.
Fact: There is no duality functor that preserves simple objects. Although projective modules are also injective and tilting, the standard and costandard modules have different combinatorics!
Call these thick and thin Kac modules, respectively.
Weights: The cartan is the set of diagonal matrices of $\mathfrak{g}_{0} \cong \mathfrak{g l}(n)$. So the dominant weights are indexed by

$$
\lambda=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}, \quad \lambda_{i} \in \mathbb{Z}
$$

Highest weight modules: Let $V(\lambda)$ and $L(\lambda)$ be the simple \mathfrak{g}_{0} and $\mathfrak{p}(n)$-modules, respectively, of highest weight λ.

Define the thick Kac module (corresponding to λ) as

$$
\mathbf{K}(\lambda)=\operatorname{Ind}_{\mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}}^{\mathfrak{p}(n)} V(\lambda)
$$

and the thin Kac module (corresponding to λ) as

$$
\begin{aligned}
\mathcal{K}(\lambda)=\operatorname{Coind}_{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}}^{\mathfrak{p}(n)} V(\lambda) & \\
& \left(\operatorname{dim}(\mathbf{K}(\lambda))=2^{n} \operatorname{dim}(\mathcal{K}(\lambda))\right)
\end{aligned}
$$

The category \mathcal{F}_{n} is a highest weight category (in the sense of Cline, Parshall, and Scott), with two natural highest weight structures:

1. With standard modules $\mathbf{K}(\lambda)$, costandard modules $\mathcal{K}(\lambda)$, and partial order on dominant weights given by

$$
\mu \geq \lambda \quad \text { whenever } \quad \mu_{i} \leq \lambda_{i} \text { for each } i \text {; }
$$

2. With standard modules $\mathcal{K}(\lambda)$ and costandard modules $\mathbf{K}(\lambda)$.

The category \mathcal{F}_{n} is a highest weight category (in the sense of Cline, Parshall, and Scott), with two natural highest weight structures:

1. With standard modules $\mathbf{K}(\lambda)$, costandard modules $\mathcal{K}(\lambda)$, and partial order on dominant weights given by

$$
\mu \geq \lambda \quad \text { whenever } \quad \mu_{i} \leq \lambda_{i} \text { for each } i \text {; }
$$

2. With standard modules $\mathcal{K}(\lambda)$ and costandard modules $\mathbf{K}(\lambda)$.

Theorem
(1) (BGG reciprocity) The multiplicity of $\mathbf{K}(\lambda)$ in $P(\lambda)$ (as summands) is equal to the multiplicity of $L(\lambda)$ in $\mathcal{K}(\lambda)$ (as subquotients), and vice versa (with a shift).
(2) If $\mathbf{K}(\mu)$ appears in $P(\lambda)$, then $\mu \geq \lambda$.
(3) We have: $\mathbf{K}(\lambda) \cong P(\lambda)$ and $\mathcal{K}(\lambda) \cong L(\lambda)$ if and only if λ has distinct parts. [Kac78]

The category \mathcal{F}_{n} is a highest weight category (in the sense of Cline, Parshall, and Scott), with two natural highest weight structures:

1. With standard modules $\mathbf{K}(\lambda)$, costandard modules $\mathcal{K}(\lambda)$, and partial order on dominant weights given by

$$
\mu \geq \lambda \quad \text { whenever } \quad \mu_{i} \leq \lambda_{i} \text { for each } i \text {; }
$$

2. With standard modules $\mathcal{K}(\lambda)$ and costandard modules $\mathbf{K}(\lambda)$.

Theorem
(1) (BGG reciprocity) The multiplicity of $\mathbf{K}(\lambda)$ in $P(\lambda)$ (as summands) is equal to the multiplicity of $L(\lambda)$ in $\mathcal{K}(\lambda)$ (as subquotients), and vice versa (with a shift).
(2) If $\mathbf{K}(\mu)$ appears in $P(\lambda)$, then $\mu \geq \lambda$.
(3) We have: $\mathbf{K}(\lambda) \cong P(\lambda)$ and $\mathcal{K}(\lambda) \cong L(\lambda)$ if and only if λ has distinct parts. [Kac78]
[Disclaimer: there is a parity-switching involution Π on $\mathfrak{p}(V)$ and all of its modules. Many of these and the following results are technically " M or $\Pi^{\ell} M$ " or " $\Pi^{\ell} \phi$ " in place of an operator ϕ. See paper for details.]

Key ingredients for other cases: a large center in $\mathcal{U}(\mathfrak{g})$, and translation functors given by tensoring with the natural representation (respectively its dual) followed by the projection onto a block.

Key ingredients for other cases: a large center in $\mathcal{U}(\mathfrak{g})$, and translation functors given by tensoring with the natural representation (respectively its dual) followed by the projection onto a block.

Issue here: The center of $\mathcal{U}(\mathfrak{p}(n))$ is trivial!

Key ingredients for other cases: a large center in $\mathcal{U}(\mathfrak{g})$, and translation functors given by tensoring with the natural representation (respectively its dual) followed by the projection onto a block.

Issue here: The center of $\mathcal{U}(\mathfrak{p}(n))$ is trivial!
Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

Key ingredients for other cases: a large center in $\mathcal{U}(\mathfrak{g})$, and translation functors given by tensoring with the natural representation (respectively its dual) followed by the projection onto a block.

Issue here: The center of $\mathcal{U}(\mathfrak{p}(n))$ is trivial!
Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

We define the split (fake) Casimir element of

$$
\mathfrak{p}(n) \otimes \mathfrak{p}(n)^{*} \subset \mathfrak{p}(n) \otimes \mathfrak{g l}(n \mid n)
$$

by

$$
\Omega=2 \sum b \otimes b^{*}
$$

where the sum is over a basis of $\mathfrak{p}(n)$ and its dual in $\mathfrak{p}(n)^{*}$.

Key ingredients for other cases: a large center in $\mathcal{U}(\mathfrak{g})$, and translation functors given by tensoring with the natural representation (respectively its dual) followed by the projection onto a block.

Issue here: The center of $\mathcal{U}(\mathfrak{p}(n))$ is trivial!
Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

We define the split (fake) Casimir element of

$$
\mathfrak{p}(n) \otimes \mathfrak{p}(n)^{*} \subset \mathfrak{p}(n) \otimes \mathfrak{g l}(n \mid n)
$$

by

$$
\Omega=2 \sum b \otimes b^{*}
$$

where the sum is over a basis of $\mathfrak{p}(n)$ and its dual in $\mathfrak{p}(n)^{*}$.
Then for any $\mathfrak{p}(n)$-module M, Ω acts on $M \otimes V$.

Key ingredients for other cases: a large center in $\mathcal{U}(\mathfrak{g})$, and translation functors given by tensoring with the natural representation (respectively its dual) followed by the projection onto a block.

Issue here: The center of $\mathcal{U}(\mathfrak{p}(n))$ is trivial!
Key observation: With respect to the inner product

$$
\langle x, y\rangle=\operatorname{str}(x y)=\operatorname{tr}\left(\left.x y\right|_{V_{0}}\right)-\operatorname{tr}\left(\left.x y\right|_{V_{1}}\right),
$$

on $\mathfrak{g l}(n \mid n)$, we have

$$
\mathfrak{p}(n)^{*}=\mathfrak{p}(n)^{\perp} \quad \text { so } \quad \mathfrak{g l}(n \mid n)=\mathfrak{p}(n) \oplus \mathfrak{p}(n)^{*}
$$

We define the split (fake) Casimir element of

$$
\mathfrak{p}(n) \otimes \mathfrak{p}(n)^{*} \subset \mathfrak{p}(n) \otimes \mathfrak{g l}(n \mid n)
$$

by

$$
\Omega=2 \sum b \otimes b^{*}
$$

where the sum is over a basis of $\mathfrak{p}(n)$ and its dual in $\mathfrak{p}(n)^{*}$.
Then for any $\mathfrak{p}(n)$-module M, Ω acts on $M \otimes V$. Moreover, it commutes with the action of $\mathfrak{p}(n)$.

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.
The algebra $\operatorname{End}_{\mathfrak{g}}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$.

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.
The algebra $\operatorname{End}_{\mathfrak{g}}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$.

Draw:

$$
s=X \quad \text { and } \quad e=
$$

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.
The algebra $\operatorname{End}_{\mathfrak{g}}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$.

Draw:

$$
s=X \text { and } \quad e=
$$

Note that $e=e \circ s=-s \circ e$.

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.
The algebra $\operatorname{End}_{\mathfrak{g}}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$.

Draw:

$$
s=X \text { and } e=\text { (marked Brauer) }
$$

Note that $e=e \circ s=-s \circ e$.

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.
The algebra $\operatorname{End}_{\mathfrak{g}}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$.

Draw:

$$
s=X \text { and } e=\text { (marked Brauer) }
$$

Note that $e=e \circ s=-s \circ e$. Also, $e^{2}=0$. (non-semisimple case)

Example: $V \otimes V$

As a $\mathfrak{p}(V)$-module,

$$
V \otimes V=S^{2} V \oplus \Lambda^{2} V
$$

Let $\left\{v_{i} \mid i=1, \ldots, n\right\}$ and $\left\{v_{i^{\prime}} \mid i=1, \ldots, n\right\}$ be orthogonal bases of V_{0} and V_{1}, with $\beta\left(v_{i}, v_{j^{\prime}}\right)=\delta_{i j}$. Then

$$
c=\sum_{i}\left(v_{i} \otimes v_{i^{\prime}}-v_{i^{\prime}} \otimes v_{i}\right) \in \Lambda^{2} V
$$

spans the unique trivial submodule in $V \otimes V$.
The algebra $\operatorname{End}_{\mathfrak{g}}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{p(v) p(w)} w \otimes v, \quad$ and $\quad e=\beta^{*} \circ \beta: v \otimes w \mapsto \beta(v, w) c$.

Draw:

$$
s=X \text { and } e=\text { (marked Brauer) }
$$

Note that $e=e \circ s=-s \circ e$. Also, $e^{2}=0$. (non-semisimple case)
Then, on $V \otimes V$, we have $\Omega=s+e$.

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}={ }_{-} \otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}={ }_{-} \otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)
Again

$$
\Omega=2 \sum b \otimes b^{*} \quad \text { acts on } M \otimes V
$$

for any $\mathfrak{p}(V)$-module M, and that action commutes with the action of $\mathfrak{p}(V)$.

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}={ }_{-} \otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)
Again

$$
\Omega=2 \sum b \otimes b^{*} \quad \text { acts on } M \otimes V
$$

for any $\mathfrak{p}(V)$-module M, and that action commutes with the action of $\mathfrak{p}(V)$. So Ω gives a natural endotransformation of Θ^{\prime}.

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}=_\otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)
Again

$$
\Omega=2 \sum b \otimes b^{*} \quad \text { acts on } M \otimes V
$$

for any $\mathfrak{p}(V)$-module M, and that action commutes with the action of $\mathfrak{p}(V)$. So Ω gives a natural endotransformation of Θ^{\prime}.
Similarly, let $\Omega_{i, j}$ be the operator Ω acting on the i and j tensor factor of $M \otimes V^{d}$ (were M is the 0 th factor). Then $\Omega_{i, j}$ is an endomorphism of the endofunctor ${ }_{-} \otimes V^{\otimes d}$.

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}={ }_{-} \otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)
Again

$$
\Omega=2 \sum b \otimes b^{*} \quad \text { acts on } M \otimes V
$$

for any $\mathfrak{p}(V)$-module M, and that action commutes with the action of $\mathfrak{p}(V)$. So Ω gives a natural endotransformation of Θ^{\prime}.
Similarly, let $\Omega_{i, j}$ be the operator Ω acting on the i and j tensor factor of $M \otimes V^{d}$ (were M is the 0 th factor). Then $\Omega_{i, j}$ is an endomorphism of the endofunctor ${ }_{-} \otimes V^{\otimes d}$.
If

$$
y_{j}=\sum_{i<j} \Omega_{i, j}=\left(\Delta^{j} \otimes 1\right)(\Omega) \otimes 1^{d-j}
$$

then $y_{1}, y_{2}, \ldots, y_{d}$ form a commutative family of endomorphisms of

$$
-\otimes V^{\otimes d}: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n}
$$

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}=_\otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)
Again

$$
\Omega=2 \sum b \otimes b^{*} \quad \text { acts on } M \otimes V
$$

for any $\mathfrak{p}(V)$-module M, and that action commutes with the action of $\mathfrak{p}(V)$. So Ω gives a natural endotransformation of Θ^{\prime}.

Let $\Theta_{k}^{\prime}=\operatorname{proj}_{k} \Theta$, where proj_{k} is the projection onto the k eigenspace of Ω.

Translation functors

Consider the following endofunctor of \mathcal{F}_{n},

$$
\Theta^{\prime}=_\otimes V: \quad \mathcal{F}_{n} \longrightarrow \mathcal{F}_{n} .
$$

(Exact, with left- and right-adjoint $\Pi \Theta$.)
Again

$$
\Omega=2 \sum b \otimes b^{*} \quad \text { acts on } M \otimes V
$$

for any $\mathfrak{p}(V)$-module M, and that action commutes with the action of $\mathfrak{p}(V)$. So Ω gives a natural endotransformation of Θ^{\prime}.

Let $\Theta_{k}^{\prime}=\operatorname{proj}_{k} \Theta$, where proj_{k} is the projection onto the k eigenspace of Ω.
Theorem
Θ_{k}^{\prime} is exact, and is 0 for $k \notin \mathbb{Z}$. So $\Theta^{\prime}=\bigoplus_{k \in \mathbb{Z}} \Theta_{k}^{\prime}$.

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.
Let $c_{\lambda}:=\left\{\bar{\lambda}_{i} \mid i=1, \ldots, n\right\}$.

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.
Let $c_{\lambda}:=\left\{\bar{\lambda}_{i} \mid i=1, \ldots, n\right\}$.
Weight diagrams. Draw a sequence of filled and empty circles, one for each integer, where
${ }_{i}^{\bullet}$ means $i \in c_{\lambda} \quad{ }_{i}$ means $i \notin c_{\lambda}$

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.
Let $c_{\lambda}:=\left\{\bar{\lambda}_{i} \mid i=1, \ldots, n\right\}$.
Weight diagrams. Draw a sequence of filled and empty circles, one for each integer, where
${ }_{i}^{\bullet}$ means $i \in c_{\lambda} \quad{ }_{i}$ means $i \notin c_{\lambda}$
Ex. $n=4, \lambda=0$:

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.
Let $c_{\lambda}:=\left\{\bar{\lambda}_{i} \mid i=1, \ldots, n\right\}$.
Weight diagrams. Draw a sequence of filled and empty circles, one for each integer, where
${ }_{i}^{\bullet}$ means $i \in c_{\lambda} \quad{ }_{i}$ means $i \notin c_{\lambda}$
Ex. $n=4, \lambda=0$:

Ex. $n=4, \lambda=\rho=(3,2,1,0)$:

\cdots	○	○	O	O	O	O	O	O
-1	0	1	2	3	4	5	6	7

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.
Let $c_{\lambda}:=\left\{\bar{\lambda}_{i} \mid i=1, \ldots, n\right\}$.
Weight diagrams. Draw a sequence of filled and empty circles, one for each integer, where
${ }_{i}^{\bullet}$ means $i \in c_{\lambda} \quad{ }_{i}$ means $i \notin c_{\lambda}$
Ex. $n=4, \lambda=0$:

\cdots	○	\bullet	\bullet	\bullet	\bullet	○	O	○
-1	0	1	2	3	4	5	6	7

Ex. $n=4, \lambda=\rho=(3,2,1,0)$:

Fact: λ has distinct parts iff every pair of filled dots has at least one empty dot separating them.
($\bar{\lambda}$ always has dist. parts)

Weight diagrams

For a dominant weight λ, let $\bar{\lambda}=\lambda+\rho$, where $\rho=(n-1, n-2, \ldots, 0)$.
Let $c_{\lambda}:=\left\{\bar{\lambda}_{i} \mid i=1, \ldots, n\right\}$.
Weight diagrams. Draw a sequence of filled and empty circles, one for each integer, where
${ }_{i}$ means $i \in c_{\lambda} \quad{ }_{i}$ means $i \notin c_{\lambda}$
Ex. $n=4, \lambda=0$:

\cdots	○	\bullet	\bullet	\bullet	\bullet	O	○	○
-1	0	1	2	3	4	5	6	7

Ex. $n=4, \lambda=\rho=(3,2,1,0)$:

Fact: λ has distinct parts iff every pair of filled dots has at least one empty dot separating them. ($\bar{\lambda}$ always has dist. parts) Fact: $\lambda \leq \mu$ iff the i-th filled circle in λ is to the right of the i-th filled circle in μ.

Translations on thick Kac modules

Theorem. Θ_{k}^{\prime} on $\mathbf{K}(\lambda)$ is given by...

Translations on thick Kac modules

Theorem. Θ_{k}^{\prime} on $\mathbf{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

$$
\lambda: \begin{array}{ccccccc}
\bullet & \bigcirc & \bigcirc & \mu: & \bigcirc & \bigcirc & \bullet \\
k-2 & k-1 & k & \bigcirc & \\
\hline
\end{array}
$$

Translations on thick Kac modules

Theorem. Θ_{k}^{\prime} on $\mathbf{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

$$
\begin{array}{ccccccc}
\lambda: & \bullet & \bigcirc & \bigcirc & \mu: & \bigcirc & \bigcirc \\
k-2 & k-1 & k & \bullet & \bigcirc \\
k-2 & k-1 & { }_{k}
\end{array}
$$

(2) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\Pi \mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

Translations on thick Kac modules

Theorem. Θ_{k}^{\prime} on $\mathbf{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

$$
\begin{array}{ccccccc}
\lambda: & \bigcirc & \bigcirc & \bigcirc & \mu: & \bigcirc & \bigcirc \\
k-2 & k-1 & k
\end{array} \quad \bigcirc
$$

(2) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\Pi \mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

$$
\lambda: \underset{k-2}{\bigcirc} \underset{k-1}{○} \quad \stackrel{\bullet}{\circ} \quad \mu: \underset{k-2}{\circ} \quad \underset{k-1}{\bullet} \quad \underset{k}{\circ}
$$

(3) There is a short exact sequence

$$
0 \rightarrow \Pi \mathbf{K}(\mu) \rightarrow \Theta_{k}^{\prime} \mathbf{K}(\lambda) \rightarrow \mathbf{K}\left(\mu^{\prime}\right) \rightarrow 0
$$

whenever the $k-2, k-1$, and k positions of μ, λ, and μ^{\prime} look like

Translations on thick Kac modules

Theorem. Θ_{k}^{\prime} on $\mathbf{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

$$
\begin{array}{ccccccc}
\lambda: & \bigcirc & \bigcirc & \bigcirc & \mu: & \bigcirc & \bigcirc \\
k-2 & k-1 & k
\end{array} \quad \bigcirc
$$

(2) $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=\Pi \mathbf{K}(\mu)$ whenever the $k-2, k-1$, and k positions of λ and μ look like

$$
\lambda: \underset{k-2}{\bigcirc} \underset{k-1}{○} \quad \stackrel{\bullet}{\circ} \quad \mu: \underset{k-2}{\circ} \quad \underset{k-1}{\bullet} \quad \underset{k}{\circ}
$$

(3) There is a short exact sequence

$$
0 \rightarrow \Pi \mathbf{K}(\mu) \rightarrow \Theta_{k}^{\prime} \mathbf{K}(\lambda) \rightarrow \mathbf{K}\left(\mu^{\prime}\right) \rightarrow 0
$$

whenever the $k-2, k-1$, and k positions of μ, λ, and μ^{\prime} look like
$\mu: \underset{k-2}{\bullet} \quad \underset{k-1}{\bullet} \quad \underset{k}{\circ} \quad \lambda: \underset{k-2}{\bullet} \quad \underset{k-1}{\circ} \quad \underset{k}{\bullet} \quad \mu^{\prime}: \underset{k-2}{\circ} \quad \underset{k-1}{\bullet}$

Otherwise, $\Theta_{k}^{\prime}(\mathbf{K}(\lambda))=0$.

Translations on thin Kac modules

Theorem. Θ_{k}^{\prime} on $\mathcal{K}(\lambda)$ is given by...

Translations on thin Kac modules

Theorem. Θ_{k}^{\prime} on $\mathcal{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like

Translations on thin Kac modules

Theorem. Θ_{k}^{\prime} on $\mathcal{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like
(2) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\Pi \mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like

Translations on thin Kac modules

Theorem. Θ_{k}^{\prime} on $\mathcal{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like

$$
\lambda: \underset{k-1}{\bullet} \quad \underset{k}{\bullet} \quad \underset{k+1}{○} \quad \mu: \underset{k-1}{\bullet} \quad \underset{k}{\bullet} \quad \underset{k+1}{\bullet}
$$

(2) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\Pi \mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like

$$
\lambda: \underset{k-2}{\bigcirc} \underset{k-1}{\bullet} \quad \stackrel{\bullet}{\bullet} \quad \mu: \underset{k-1}{\bullet} \quad \underset{k}{\bigcirc} \quad \underset{k+1}{\bullet}
$$

(3) There is a short exact sequence

$$
0 \rightarrow \Pi \mathcal{K}(\mu) \rightarrow \Theta_{k}^{\prime} \mathcal{K}(\lambda) \rightarrow \mathcal{K}\left(\mu^{\prime}\right) \rightarrow 0
$$

whenever the $k-1, k$, and $k+1$ positions of μ, λ, and μ^{\prime} look like

Translations on thin Kac modules

Theorem. Θ_{k}^{\prime} on $\mathcal{K}(\lambda)$ is given by...
(1) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like

$$
\lambda: \underset{k-1}{\bullet} \quad \underset{k}{\bullet} \quad \underset{k+1}{○} \quad \mu: \underset{k-1}{\bullet} \quad \underset{k}{\bullet} \quad \underset{k+1}{\bullet}
$$

(2) $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=\Pi \mathcal{K}(\mu)$ whenever the $k-1, k$, and $k+1$ positions of λ and μ look like

$$
\lambda: \underset{k-2}{\bigcirc} \underset{k-1}{\bullet} \quad \stackrel{\bullet}{\bullet} \quad \mu: \underset{k-1}{\bullet} \quad \underset{k}{\bigcirc} \quad \underset{k+1}{\bullet}
$$

(3) There is a short exact sequence

$$
0 \rightarrow \Pi \mathcal{K}(\mu) \rightarrow \Theta_{k}^{\prime} \mathcal{K}(\lambda) \rightarrow \mathcal{K}\left(\mu^{\prime}\right) \rightarrow 0
$$

whenever the $k-1, k$, and $k+1$ positions of μ, λ, and μ^{\prime} look like

Otherwise, $\Theta_{k}^{\prime}(\mathcal{K}(\lambda))=0$.

Algebraic structure of translation functors

Define $\Theta_{k}=\Pi^{k} \Theta_{k}^{\prime}$ and $\Theta=\bigoplus_{k \in \mathbb{Z}} \Theta_{k}$.

Algebraic structure of translation functors

Define $\Theta_{k}=\Pi^{k} \Theta_{k}^{\prime}$ and $\Theta=\bigoplus_{k \in \mathbb{Z}} \Theta_{k}$.
Theorem
The functor Θ_{k} is exact, and is left adjoint to Θ_{k-1} and right adjoint to Θ_{k+1}.

Algebraic structure of translation functors

Define $\Theta_{k}=\Pi^{k} \Theta_{k}^{\prime}$ and $\Theta=\bigoplus_{k \in \mathbb{Z}} \Theta_{k}$.
Theorem
The functor Θ_{k} is exact, and is

$$
\text { left adjoint to } \Theta_{k-1} \quad \text { and } \quad \text { right adjoint to } \Theta_{k+1} \text {. }
$$

Theorem
Up to natural isomorphisms (e.g. on the Grothendeik group), we have

$$
\begin{gathered}
\Theta_{k}^{2}=0, \quad \Theta_{k} \Theta_{j}=\Theta_{j} \Theta_{k}, \quad \text { for }|j-k|>1, \\
\text { and } \quad \Theta_{k} \Theta_{k \pm 1} \Theta_{k}=\Theta_{k} .
\end{gathered}
$$

Namely, the functors Θ_{k} generate the infinite Temperley-Lieb algebra $T L_{\infty}(0)$ (the parameter is $q+q^{-1}$, where $q=i$).

Algebraic structure of translation functors

Define $\Theta_{k}=\Pi^{k} \Theta_{k}^{\prime}$ and $\Theta=\bigoplus_{k \in \mathbb{Z}} \Theta_{k}$.
Theorem
The functor Θ_{k} is exact, and is

$$
\text { left adjoint to } \Theta_{k-1} \quad \text { and } \quad \text { right adjoint to } \Theta_{k+1} \text {. }
$$

Theorem
Up to natural isomorphisms (e.g. on the Grothendeik group), we have

$$
\begin{gathered}
\Theta_{k}^{2}=0, \quad \Theta_{k} \Theta_{j}=\Theta_{j} \Theta_{k}, \quad \text { for }|j-k|>1, \\
\text { and } \quad \Theta_{k} \Theta_{k \pm 1} \Theta_{k}=\Theta_{k} .
\end{gathered}
$$

Namely, the functors Θ_{k} generate the infinite Temperley-Lieb algebra $T L_{\infty}(0)$ (the parameter is $q+q^{-1}$, where $q=i$).
(The maps on the Grothendieck group induced by the Θ_{k}^{\prime} 's also satisfy these relations. At the level of \mathcal{F}_{n}, though, it's the Θ_{k} that we want.)

Other results:

- Computations of decompositions/filtrations of projectives in terms of Kac modules, and Kac modules in terms of simples.

Other results:

- Computations of decompositions/filtrations of projectives in terms of Kac modules, and Kac modules in terms of simples.
- Translation functors applied to projectives and simples.

Other results:

- Computations of decompositions/filtrations of projectives in terms of Kac modules, and Kac modules in terms of simples.
- Translation functors applied to projectives and simples.
- Multiplicity free results.

Other results:

- Computations of decompositions/filtrations of projectives in terms of Kac modules, and Kac modules in terms of simples.
- Translation functors applied to projectives and simples.
- Multiplicity free results.
- Socles and cosocles of Kac modules.

Other results:

- Computations of decompositions/filtrations of projectives in terms of Kac modules, and Kac modules in terms of simples.
- Translation functors applied to projectives and simples.
- Multiplicity free results.
- Socles and cosocles of Kac modules.
- Blocks of \mathcal{F}_{n}.

Other results:

- Computations of decompositions/filtrations of projectives in terms of Kac modules, and Kac modules in terms of simples.
- Translation functors applied to projectives and simples.
- Multiplicity free results.
- Socles and cosocles of Kac modules.
- Blocks of \mathcal{F}_{n}.

Next paper:

- Cyclotomic marked Brauer algebras.
(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one \diamond each, cups get one or $\boldsymbol{4}$ each, no two markings at same height.
with equivalence up to isotopy except for the local relations

for any adjacent markings © and (1) (meaning no markings of height between these two).
(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one \diamond each, cups get one or $\boldsymbol{4}$ each, no two markings at same height.
with equivalence up to isotopy except for the local relations

for any adjacent markings © and (2) (meaning no markings of height between these two). Multiplication is given by vertical concatenation, with relations $\bigcirc=\delta$,

-(2)-

$$
\bigcirc=\delta
$$

$$
\begin{aligned}
& \text { - } \\
& \text {-(ㄴ)- }=\epsilon \text { - } \times \text { - }
\end{aligned}
$$

$$
\overbrace{\text {-(2)- }}=\epsilon_{\text {-(3- }}
$$

$$
\bigcirc=\delta
$$

For example,

$$
\boldsymbol{\Sigma}=\epsilon \nabla
$$

$$
\bigcirc=\delta
$$

For example,

$$
\begin{aligned}
& \text {-(a) } \\
& \text { (3)- } \\
& \text {-(a)- }=\epsilon \text {-(증 }
\end{aligned}
$$

$$
\boldsymbol{S}=\epsilon \Psi
$$

$$
\overbrace{-(2)-}=\epsilon
$$

-(2)

$$
\bigcirc=\delta
$$

For example,

(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra $B_{d}(\delta, \epsilon), \epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one \diamond each,
cups get one $\boldsymbol{\square}$ or each, no two markings at same height.
with equivalence up to isotopy except for the local relations

and

$$
\text { -(x)- }=\epsilon
$$

for any adjacent markings © and (4) (meaning no markings of height between these two). Multiplication is given by vertical concatenation, with relations $\bigcirc=\delta$,

Note:
(1) $B_{d}(\delta, 1)=B_{d}(\delta)$.
(2) If $\epsilon=-1$, then multiplication is well-defined exactly when $\delta=0$.

Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.\left.s_{i}=\right\rceil \cdots \sum^{i+1} \cdots \quad \text { and } e_{i}=\right\rceil \cdots \underbrace{i+1}_{\infty} \cdots
$$

$$
\text { for } i=1, \ldots, k-1
$$

Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.\left.s_{i}=\right\rceil \cdots \sum_{0}^{i+1} \cdots \quad \text { and } e_{i}=\right\rceil \cdots \sim_{\infty}^{i+1} \cdots
$$

for $i=1, \ldots, k-1$.
Back in our more general setting $\mathfrak{g}=\mathfrak{g l}(V)^{\beta}$ with $V=V_{0} \oplus V_{1}$ (for β non-deg, homog, super symmetric, bilinear).

Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.\left.s_{i}=\right\rceil \cdots \sum^{i+1} \cdots \quad \text { and } e_{i}=\right\rceil \cdots \underbrace{i+1}_{\infty} \cdots
$$

for $i=1, \ldots, k-1$.
Back in our more general setting $\mathfrak{g}=\mathfrak{g l}(V)^{\beta}$ with $V=V_{0} \oplus V_{1}$ (for β non-deg, homog, super symmetric, bilinear). If

$$
\begin{array}{rll}
\beta^{*}: \mathbb{C} \rightarrow V \otimes V \quad \text { and } \quad s: V \otimes V & \rightarrow V \otimes V \\
u \otimes v & \mapsto(-1)^{\bar{u} \bar{v}} v \otimes u
\end{array}
$$

Centralizer algebras

The marked Brauer algebra $B_{d}(\delta, \epsilon)$ is generated by

$$
\left.s_{i}=\right\rceil \cdots \sum^{i+1} \cdots \quad \text { and } e_{i}=!\cdots \underbrace{i+1}_{\infty} \cdots
$$

for $i=1, \ldots, k-1$.
Back in our more general setting $\mathfrak{g}=\mathfrak{g l}(V)^{\beta}$ with $V=V_{0} \oplus V_{1}$ (for β non-deg, homog, super symmetric, bilinear). If

$$
\begin{aligned}
\beta^{*}: \mathbb{C} \rightarrow V \otimes V \quad \text { and } \quad s: V \otimes V & \rightarrow V \otimes V \\
u \otimes v & \mapsto(-1)^{\bar{u} \bar{v}} v \otimes u,
\end{aligned}
$$

then the map

$$
e_{i} \mapsto 1^{\otimes i-1} \otimes \beta^{*} \beta \otimes 1^{k-i-1}, \quad s_{i} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{k-i-1}
$$

for $i=1, \ldots, k-1$, gives

$$
B_{d}(\delta, \epsilon) \rightarrow \operatorname{End}_{\mathfrak{g}}\left(V^{\otimes d}\right)
$$

when $\delta=\operatorname{dim} V_{0}-\operatorname{dim} V_{1}$ and $\epsilon=(-1)^{\bar{\beta}}$ [KT14].

Jucys-Murphy elements and the Casimir

For $i<j$, let

Jucys-Murphy elements and the Casimir

For $i<j$, let

The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, k
$$

that pairwise commute (Nazarov 1996).

Jucys-Murphy elements and the Casimir

For $i<j$, let

The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, k
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version $\mathcal{B}_{d}(\delta)$ by

$$
\mathcal{B}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) /\left\langle y_{i}-B_{d} \text { relations }\right\rangle
$$

Jucys-Murphy elements and the Casimir

For $i<j$, let

The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, k
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version $\mathcal{B}_{d}(\delta)$ by

$$
\mathcal{B}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) /\left\langle y_{i}-B_{d} \text { relations }\right\rangle
$$

Action on tensor space: In the classical case, y_{i} acts on $M \otimes V^{\otimes d}$ via the split Casimir as $\sum_{i=0}^{j-1} \gamma_{i, j}$.

Jucys-Murphy elements and the Casimir

For $i<j$, let

The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, k
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version $\mathcal{B}_{d}(\delta)$ by

$$
\mathcal{B}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) /\left\langle y_{i}-B_{d} \text { relations }\right\rangle
$$

Action on tensor space: In the classical case, y_{i} acts on $M \otimes V^{\otimes d}$ via the split Casimir as $\sum_{i=0}^{j-1} \gamma_{i, j}$. Now we have the analogous tool for the $\mathfrak{g}=\mathfrak{p}(V)$ case!

Jucys-Murphy elements and the Casimir

For $i<j$, let

The Brauer algebra $B_{d}(\delta)=B_{d}(\delta, 1)$ has Jucys-Murphy elements

$$
x_{j}=c+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, k
$$

that pairwise commute (Nazarov 1996). Define the degenerate affine version $\mathcal{B}_{d}(\delta)$ by

$$
\mathcal{B}_{d}(\delta)=\mathbb{C}\left[y_{1}, \ldots, y_{d}\right] \otimes B_{d}(\delta) /\left\langle y_{i}-B_{d} \text { relations }\right\rangle
$$

Action on tensor space: In the classical case, y_{i} acts on $M \otimes V^{\otimes d}$ via the split Casimir as $\sum_{i=0}^{j-1} \gamma_{i, j}$. Now we have the analogous tool for the $\mathfrak{g}=\mathfrak{p}(V)$ case! Goal: Define degenerate affine marked Brauer and cyclotomic Brauer algebras, and classify their representation theory.

Women in Noncommutative Algebra and Representation Theory (WINART) Banff, 2016

