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Lie superalgebras
A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 with a
super Lie bracket

[, ] : g⊗ g→ g

satisfying

[x, y] = −(−1)x̄ȳ[y, x]

and

[x, [y, z]]] = [[x, y], z] + (−1)x̄ȳ[y, [x, z]],

where x, y, z are each homogeneous, and x̄ means degree.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm|n be a Z2-graded vector space over C.

The general linear Lie superalgebra is

gl(m|n) = End(V ) = g0 ⊕ g1,

where

Bracket: [x, y] = xy − (−1)x̄ȳyx.
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where x, y, z are each homogeneous, and x̄ means degree.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm|n be a Z2-graded vector space over C.

The general linear Lie superalgebra is

gl(m|n) = End(V ) = g0 ⊕ g1,

where

Bracket: [x, y] = xy − (−1)x̄ȳyx.
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Lie superalgebras

A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 with a
super Lie bracket [, ] : g⊗ g→ g satisfying a super symmetry and
super Jacobi identity.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm|n be a Z2-graded vector space over C.
For (homogeneous) v ∈ Vi, write v̄ = i for its degree.

The general linear Lie superalgebra is

gl(m|n) = End(V ) = g0 ⊕ g1,

where

g0 =

{(
A 0
0 D

) ∣∣∣∣ A ∈ End(V0), D ∈ End(V1)

}
,

g1 =

{(
0 B
C 0

) ∣∣∣∣ B ∈ Hom(V1, V0), C ∈ Hom(V0, V1)

}
.

Bracket: [x, y] = xy − (−1)x̄ȳyx.
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Lie superalgebras

Let V = V0 ⊕ V1 = Cm|n be a Z2-graded vector space over C.
For homogeneous v, write v̄ for its degree.
gl(m|n) = End(V ) with bracket [x, y] = xy − (−1)x̄ȳyx.

Let β : V ⊗ V → C be a nondegenerate, homogeneous, bilinear
form satisfying

β(v, w) = (−1)v̄w̄β(w, v) (supersymmetric).

Then

g = {x ∈ End(V ) | β(xv,w) + (−1)x̄v̄β(v, xw) = 0}

is a Lie superalgebra (Z2-graded).

Ex. If β is even, g = osp(V ) the orthosymplectic Lie superalgebra
(if V1 = 0, g = so(V ); and if V0 = 0, g = sp(V )).

Ex. If β is odd, we need m = n. Then g = p(V ) = p(n) the
periplectic Lie superalgebra.
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Periplectic Lie superalgebra
Let V = V0 ⊕ V1 = Cn|n be a Z2-graded vector space over C.
If β : V ⊗ V → C is an odd, nondegenerate, homogeneous, super
symmetric bilinear form, then

β(v, w) = 0 if v̄ = w̄.

The periplectic Lie superalgebra is

p(V ) = p(n) = {x ∈ End(V ) | β(xv,w) + (−1)x̄v̄β(v, xw) = 0}.
Specifically, we have

p(n) ∼=
{(

A B
C −At

)
∈ gl(n|n)

∣∣∣∣ B = Bt, C = −Ct
}
.

Then, as vector spaces p(n) = g0 ⊕ g1 ⊕ g−1, where

g0 =

{(
A 0
0 −At

)}
∼= gln

g1 =

{(
0 B
0 0

)}
, g−1 =

{(
0 0
C 0

)}
.

Goal: Study the representation theory of p(n). In particular, study
the category Fn of finite-dimensional integrable representations.
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Let Fn be the category of finite-dimensional integrable
representations.
Fact: There is no duality functor that preserves simple objects.

Although projective modules are also injective and tilting, the
standard and costandard modules have different combinatorics!
Call these thick and thin Kac modules, respectively.

Weights: The cartan is the set of diagonal matrices of g0
∼= gl(n).

So the dominant weights are indexed by

λ = λ1 ≥ λ2 ≥ · · · ≥ λn, λi ∈ Z.

Highest weight modules: Let V (λ) and L(λ) be the simple g0 and
p(n)-modules, respectively, of highest weight λ.

Define the thick Kac module (corresponding to λ) as

K(λ) = Ind
p(n)
g0⊕g−1

V (λ),

and the thin Kac module (corresponding to λ) as

K(λ) = Coind
p(n)
g0⊕g1V (λ).

(dim(K(λ)) = 2ndim(K(λ)))
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The category Fn is a highest weight category (in the sense of Cline,

Parshall, and Scott), with two natural highest weight structures:

1. With standard modules K(λ), costandard modules K(λ), and
partial order on dominant weights given by

µ ≥ λ whenever µi ≤ λi for each i;

2. With standard modules K(λ) and costandard modules K(λ).

Theorem
(1) (BGG reciprocity) The multiplicity of K(λ) in P (λ) (as

summands) is equal to the multiplicity of L(λ) in K(λ) (as
subquotients), and vice versa (with a shift).

(2) If K(µ) appears in P (λ), then µ ≥ λ.

(3) We have: K(λ) ∼= P (λ) and K(λ) ∼= L(λ) if and only if λ has
distinct parts. [Kac78]

[Disclaimer: there is a parity-switching involution Π on p(V ) and
all of its modules. Many of these and the following results are
technically “M or Π`M” or “Π`φ” in place of an operator φ. See
paper for details.]
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Key ingredients for other cases: a large center in U(g), and
translation functors given by tensoring with the natural
representation (respectively its dual) followed by the projection
onto a block.

Issue here: The center of U(p(n)) is trivial!

Key observation: With respect to the inner product

〈x, y〉 = str(xy) = tr (xy|V0)− tr (xy|V1) ,

on gl(n|n), we have

p(n)∗ = p(n)⊥ so gl(n|n) = p(n)⊕ p(n)∗.

We define the split (fake) Casimir element of

p(n)⊗ p(n)∗ ⊂ p(n)⊗ gl(n|n)

by

Ω = 2
∑

b⊗ b∗,
where the sum is over a basis of p(n) and its dual in p(n)∗.

Then for any p(n)-module M , Ω acts on M ⊗ V .
Moreover, it commutes with the action of p(n).
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We define the split (fake) Casimir element of
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where the sum is over a basis of p(n) and its dual in p(n)∗.

Then for any p(n)-module M , Ω acts on M ⊗ V .
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Example: V ⊗ V

As a p(V )-module,

V ⊗ V = S2V ⊕ Λ2V

Let {vi | i = 1, . . . , n} and {vi′ | i = 1, . . . , n} be orthogonal bases
of V0 and V1, with β(vi, vj′) = δij . Then

c =
∑
i

(vi ⊗ vi′ − vi′ ⊗ vi) ∈ Λ2V

spans the unique trivial submodule in V ⊗ V .

The algebra Endg(V ⊗ V ) is 3-dimensional with basis 1,

s : v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v, and e = β∗ ◦ β : v ⊗ w 7→ β(v, w)c.

Draw:

s = and e = .

(marked Brauer)

Note that e = e ◦ s = −s ◦ e. Also, e2 = 0. (non-semisimple case)

Then, on V ⊗ V , we have Ω = s+ e. (same as classical case)
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Translation functors
Consider the following endofunctor of Fn,

Θ′ = ⊗ V : Fn −→ Fn.
(Exact, with left- and right-adjoint ΠΘ.)

Again

Ω = 2
∑

b⊗ b∗ acts on M ⊗ V
for any p(V )-module M , and that action commutes with the
action of p(V ). So Ω gives a natural endotransformation of Θ′.

Similarly, let Ωi,j be the operator Ω acting on the i and j tensor
factor of M ⊗ V d (were M is the 0th factor). Then Ωi,j is an
endomorphism of the endofunctor ⊗ V ⊗d.

If

yj =
∑
i<j

Ωi,j = (∆j ⊗ 1)(Ω)⊗ 1d−j ,

then y1, y2, . . . , yd form a commutative family of endomorphisms of

⊗ V ⊗d : Fn −→ Fn.
Let Θ′k = projkΘ, where projk is the projection onto the k
eigenspace of Ω.

Theorem
Θ′k is exact, and is 0 for k /∈ Z. So Θ′ =

⊕
k∈Z Θ′k.
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Weight diagrams
For a dominant weight λ, let λ̄ = λ+ ρ,

where ρ = (n− 1, n− 2, . . . , 0).

Let cλ := {λ̄i | i = 1, . . . , n}.
Weight diagrams. Draw a sequence of filled and empty circles, one
for each integer, where

i
means i ∈ cλ

i
means i /∈ cλ

Ex. n = 4, λ = 0:

−1 4 5 6 70 1 2 3

· · · · · ·

Ex. n = 4, λ = ρ = (3, 2, 1, 0):

−1 1 3 5 70 2 4 6

· · · · · ·

Fact: λ has distinct parts iff every pair of filled dots has at least
one empty dot separating them. (λ̄ always has dist. parts)

Fact: λ ≤ µ iff the i-th filled circle in λ is to the right of the i-th
filled circle in µ.
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Translations on thick Kac modules
Theorem. Θ′k on K(λ) is given by. . .

(1) Θ′k(K(λ)) = K(µ) whenever the k − 2, k − 1, and k positions
of λ and µ look like

λ :
k − 2 k − 1 k

µ :
k − 2 k − 1 k

(2) Θ′k(K(λ)) = ΠK(µ) whenever the k − 2, k − 1, and k
positions of λ and µ look like

λ :
k − 2 k − 1 k

µ :
k − 2 k − 1 k

(3) There is a short exact sequence

0→ ΠK(µ)→ Θ′kK(λ)→ K(µ′)→ 0
whenever the k − 2, k − 1, and k positions of µ, λ, and µ′

look like
µ :

k − 2 k − 1 k
λ :

k − 2 k − 1 k
µ′ :

k − 2 k − 1 k

Otherwise, Θ′k(K(λ)) = 0.
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Algebraic structure of translation functors

Define Θk = ΠkΘ′k and Θ =
⊕

k∈Z Θk.

Theorem
The functor Θk is exact, and is

left adjoint to Θk−1 and right adjoint to Θk+1.

Theorem
Up to natural isomorphisms (e.g. on the Grothendeik group), we
have

Θ2
k = 0, ΘkΘj = ΘjΘk, for |j − k| > 1,

and ΘkΘk±1Θk = Θk.

Namely, the functors Θk generate the infinite Temperley-Lieb
algebra TL∞(0) (the parameter is q + q−1, where q = i).

(The maps on the Grothendieck group induced by the Θ′k’s also
satisfy these relations. At the level of Fn, though, it’s the Θk that
we want.)
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Other results:
I Computations of decompositions/filtrations of projectives in

terms of Kac modules, and Kac modules in terms of simples.

I Translation functors applied to projectives and simples.

I Multiplicity free results.

I Socles and cosocles of Kac modules.

I Blocks of Fn.

Next paper:
I Cyclotomic marked Brauer algebras.
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(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra
Bd(δ, ε), ε = ±1, is the space spanned by marked Brauer diagrams

d =
caps get one each,
cups get one or each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

= ε

= ε
and

x

y
= ε

x

y

for any adjacent markings x and y (meaning no markings of
height between these two).

Multiplication is given by vertical
concatenation, with relations = δ,

= = and = ε = .
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(Moon 2003, Kujawa-Tharp 2014) The marked Brauer algebra
Bd(δ, ε), ε = ±1, is the space spanned by marked Brauer diagrams

d =
caps get one each,
cups get one or each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

= ε

= ε
and

x

y
= ε

x

y

for any adjacent markings x and y (meaning no markings of
height between these two). Multiplication is given by vertical
concatenation, with relations = δ,

= =

and

= ε = .

Note:
(1) Bd(δ, 1) = Bd(δ).
(2) If ε = −1, then multiplication
is well-defined exactly when δ = 0.



Centralizer algebras

The marked Brauer algebra Bd(δ, ε) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . ,

for i = 1, . . . , k − 1.

Back in our more general setting g = gl(V )β with V = V0 ⊕ V1

(for β non-deg, homog, super symmetric, bilinear). If

β∗ : C→ V ⊗ V and
s : V ⊗ V → V ⊗ V

u⊗ v 7→ (−1)ūv̄v ⊗ u,
then the map

ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1, si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1,

for i = 1, . . . , k − 1, gives

Bd(δ, ε)� Endg(V
⊗d)

when δ = dimV0 − dimV1 and ε = (−1)β̄ [KT14].
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Jucys-Murphy elements and the Casimir
For i < j, let

si,j =

i j

j

. . . . . .
. . .

and ei,j =

i j

j

. . . . . .. . . .

The Brauer algebra Bd(δ) = Bd(δ, 1) has Jucys-Murphy elements

xj = c+

j−1∑
i=1

si,j − ei,j , c ∈ C, j = 1, . . . , k,

that pairwise commute (Nazarov 1996). Define the degenerate
affine version Bd(δ) by

Bd(δ) = C[y1, . . . , yd]⊗Bd(δ)/〈yi-Bd relations〉.
Action on tensor space: In the classical case, yi acts on M ⊗ V ⊗d
via the split Casimir as

∑j−1
i=0 γi,j . Now we have the analogous tool

for the g = p(V ) case! Goal: Define degenerate affine marked
Brauer and cyclotomic Brauer algebras, and classify their
representation theory.
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