Quasisymmetric power sums

Zajj Daugherty
The City College of New York

Joint work with
Cristina Ballantine, Angela Hicks, Sarah Mason, and Elizabeth Niese

Some combinatorics

Partitions:
$\rightleftarrows=(5,4,4,2)=\lambda$

Compositions:

Some combinatorics

Partitions:

Compositions:

For a composition α, let $|\alpha|$ be the size (\# boxes) of α; let $\ell(\alpha)$ be the length (\# parts) of α; and
let $\tilde{\alpha}$ be the rearrangement of the parts of α into decreasing order.
For example, $|\alpha|=15, \ell(\alpha)=4$, and $\tilde{\alpha}=\lambda$.

Some combinatorics

Partitions:

$$
\Downarrow=(5,4,4,2)=\lambda
$$

Compositions:

$$
\square=(4,2,5,4)=\alpha
$$

For a composition α,
let $|\alpha|$ be the size (\# boxes) of α;
let $\ell(\alpha)$ be the length (\# parts) of α; and
let $\tilde{\alpha}$ be the rearrangement of the parts of α into decreasing order.
For example, $|\alpha|=15, \ell(\alpha)=4$, and $\tilde{\alpha}=\lambda$.
For compositions α and β, we say α refines β, written $\alpha \preccurlyeq \beta$, if β can be built by combining adjacent parts of α. For example,

Symmetric functions

Consider the complex polynomial ring in variables $x_{1}, x_{2}, \ldots, x_{n}$, and let S_{n} act by permutation of the variables. Then define

$$
\operatorname{Sym}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} .
$$

Symmetric functions

Consider the complex polynomial ring in variables $x_{1}, x_{2}, \ldots, x_{n}$, and let S_{n} act by permutation of the variables. Then define

$$
\operatorname{Sym}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} .
$$

This is a graded ring, with homogeneous components

$$
\operatorname{Sym}_{n}^{k}=\left\{\text { homogeneous } p \in \operatorname{Sym}_{n} \text { of deg. } k\right\} .
$$

Symmetric functions

Consider the complex polynomial ring in variables $x_{1}, x_{2}, \ldots, x_{n}$, and let S_{n} act by permutation of the variables. Then define

$$
\operatorname{Sym}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} .
$$

This is a graded ring, with homogeneous components

$$
\operatorname{Sym}_{n}^{k}=\left\{\text { homogeneous } p \in \operatorname{Sym}_{n} \text { of deg. } k\right\} .
$$

We then pass to the limit

$$
\operatorname{Sym}^{k}=\lim _{\overleftarrow{n}} \operatorname{Sym}_{n}^{k}, \quad \operatorname{Sym}=\bigoplus_{k} \operatorname{Sym}^{k}
$$

Symmetric functions

Consider the complex polynomial ring in variables $x_{1}, x_{2}, \ldots, x_{n}$, and let S_{n} act by permutation of the variables. Then define

$$
\operatorname{Sym}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} .
$$

This is a graded ring, with homogeneous components

$$
\operatorname{Sym}_{n}^{k}=\left\{\text { homogeneous } p \in \operatorname{Sym}_{n} \text { of deg. } k\right\} .
$$

We then pass to the limit

$$
\operatorname{Sym}^{k}=\lim _{\overleftarrow{n}} \operatorname{Sym}_{n}^{k}, \quad \operatorname{Sym}=\bigoplus_{k} \operatorname{Sym}^{k}
$$

Think: symmetric functions in $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$.

Symmetric functions

Consider the complex polynomial ring in variables $x_{1}, x_{2}, \ldots, x_{n}$, and let S_{n} act by permutation of the variables. Then define

$$
\operatorname{Sym}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} .
$$

This is a graded ring, with homogeneous components

$$
\operatorname{Sym}_{n}^{k}=\left\{\text { homogeneous } p \in \operatorname{Sym}_{n} \text { of deg. } k\right\} .
$$

We then pass to the limit

$$
\operatorname{Sym}^{k}=\lim _{\overleftarrow{n}} \operatorname{Sym}_{n}^{k}, \quad \operatorname{Sym}=\bigoplus_{k} \operatorname{Sym}^{k}
$$

Think: symmetric functions in $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$.
Lots of favorite bases: Any basis of Sym can be indexed by integer partitions $\lambda \vdash n$.

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}^{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}^{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}} \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}} \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots .
$$

Example:

$$
h_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\cdots
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\alpha=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|=|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}} \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots .
$$

Example:

$$
\begin{aligned}
& h_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\cdots \\
& h_{\square}=h_{2} h_{1}
\end{aligned}
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\alpha=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}=\sum_{|\lambda|=r} m_{\lambda}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots .
$$

Example:

$$
\begin{aligned}
& h_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\cdots \\
& h_{\square}=h_{2} h_{1}
\end{aligned}
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\alpha=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}=\sum_{|\lambda|=r} m_{\lambda}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots .
$$

Example:

$$
\begin{aligned}
& h_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square}+m_{\square} \\
& h_{\square}=h_{2} h_{1}
\end{aligned}
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}=\sum_{|\lambda|=r} m_{\lambda}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots .
$$

Example:

$$
\begin{aligned}
& h_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square}+m_{\square} \\
& h_{\square}=h_{2} h_{1}=\left(m_{\square}+m_{\square}\right) m_{\square}=2 m_{\square}+m_{\square \square}+m_{\square} .
\end{aligned}
$$

Favorite bases of Sym

Monomial symmetric functions:

$$
m_{\lambda}=\sum_{\substack{\tilde{\alpha}=\lambda \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { Ex: } m_{\square}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots
$$

Homogeneous symmetric functions:

$$
h_{r}=\sum_{\substack{|\alpha|=r \\ i_{1}<i_{2}<\cdots<i_{\ell}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}=\sum_{|\lambda|=r} m_{\lambda}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots .
$$

Example:

$$
\begin{aligned}
& h_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square}+m_{\square} \\
& h_{\square}=h_{2} h_{1}=\left(m_{\square}+m_{\square}\right) m_{\square}=2 m_{\square}+m_{\square \square}+m_{\square} .
\end{aligned}
$$

Scalar product: $\langle\rangle:, \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \mathbb{C}$ defined by

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

so that the homogeneous and monomial functions are dual.

Favorite bases of Sym

Elementary symmetric functions:

$$
e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} \cdots x_{i_{r}}=m_{(1,1, \ldots, 1)} \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

Favorite bases of Sym

Elementary symmetric functions:

$$
e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} \cdots x_{i_{r}}=m_{(1,1, \ldots, 1)} \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{aligned}
e_{2} & =x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square} \\
e_{\square} & =e_{2} e_{1}
\end{aligned}
$$

Favorite bases of Sym

Elementary symmetric functions:

$$
e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} \cdots x_{i_{r}}=m_{(1,1, \ldots, 1)} \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{gathered}
e_{2}=x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square} \\
e_{\square}=e_{2} e_{1}=m_{\square} m_{\square}=m_{\square}+m_{\boxminus}
\end{gathered}
$$

Favorite bases of Sym

Elementary symmetric functions:

$$
e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} \cdots x_{i_{r}}=m_{(1,1, \ldots, 1)} \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{gathered}
e_{2}=x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square} \\
e_{\square}=e_{2} e_{1}=m_{\square} m_{\square}=m_{\square}+m_{\square}
\end{gathered}
$$

Schur functions:

$$
s_{\lambda}=\sum_{\substack{\text { ss tabl. } T \\ \text { of shape } \lambda}} x^{\mathrm{wt}(T)}=\sum_{\mu} K_{\lambda \mu} m_{\mu}
$$

where the coefficients $K_{\lambda \mu}$ are the Kostka numbers.

Favorite bases of Sym

Elementary symmetric functions:

$$
e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} \cdots x_{i_{r}}=m_{(1,1, \ldots, 1)} \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{gathered}
e_{2}=x_{1} x_{2}+x_{1} x_{3}+\cdots=m_{\square} \\
e_{\square}=e_{2} e_{1}=m_{\square} m_{\square}=m_{\square}+m_{\square}
\end{gathered}
$$

Schur functions:

$$
s_{\lambda}=\sum_{\substack{\text { ss tabl. } T \\ \text { of shape } \lambda}} x^{\mathrm{wt}(T)}=\sum_{\mu} K_{\lambda \mu} m_{\mu}
$$

where the coefficients $K_{\lambda \mu}$ are the Kostka numbers.
Note

$$
\left\langle s_{\lambda}, s_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { and } \quad\left\langle e_{\lambda}, \omega\left(m_{\mu}\right)\right\rangle=\delta_{\lambda, \mu}
$$

where ω is the involution on Sym sending $e_{\lambda} \rightarrow h_{\lambda}$.

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots
$$

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots
$$

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots
$$

$$
p_{\square}=p_{2} p_{1}
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots
$$

$$
p_{\square}=p_{2} p_{1}
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{aligned}
& \quad p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots=m_{\square} \\
& p_{\square}=p_{2} p_{1}
\end{aligned}
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{aligned}
& p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots=m_{\square} \\
p_{\square} & =p_{2} p_{1}=m_{\square \square} m_{\square}
\end{aligned}
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{gathered}
p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots=m_{\square \square} \\
p_{\square}=p_{2} p_{1}=m_{\square \square} m_{\square}=m_{\square}+m_{\square \square} .
\end{gathered}
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{gathered}
p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots=m_{\square} \\
p_{\square}=p_{2} p_{1}=m_{\square} m_{\square}=m_{\square}+m_{\square \square} .
\end{gathered}
$$

We have

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

where z_{λ} is the size of the stabilizer of a permutation of cycle type λ :

$$
z_{\lambda}=\prod_{k} a_{k}!k^{a_{k}}, \quad a_{k}=\#\{\text { pts of length } k\}
$$

Favorite bases of Sym

Power sum symmetric functions:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\cdots=m_{(r)}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

For example,

$$
\begin{gathered}
p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots=m_{\square} \\
p_{\square}=p_{2} p_{1}=m_{\square} m_{\square}=m_{\square}+m_{\square \square} .
\end{gathered}
$$

We have

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

where z_{λ} is the size of the stabilizer of a permutation of cycle type λ :

$$
z_{\lambda}=\prod_{k} a_{k}!k^{a_{k}}, \quad a_{k}=\#\{\text { pts of length } k\} \quad \text { Ex: } z \square=2!3^{2}
$$

Generating functions

$$
\begin{gathered}
H(t)=\sum_{k \geq 0} h_{k} t^{k}=\prod_{i \geq 1}\left(1-x_{i} t\right)^{-1} \\
E(t)=\sum_{k \geq 0} e_{k} t^{k}=\prod_{i \geq 1}\left(1+x_{i} t\right)
\end{gathered}
$$

Generating functions

$$
\begin{gathered}
H(t)=\sum_{k \geq 0} h_{k} t^{k}=\prod_{i \geq 1}\left(1-x_{i} t\right)^{-1} \\
E(t)=\sum_{k \geq 0} e_{k} t^{k}=\prod_{i \geq 1}\left(1+x_{i} t\right)
\end{gathered}
$$

Note $H(t)=1 / E(-t)$.

Generating functions

$$
\begin{gathered}
H(t)=\sum_{k \geq 0} h_{k} t^{k}=\prod_{i \geq 1}\left(1-x_{i} t\right)^{-1} \\
E(t)=\sum_{k \geq 0} e_{k} t^{k}=\prod_{i \geq 1}\left(1+x_{i} t\right)
\end{gathered}
$$

Note $H(t)=1 / E(-t)$.

$$
P(t)=\sum_{k \geq 0} p_{k} t^{k}=\frac{d}{d t} \ln (H(t))=\frac{d}{d t} \ln (1 / E(-t))
$$

Variations on Sym

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Variations on Sym

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Think: The elementary symmetric functions e_{1}, e_{2}, \ldots generate Sym, and, aside from commuting, are algebraically independent. Now, we're lifting to an algebra where the elementary functions no longer commute. So the abelianization

$$
\mathcal{A} b: \mathrm{NSym} \rightarrow \mathrm{Sym}
$$

is surjective (with kernel generated by commutators).

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$.

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$.

$$
\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}
$$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

- Noncom. power sums: two choices, ψ and ϕ !

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

- Noncom. power sums: two choices, ψ and ϕ !

$$
\begin{array}{ccc}
& \text { In Sym: } & \text { In NSym: } \\
\text { Type 1: } & P(t)=\frac{d}{d t} \ln (H(t)) & \frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
\end{array}
$$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

- Noncom. power sums: two choices, ψ and ϕ !

$$
\begin{array}{lcc}
& \text { In Sym: } & \text { In NSym: } \\
\text { Type 1: } & P(t)=\frac{d}{d t} \ln (H(t)) & \frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \boldsymbol{\Psi}(t) \\
\text { Type 2: } & H(t)=\exp \left(\int P(t) d t\right) & \mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
\end{array}
$$

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$.

Analogous bases indexed by compositions α.

- Noncom. elementary: $\mathbf{e}_{\alpha}=\mathbf{e}_{\alpha_{1}} \cdots \mathbf{e}_{\alpha_{\ell}}$. $\mathcal{A} b\left(\mathbf{e}_{\alpha}\right)=e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_{\alpha}=\mathbf{h}_{\alpha_{1}} \cdots \mathbf{h}_{\alpha_{\ell}}$, where \mathbf{h}_{i} is defined by...

$$
\text { if } \quad \mathbf{E}(t)=\sum_{k \geq 0} \mathbf{e}_{k} t^{k} \quad \text { and } \quad \mathbf{H}(t)=\sum_{k \geq 0} \mathbf{h}_{k} t^{k}
$$

then $\mathbf{H}(t)=1 / \mathbf{E}(-t)$.
(Recall: $H(t)=1 / E(-t)$ in Sym).

$$
\mathcal{A} b\left(\mathbf{h}_{\alpha}\right)=h_{\tilde{\alpha}}
$$

- Noncom. power sums: two choices, ψ and ϕ !

$$
\begin{array}{ccc}
& \text { In Sym: } & \text { In NSym: } \\
\text { Type 1: } & P(t)=\frac{d}{d t} \ln (H(t)) & \frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \boldsymbol{\Psi}(t) \\
\text { Type 2: } & H(t)=\exp \left(\int P(t) d t\right) & \mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
\end{array}
$$

Not the same! (No unique notion of log derivative for power series with noncommutative coefficients.) But

$$
\mathcal{A} b\left(\psi_{\alpha}\right)=p_{\tilde{\alpha}}=\mathcal{A b}\left(\phi_{\alpha}\right)
$$

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$ are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$.

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions.

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{\ell(\alpha)}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { so that } \quad m_{\lambda}=\sum_{\tilde{\alpha}=\lambda} M_{\alpha} .
$$

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots=M_{\square}
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{\ell(\alpha)}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { so that } \quad m_{\lambda}=\sum_{\tilde{\alpha}=\lambda} M_{\alpha} .
$$

Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ consisting of series where the coefficients on the monomials

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text { and } \quad x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}
$$

are the same, for all $i_{1}<i_{2}<\cdots<i_{\ell}$. In particular, Sym \subset QSym.
For example,

$$
\sum_{i<j} x_{i} x_{j}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots=M_{\square}
$$

is quasisymmetric but not symmetric (the coef. on $x_{1}^{2} x_{2}$ is 0).
Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{\ell(\alpha)}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text { so that } \quad m_{\lambda}=\sum_{\tilde{\alpha}=\lambda} M_{\alpha} .
$$

Extending linearly gives a natural surjective map QSym \rightarrow Sym.

Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

$$
\langle,\rangle: \text { NSym } \otimes \operatorname{QSym} \rightarrow \mathbb{C} .
$$

Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

$$
\langle,\rangle: \text { NSym } \otimes \text { QSym } \rightarrow \mathbb{C} .
$$

Moreover, the duality is analogous to the pairing in Sym; namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

$$
\langle,\rangle: \operatorname{NSym} \otimes \operatorname{QSym} \rightarrow \mathbb{C} .
$$

Moreover, the duality is analogous to the pairing in Sym; namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

The dual to the elementary basis in NSym is the so-called forgotten basis of QSym. There are several notions of the analog to the Schur basis in NSym and QSym, paired by duality.

Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

$$
\langle,\rangle: \operatorname{NSym} \otimes \operatorname{QSym} \rightarrow \mathbb{C} .
$$

Moreover, the duality is analogous to the pairing in Sym; namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

The dual to the elementary basis in NSym is the so-called forgotten basis of QSym. There are several notions of the analog to the Schur basis in NSym and QSym, paired by duality.

Also, in Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

$$
\langle,\rangle: \operatorname{NSym} \otimes \operatorname{QSym} \rightarrow \mathbb{C} .
$$

Moreover, the duality is analogous to the pairing in Sym; namely

$$
\begin{gathered}
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu} \quad \text { in Sym } \otimes \operatorname{Sym} \\
\left\langle\mathbf{h}_{\alpha}, M_{\beta}\right\rangle=\delta_{\alpha, \beta} \quad \text { in NSym } \otimes \mathrm{QSym} .
\end{gathered}
$$

The dual to the elementary basis in NSym is the so-called forgotten basis of QSym. There are several notions of the analog to the Schur basis in NSym and QSym, paired by duality.

Also, in Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

Question: What is dual to ψ ? to ϕ ?

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \boldsymbol{\Psi}(t)
$$

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \boldsymbol{\Psi}(t) .
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta},
$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$.

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta}
$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\psi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu}
$$

In NSym, the type 1 power sum basis is defined by the generating function relation

$$
\frac{d}{d t} \mathbf{H}(t)=\mathbf{H}(t) \mathbf{\Psi}(t)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta}
$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\psi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

Define

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \psi_{\alpha}^{*}, \quad \text { so that } \quad\left\langle\psi_{\alpha}, \Psi_{\beta}\right\rangle=z_{\alpha} \delta_{\alpha \beta}
$$

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta} .
$$

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

refines

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

refines

First, for each block, we compute the product of the partial sums:

$$
\pi(\square)=|\square| \cdot|\square| \cdot|\square|=1 \cdot 3 \cdot 4
$$

Computing coefficients

$$
\Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta} .
$$

For example, we saw that

refines

First, for each block, we compute the product of the partial sums:

$$
\pi(\square)=|\square| \cdot|\square| \cdot|\square|=1 \cdot 3 \cdot 4
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \pi(\alpha, \beta)$, where

$$
\begin{aligned}
\pi\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}, \stackrel{\square}{\square \square}\right) & =\pi(\square) \pi(\square) \pi(\square \square \square) \pi(\square) \\
& =(1 \cdot 3 \cdot 4)(2)(5)(1 \cdot 2 \cdot 4)
\end{aligned}
$$

Computing coefficients

First, for each block, we compute the product of the partial sums:

$$
\pi(\boxminus)=|\square| \cdot|\boxminus| \cdot|\square|=1 \cdot 3 \cdot 4
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \pi(\alpha, \beta)$, where

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right)
\end{aligned}
$$

Computing coefficients

First, for each block, we compute the product of the partial sums:

$$
\pi(\boxminus)=|\square| \cdot|\boxminus| \cdot|\square|=1 \cdot 3 \cdot 4
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \pi(\alpha, \beta)$, where

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right)
\end{aligned}
$$

So

$$
\Psi_{\square}+\Psi_{\square}=M_{\square}+M_{\square}+M_{\square \square}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\Psi_{\square}+\Psi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}
\end{aligned}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\Psi_{\square}+\Psi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square} m_{\square}=p_{\square} .
\end{aligned}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{3} M_{\square \square}\right) \\
& \Psi_{\square}=z_{\square} \psi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{6} M_{\square \square}\right)
\end{aligned}
$$

So

Theorem (BDHMN)

$$
\begin{aligned}
\Psi_{\square}+\Psi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square \square} m_{\square}=p_{\square}
\end{aligned}
$$

Type 1 QSym powers sum to Sym powers:

$$
p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

For example, if

$$
\alpha=\boxminus \quad \text { and } \quad \beta=\boxplus
$$

then $\mathcal{O}_{\alpha, \beta}$ contains $(\{1,3\},\{2\})$ and $(\{2\},\{1,3\})$.

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

For example, if

$$
\alpha=\boxminus \quad \text { and } \quad \beta=\boxplus
$$

then $\mathcal{O}_{\alpha, \beta}$ contains $(\{1,3\},\{2\})$ and $(\{2\},\{1,3\})$.
It has been shown that

$$
p_{\lambda}=\sum_{\text {part'n } \mu}\left|\mathcal{O}_{\lambda, \mu}\right| m_{\mu}, \quad \text { so that } \quad p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta} .
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

It has been shown that

$$
p_{\lambda}=\sum_{\text {part'n } \mu}\left|\mathcal{O}_{\lambda, \mu}\right| m_{\mu}, \quad \text { so that } \quad p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta} .
$$

We combinatorially prove, for a fixed partition λ with size n, and a fixed composition β, that

$$
\left|\mathcal{O}_{\lambda \beta}\right| \frac{n!}{z_{\lambda}}=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}} \frac{n!}{\pi(\alpha, \beta)},
$$

Theorem: $p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad$ where $\quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}$.
Proof outline: For compositions α and β, define $\mathcal{O}_{\alpha, \beta}$ be the set of ordered set partitions $\left(B_{1}, \cdots, B_{\ell(\beta)}\right)$ of $\{1, \cdots, \ell(\alpha)\}$ satisfying

$$
\beta_{j}=\sum_{i \in B_{j}} \alpha_{i} \text { for } 1 \leq j \leq \ell(\beta)
$$

It has been shown that

$$
p_{\lambda}=\sum_{\text {part'n } \mu}\left|\mathcal{O}_{\lambda, \mu}\right| m_{\mu}, \quad \text { so that } \quad p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta} .
$$

We combinatorially prove, for a fixed partition λ with size n, and a fixed composition β, that

$$
\left|\mathcal{O}_{\lambda \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\left|\mathcal{O}_{\lambda \beta}\right| \frac{n!}{z_{\lambda}}=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}} \frac{n!}{\pi(\alpha, \beta)},
$$

where $S_{n}^{\lambda}=\left\{\sigma \in S_{n}\right.$ of cycle type $\left.\lambda\right\}$.

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on. . }
$$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on. . }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$

Two ways of thinking about permutations:

- In one-line notation:

$$
\sigma=571423689
$$

is the permutation sending

$$
1 \mapsto 5,2 \mapsto 7,3 \mapsto 1, \text { and so on... }
$$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and cycles ordered increasingly according to largest element Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
Split according to β :

571423689
$57\|14\| 23689$

- In cycle notation:

$$
\sigma=(152763)(4)(8)(9)
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
Split according to β :
Add parentheses according to α :
571423689
57\| $\mid 14 \| 23689$
$(5)(7)\|(14)\|(2)(368)(9)$
- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
571423689
Split according to β :
$57\|14\| 23689$
Add parentheses according to α :
$(5)(7)\|(14)\|(2)(368)(9)$
If the permutations in each partition are in standard form, then σ is consistent.
- In cycle notation:

$$
\sigma=(152763)(4)(8)(9) .
$$

Several equivalent ways to write in cycle notation. We say σ is written in standard form if
largest element of each cycle is last, and
cycles ordered increasingly according to largest element
Ex: $(4)(631527)(8)(9)$

- Let $\alpha \preccurlyeq \beta$ of size n, and let $\sigma \in S_{n}$. We say σ is consistent with $\alpha \preccurlyeq \beta$ if...
Ex: let $\alpha=(1,1,2,1,3,1)$ and $\beta=(2,2,5)$
Start in one-line notation:
571423689
Split according to β :
$57\|14\| 23689$
Add parentheses according to α :
$(5)(7)\|(14)\|(2)(368)(9)$
If the permutations in each partition are in standard form, then σ is consistent.

$$
\text { Non-example: } 571428369 \quad \rightarrow \quad(5)(7)\|(14)\|(2)(836)(9)
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,2,1)}=\{1234,1243,1342,2134,2143,2341,3124$, $3142,3241,4123,4132,4231\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,3)}=\{1234,2134,3124,4123\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(3,1)}=\{1234,1243,1342,2134,2143,2341,3142,3241\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(4)}=\{1234,2134\}$
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,2,1)}=\{1234,1243,1342,2134,2143,2341,3124$, $3142,3241,4123,4132,4231\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,3)}=\{1234,2134,3124,4123\}$,
$\operatorname{Cons}_{(1,2,1) \preccurlyeq(3,1)}=\{1234,1243,1342,2134,2143,2341,3142,3241\}$,

$$
\operatorname{Cons}_{(1,2,1) \preccurlyeq(4)}=\{1234,2134\}
$$

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,2,1)}=\{1234,1243,1342,2134,2143,2341,3124$, $3142,3241,4123,4132,4231\}$,

$$
\pi((1,2,1),(1,2,1))=2
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(1,3)}=\{1234,2134,3124,4123\}$,

$$
\pi((1,2,1),(1,3))=2 \cdot 3
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(3,1)}=\{1234,1243,1342,2134,2143,2341,3142,3241\}$,

$$
\pi((1,2,1),(3,1))=1 \cdot 3
$$

$\operatorname{Cons}_{(1,2,1) \preccurlyeq(4)}=\{1234,2134\}$

$$
\pi((1,2,1),(4))=1 \cdot 3 \cdot 4
$$

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\bigotimes_{i=1}^{\ell(\beta)}\left(\bigotimes_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$.

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\bigotimes_{i=1}^{\ell(\beta)}\left(\bigotimes_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$. Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta} \ldots
$$

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta)
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\bigotimes_{i=1}^{\ell(\beta)}\left(\bigotimes_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$. Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta} \ldots
$$

Example: $\alpha=(2,3,2,2), \beta=(5,4), \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$. Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(1)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\square, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\square block:

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\# block: 73962

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\square
block
$73962 \xrightarrow{\text { rotate left by } 3} 62739$,

$$
s_{2}^{(1)}=3
$$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\square block:

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\square block: $73962 \xrightarrow{\text { rotate left by } 3} 62739$,

$$
s_{2}^{(1)}=3
$$

\square block: 62|739

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\square block: $73962 \xrightarrow{\text { rotate left by } 3} 62739$

$$
s_{2}^{(1)}=3
$$

\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

$\#$ block: $73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $\quad 73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$

\square block:

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $\quad 73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$

\square block: 8451

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations. . .

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$

\boxminus block: $\quad 8451 \xrightarrow{\text { rotate left by } 1} 4518, \quad s_{2}^{(2)}=1$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations...

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$

\square block:
block:

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations. . .

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$block: $\quad 8451 \xrightarrow{\text { rotate left by } 1} 4518$,

$s_{2}^{(2)}=1$block: 45|18

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=\sharp, \beta=\square, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations. . .

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s_{1}^{(1)}=2$

$$
i=2: \sigma^{(2)}=8451, \quad \beta_{2} \text { parts of } \alpha: \boxminus
$$block: $8451 \xrightarrow{\text { rotate left by } 1} 4518$,

$s_{2}^{(2)}=1$block: $\quad 45|18 \xrightarrow{\text { rotate left by } 0} 45| 18$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=\sharp, \beta=\square, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations. . .

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s$
$i=2: \quad \sigma^{(2)}=8451, \quad \beta_{2}$ parts of $\alpha: ~$block: $\quad 8451 \xrightarrow{\text { rotate left by } 1} 4518$,
$s_{2}^{(2)}=1$block: $\quad 45|18 \xrightarrow{\text { rotate left by } 0} 45| 18$,
$s_{1}^{(2)}=0$

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations. . .

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $\quad 73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s$
$i=2: \quad \sigma^{(2)}=8451, \quad \beta_{2}$ parts of $\alpha: ~$

\boxminusblock: $\quad 8451 \xrightarrow{\text { rotate left by } 1} 4518, \quad s_{2}^{(2)}=1$

\squareblock: $\quad 45|18 \xrightarrow{\text { rotate left by } 0} 45| 18$, $s_{1}^{(2)}=0$
So $739628451 \mapsto(267394518,((2,3),(0,1)))$.

Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}:
$$

Example: $\alpha=母, \beta=\Pi, \sigma=739628451\left(\in \operatorname{Cons}_{\alpha \preccurlyeq \beta}\right)$.
Split σ according to β : $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$
For each i, "rotate" $\sigma^{(i)}$ into consistency with to $\alpha \preccurlyeq \beta$, and record rotations. . .

$$
i=1: \sigma^{(1)}=73962, \quad \beta_{1} \text { parts of } \alpha: \square
$$

\boxplus block: $\quad 73962 \xrightarrow{\text { rotate left by } 3} 62739, \quad s_{2}^{(1)}=3$
\square block: $\quad 62|739 \xrightarrow{\text { rotate left by } 2} 26| 739, \quad s$
$i=2: \quad \sigma^{(2)}=8451, \quad \beta_{2}$ parts of $\alpha: ~$

\boxminusblock: $\quad 8451 \xrightarrow{\text { rotate left by } 1} 4518, \quad s_{2}^{(2)}=1$

\squareblock: $\quad 45|18 \xrightarrow{\text { rotate left by } 0} 45| 18$, $s_{1}^{(2)}=0$ So $739628451 \mapsto(267394518,((2,3),(0,1)))$.

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\bigotimes_{i=1}^{\ell(\beta)}\left(\bigotimes_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$. Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta} .
$$

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Proof: Let

$$
A_{\alpha \preccurlyeq \beta}=\bigotimes_{i=1}^{\ell(\beta)}\left(\bigotimes_{j=1}^{\ell\left(\alpha^{(i)}\right)} \mathbb{Z} / a_{j}^{(i)} \mathbb{Z}\right), \quad \text { where } a_{j}^{(i)}=\sum_{r=1}^{j} \alpha_{r}^{(i)}
$$

so that $\left|A_{\alpha \preccurlyeq \beta}\right|=\pi(\alpha, \beta)$. Then there is a bijection

$$
S_{n} \rightarrow \operatorname{Cons}_{\alpha \preccurlyeq \beta} \times A_{\alpha \preccurlyeq \beta}
$$

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
\left|\mathcal{O}_{\alpha \preccurlyeq \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}}\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| .
$$

(Similar proof.)

Lemma
Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
n!=\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| \cdot \pi(\alpha, \beta) .
$$

Lemma

Fix $\alpha \preccurlyeq \beta$ of size n Then

$$
\left|\mathcal{O}_{\alpha \preccurlyeq \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\sum_{\substack{\alpha \preccurlyeq \beta \\ \bar{\alpha}=\lambda}}\left|\operatorname{Cons}_{\alpha \preccurlyeq \beta}\right| .
$$

(Similar proof.)
Therefore

$$
\left|\mathcal{O}_{\lambda \beta}\right| \cdot\left|S_{n}^{\lambda}\right|=\sum_{\substack{\alpha \preccurlyeq \beta \\ \tilde{\alpha}=\lambda}} \frac{n!}{\pi(\alpha, \beta)},
$$

so that

$$
p_{\lambda}=\sum_{\text {comp } \beta}\left|\mathcal{O}_{\lambda, \beta}\right| M_{\beta}=\sum_{\tilde{\alpha}=\lambda} \Psi_{\alpha}, \quad \text { where } \quad \Psi_{\alpha}=z_{\tilde{\alpha}} \sum_{\alpha \preccurlyeq \beta} \frac{1}{\pi(\alpha, \beta)} M_{\beta}
$$

as desired.

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
$$

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \boldsymbol{\Phi}(t) d t\right)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\operatorname{sp}(\beta, \alpha)} \phi_{\beta},
$$

where $\operatorname{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$.

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \mathbf{\Phi}(t) d t\right)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\operatorname{sp}(\beta, \alpha)} \phi_{\beta},
$$

where $\operatorname{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\phi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda \mu} .
$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$
\mathbf{H}(t)=\exp \left(\int \mathbf{\Phi}(t) d t\right)
$$

This is equivalent to

$$
\mathbf{h}_{\alpha}=\sum_{\beta \preccurlyeq \alpha} \frac{1}{\operatorname{sp}(\beta, \alpha)} \phi_{\beta},
$$

where $\operatorname{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

$$
\phi_{\alpha}^{*}=\sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

Define

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \phi_{\alpha}^{*}, \quad \text { so that } \quad\left\langle\phi_{\alpha}, \Phi_{\beta}\right\rangle=z_{\alpha} \delta_{\alpha \beta}
$$

Computing coefficients

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

refines

Computing coefficients

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

refines

First, for each block, we compute $\operatorname{sp}(\gamma)=\ell(\gamma)!\prod_{k} \gamma_{j}$:

$$
\operatorname{sp}(\square)=3!(1 \cdot 2 \cdot 1)
$$

Computing coefficients

$$
\Phi_{\alpha}=z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\operatorname{sp}(\alpha, \beta)} M_{\beta}
$$

For example, we saw that

refines

First, for each block, we compute $\operatorname{sp}(\gamma)=\ell(\gamma)!\prod_{k} \gamma_{j}$:

$$
\operatorname{sp}(\square)=3!(1 \cdot 2 \cdot 1)
$$

Then, for α refining β, the coefficient of M_{β} in ψ_{α}^{*} is $1 / \operatorname{sp}(\alpha, \beta)$, where

$$
\begin{aligned}
\mathrm{sp}\binom{\square, \square)}{\square} & =\mathrm{sp}(\square) \mathrm{Bp}(\square) \mathrm{sp}(\square \square) \mathrm{sp}(\square) \\
& =3!(1 \cdot 2 \cdot 1) \cdot 1!(2) \cdot 1!(5) \cdot 3!(1 \cdot 1 \cdot 2)
\end{aligned}
$$

Computing coefficients

$$
\operatorname{sp}(\mp)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right)
\end{aligned}
$$

Computing coefficients

$$
\operatorname{sp}(\nexists)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right)
\end{aligned}
$$

So

$$
\Phi_{\boxminus}+\Phi_{\square}=M_{\boxminus}+M_{\square}+M_{\square}
$$

Computing coefficients

$$
\operatorname{sp}(\nexists)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\Phi_{\square}+\Phi_{\square} & =M_{\boxminus}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square}
\end{aligned}
$$

Computing coefficients

$$
\operatorname{sp}(\nexists)=\ell(\gamma)!\prod_{k} \gamma_{j}=3!(1 \cdot 2 \cdot 1)
$$

As another example, $z \square=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right) \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\Phi_{\square}+\Phi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square}=m_{\square} m_{\square}=p_{\square} p_{\square}=p_{\square} .
\end{aligned}
$$

Computing coefficients

As another example, $z_{\square}=2$,

$$
\begin{aligned}
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square \square}\right) \\
& \Phi_{\square}=z_{\square} \phi_{\square}^{*}=2\left(\frac{1}{2} M_{\square}+\frac{1}{4} M_{\square \square}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\Phi_{\square}+\Phi_{\square} & =M_{\square}+M_{\square}+M_{\square \square} \\
& =m_{\square}+m_{\square \square}=m_{\square \square} m_{\square}=p_{\square} p_{\square}=p_{\square} .
\end{aligned}
$$

Theorem (BDHMN)
Type 2 QSym powers sum to Sym powers:

$$
p_{\lambda}=\sum_{\tilde{\alpha}=\lambda} \Phi_{\alpha}
$$

