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Some combinatorics

Partitions:

= (5, 4, 4, 2) = λ

Compositions:

= (4, 2, 5, 4) = α

For a composition α,

let |α| be the size (# boxes) of α;

let `(α) be the length (# parts) of α; and

let α̃ be the rearrangement of the parts of α into decreasing order.

For example, |α| = 15, `(α) = 4, and α̃ = λ.

For compositions α and β, we say α refines β, written α 4 β, if β can
be built by combining adjacent parts of α. For example,

4 , 64
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Symmetric functions

Consider the complex polynomial ring in variables x1, x2, . . . , xn, and
let Sn act by permutation of the variables. Then define

Symn = C[x1, . . . , xn]Sn .

This is a graded ring, with homogeneous components

Symk
n = {homogeneous p ∈ Symn of deg. k}.

We then pass to the limit

Symk = lim
←
n

Symk
n, Sym =

⊕
k

Symk.

Think: symmetric functions in C[[x1, x2, . . . ]].

Lots of favorite bases: Any basis of Sym can be indexed by integer
partitions λ ` n.
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Favorite bases of Sym
Monomial symmetric functions:

mλ =
∑
α̃=λ

i1<i2<···<i`

xα1
i1
xα2
i2
· · ·xα`i`

, Ex: m = x21x2+x
2
2x1+x

2
1x3+· · ·

Homogeneous symmetric functions:

hr =
∑
|α|=r

i1<i2<···<i`

xα1
i1
xα2
i2
· · ·xα`i`

=
∑
|λ|=r

mλ,

hλ = hλ1hλ2 · · · .

Example:

h2 = x21 + x22 + · · ·+ x1x2 + x1x3 + · · ·

= m +m ,

h = h2h1

= (m +m )m = 2m +m +m .

Scalar product: 〈, 〉 : Sym⊗ Sym→ C defined by

〈hλ,mµ〉 = δλ,µ,

so that the homogeneous and monomial functions are dual.
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Favorite bases of Sym

Elementary symmetric functions:
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∑
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For example,
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Schur functions:

sλ =
∑

ss tabl. T
of shape λ

xwt(T ) =
∑
µ

Kλµmµ,

where the coefficients Kλµ are the Kostka numbers.
Note

〈sλ, sµ〉 = δλ,µ and 〈eλ, ω(mµ)〉 = δλ,µ

where ω is the involution on Sym sending eλ → hλ.
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Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · ·

= m(r),

pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · ·

= m ,

p = p2p1

= m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · ·

= m(r),

pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · ·

= m ,

p = p2p1

= m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · ·

= m ,

p = p2p1

= m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · · = m ,

p = p2p1

= m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · · = m ,

p = p2p1 = m m

= m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · · = m ,

p = p2p1 = m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · · = m ,

p = p2p1 = m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k}

Ex: z = 2! 32.



Favorite bases of Sym

Power sum symmetric functions:

pr = xr1 + xr2 + · · · = m(r), pλ = pλ1pλ2 · · · .

For example,
p2 = x21 + x22 + · · · = m ,

p = p2p1 = m m = m +m .

We have
〈pλ, pµ〉 = zλδλµ

where zλ is the size of the stabilizer of a permutation of cycle type λ:

zλ =
∏
k

ak!k
ak , ak = #{pts of length k} Ex: z = 2! 32.



Generating functions

H(t) =
∑
k≥0

hkt
k =

∏
i≥1

(1− xit)−1

E(t) =
∑
k≥0

ekt
k =

∏
i≥1

(1 + xit)

Note H(t) = 1/E(−t).

P (t) =
∑
k≥0

pkt
k =

d

dt
ln(H(t)) =

d

dt
ln(1/E(−t))
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Variations on Sym

The ring of noncommutative symmetric functions NSym is the
C-algebra generated by the free group on e1, e2, . . . .

Think: The elementary symmetric functions e1, e2, . . . generate Sym,
and, aside from commuting, are algebraically independent. Now, we’re
lifting to an algebra where the elementary functions no longer
commute. So the abelianization

Ab : NSym→ Sym

is surjective (with kernel generated by commutators).
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The ring of noncommutative symmetric functions NSym is the
C-algebra generated by the free group on e1, e2, . . . .

Analogous bases indexed by compositions α.

• Noncom. elementary: eα = eα1 · · · eα` . Ab(eα) = eα̃

• Noncom. homog.: hα = hα1 · · ·hα` , where hi is defined by. . .

if E(t) =
∑
k≥0

ekt
k and H(t) =

∑
k≥0

hkt
k,

then H(t) = 1/E(−t). (Recall: H(t) = 1/E(−t) in Sym).
Ab(hα) = hα̃

• Noncom. power sums: two choices, ψ and φ!

In Sym: In NSym:

Type 1: P (t) = d
dt ln(H(t)) d

dtH(t) = H(t)Ψ(t)

Type 2: H(t) = exp
(∫
P (t)dt

)
H(t) = exp

(∫
Φ(t)dt

)

Not the same! (No unique notion of log derivative for power series
with noncommutative coefficients.) But

Ab(ψα) = pα̃ = Ab(φα)
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Variations on Sym

The ring of quasisymmetric functions QSym is a subring of
C[[x1, x2, . . . ]] consisting of series where the coefficients on the
monomials

xα1
1 xα2

2 · · ·x
α`
` and xα1

i1
xα2
i2
· · ·xα`i`

are the same, for all i1 < i2 < · · · < i`.

In particular, Sym ⊂ QSym.

For example,∑
i<j

xix
2
j = x1x

2
2 + x1x

2
3 + x2x

2
3 + · · ·

= M

is quasisymmetric but not symmetric (the coef. on x21x2 is 0).

Bases of QSym are also indexed by compositions. Namely, the
monomial basis has a natural analog:

Mα =
∑

i1<i2<···<i`(α)

xα1
i1
xα2
i2
· · ·xα`i` , so that mλ =

∑
α̃=λ

Mα.

Extending linearly gives a natural surjective map QSym→ Sym.
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Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular,
they are dual as Hopf algebras, meaning there is a natural pairing

〈, 〉 : NSym⊗QSym→ C.

Moreover, the duality is analogous to the pairing in Sym; namely

〈hλ,mµ〉 = δλ,µ in Sym⊗ Sym

〈hα,Mβ〉 = δα,β in NSym⊗QSym.

The dual to the elementary basis in NSym is the so-called forgotten
basis of QSym. There are several notions of the analog to the Schur
basis in NSym and QSym, paired by duality.

Also, in Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

Question: What is dual to ψ? to φ?
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Type 1
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

In NSym, the type 1 power sum basis is defined by the generating
function relation

d

dt
H(t) = H(t)Ψ(t).

This is equivalent to

hα =
∑
β4α

1

π(β, α)
ψβ,

where π(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

ψ∗α =
∑
β<α

1

π(α, β)
Mβ.

Define
Ψα = zα̃ψ

∗
α, so that 〈ψα,Ψβ〉 = zαδαβ.



Type 1
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

In NSym, the type 1 power sum basis is defined by the generating
function relation

d

dt
H(t) = H(t)Ψ(t).

This is equivalent to

hα =
∑
β4α

1

π(β, α)
ψβ,

where π(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

ψ∗α =
∑
β<α

1

π(α, β)
Mβ.

Define
Ψα = zα̃ψ

∗
α, so that 〈ψα,Ψβ〉 = zαδαβ.



Type 1
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

In NSym, the type 1 power sum basis is defined by the generating
function relation

d

dt
H(t) = H(t)Ψ(t).

This is equivalent to

hα =
∑
β4α

1

π(β, α)
ψβ,

where π(β, α) is a combinatorial statistic on the refinement β 4 α.

So, the dual in QSym will satisfy

ψ∗α =
∑
β<α

1

π(α, β)
Mβ.

Define
Ψα = zα̃ψ

∗
α, so that 〈ψα,Ψβ〉 = zαδαβ.



Type 1
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

In NSym, the type 1 power sum basis is defined by the generating
function relation

d

dt
H(t) = H(t)Ψ(t).

This is equivalent to

hα =
∑
β4α

1

π(β, α)
ψβ,

where π(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

ψ∗α =
∑
β<α

1

π(α, β)
Mβ.

Define
Ψα = zα̃ψ

∗
α, so that 〈ψα,Ψβ〉 = zαδαβ.



Type 1
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ

In NSym, the type 1 power sum basis is defined by the generating
function relation

d

dt
H(t) = H(t)Ψ(t).

This is equivalent to

hα =
∑
β4α

1

π(β, α)
ψβ,

where π(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

ψ∗α =
∑
β<α

1

π(α, β)
Mβ.

Define
Ψα = zα̃ψ

∗
α, so that 〈ψα,Ψβ〉 = zαδαβ.



Computing coefficients
Ψα = zα̃

∑
β<α

1

π(α, β)
Mβ.

For example, we saw that

refines

First, for each block, we compute the product of the partial sums:

π

( )
=
∣∣ ∣∣ · ∣∣∣ ∣∣∣ · ∣∣∣∣ ∣∣∣∣ = 1 · 3 · 4

Then, for α refining β, the coefficient of Mβ in ψ∗α is 1/π(α, β), where

π

 ,

 = π

( )
π
( )

π
( )

π

( )

= (1 · 3 · 4)(2)(5)(1 · 2 · 4)
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As another example, z = 2,

Ψ = z ψ∗ = 2

(
1

2
M +

1

3
M

)

Ψ = z ψ∗ = 2

(
1

2
M +

1

6
M

)

So

Ψ + Ψ = M +M +M

= m +m = m m = p .

Theorem (BDHMN)

Type 1 QSym powers sum to Sym powers:

pλ =
∑
α̃=λ

Ψα.



Computing coefficients
First, for each block, we compute the product of the partial sums:

π
( )

=
∣∣ ∣∣ · ∣∣∣ ∣∣∣ · ∣∣∣ ∣∣∣ = 1 · 3 · 4

Then, for α refining β, the coefficient of Mβ in ψ∗α is 1/π(α, β), where

π

 ,

 = π
( )

π
( )

π
( )

π
( )

As another example, z = 2,

Ψ = z ψ∗ = 2

(
1

2
M +

1

3
M

)

Ψ = z ψ∗ = 2

(
1

2
M +

1

6
M

)
So

Ψ + Ψ = M +M +M

= m +m = m m = p .

Theorem (BDHMN)

Type 1 QSym powers sum to Sym powers:

pλ =
∑
α̃=λ

Ψα.



Computing coefficients
As another example, z = 2,

Ψ = z ψ∗ = 2

(
1

2
M +

1

3
M

)

Ψ = z ψ∗ = 2

(
1

2
M +

1

6
M

)
So

Ψ + Ψ = M +M +M

= m +m

= m m = p .

Theorem (BDHMN)

Type 1 QSym powers sum to Sym powers:

pλ =
∑
α̃=λ

Ψα.



Computing coefficients
As another example, z = 2,

Ψ = z ψ∗ = 2

(
1

2
M +

1

3
M

)

Ψ = z ψ∗ = 2

(
1

2
M +

1

6
M

)
So

Ψ + Ψ = M +M +M

= m +m = m m = p .

Theorem (BDHMN)

Type 1 QSym powers sum to Sym powers:

pλ =
∑
α̃=λ

Ψα.



Computing coefficients
As another example, z = 2,

Ψ = z ψ∗ = 2

(
1

2
M +

1

3
M

)

Ψ = z ψ∗ = 2

(
1

2
M +

1

6
M

)
So

Ψ + Ψ = M +M +M

= m +m = m m = p .

Theorem (BDHMN)

Type 1 QSym powers sum to Sym powers:

pλ =
∑
α̃=λ

Ψα.



Theorem: pλ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ.

Proof outline: For compositions α and β, define Oα,β be the set of
ordered set partitions (B1, · · · , B`(β)) of {1, · · · , `(α)} satisfying

βj =
∑
i∈Bj

αi for 1 ≤ j ≤ `(β).

For example, if

α = and β = ,

then Oα,β contains ({1, 3}, {2}) and ({2}, {1, 3}).

It has been shown that

pλ =
∑

part’n µ

|Oλ,µ|mµ, so that pλ =
∑

comp β

|Oλ,β|Mβ.
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where Sλn = {σ ∈ Sn of cycle type λ}.



Theorem: pλ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ.

Proof outline: For compositions α and β, define Oα,β be the set of
ordered set partitions (B1, · · · , B`(β)) of {1, · · · , `(α)} satisfying

βj =
∑
i∈Bj

αi for 1 ≤ j ≤ `(β).

It has been shown that

pλ =
∑

part’n µ

|Oλ,µ|mµ, so that pλ =
∑

comp β

|Oλ,β|Mβ.

We combinatorially prove, for a fixed partition λ with size n, and a
fixed composition β, that

|Oλβ| · |Sλn | = |Oλβ|
n!

zλ
=
∑
α4β
α̃=λ

n!

π(α, β)
,

where Sλn = {σ ∈ Sn of cycle type λ}.



Two ways of thinking about permutations:
I In one-line notation:

σ = 571423689

is the permutation sending

1 7→ 5, 2 7→ 7, 3 7→ 1, and so on. . .

I In cycle notation:

σ = (152763)(4)(8)(9).

Several equivalent ways to write in cycle notation. We say σ is
written in standard form if

largest element of each cycle is last, and
cycles ordered increasingly according to largest element

Ex: (4)(631527)(8)(9)
I Let α 4 β of size n, and let σ ∈ Sn. We say σ is consistent with
α 4 β if. . .

Ex: let α = (1, 1, 2, 1, 3, 1) and β = (2, 2, 5)
Start in one-line notation: 571423689
Split according to β: 57||14||23689
Add parentheses according to α: (5)(7)||(14)||(2)(368)(9)

If the permutations in each partition are in standard form, then σ
is consistent.
Non-example: 571428369 → (5)(7)||(14)||(2)(836)(9)
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Cons(1,2,1)4(1,2,1) = {1234, 1243, 1342, 2134, 2143, 2341, 3124,

3142, 3241, 4123, 4132, 4231},

π((1, 2, 1), (1, 2, 1)) = 2

Cons(1,2,1)4(1,3) = {1234, 2134, 3124, 4123},

π((1, 2, 1), (1, 3)) = 2 · 3

Cons(1,2,1)4(3,1) = {1234, 1243, 1342, 2134, 2143, 2341, 3142, 3241},

π((1, 2, 1), (3, 1)) = 1 · 3

Cons(1,2,1)4(4) = {1234, 2134}

π((1, 2, 1), (4)) = 1 · 3 · 4
Lemma
Fix α 4 β of size n Then

n! = |Consα4β| · π(α, β).

Proof: Let

Aα4β =

`(β)⊗
i=1

`(α(i))⊗
j=1

Z/a(i)j Z

, where a
(i)
j =

j∑
r=1

α(i)
r ,

so that |Aα4β| = π(α, β). Then there is a bijection

Sn → Consα4β ×Aα4β . . .
Example: α = (2, 3, 2, 2), β = (5, 4), σ = 739628451 (∈ Consα4β).

Split σ according to β: 73962︸ ︷︷ ︸
σ(1)

|| 8451︸︷︷︸
σ(1)

For each i, “rotate” σ(i) into consistency with to α 4 β, and record
rotations. . .
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Then there is a bijection

Sn → Consα4β ×Aα4β :

Example: α = , β = , σ = 739628451 (∈ Consα4β).

Split σ according to β: 73962︸ ︷︷ ︸
σ(1)

|| 8451︸︷︷︸
σ(2)

For each i, “rotate” σ(i) into consistency with to α 4 β, and record
rotations. . .

i = 1: σ(1) = 73962, β1 parts of α:

block: 73962
rotate left by 3−−−−−−−−−→ 62739, s

(1)
2 = 3

block: 62|739
rotate left by 2−−−−−−−−−→ 26|739, s

(1)
1 = 2

i = 2: σ(2) = 8451, β2 parts of α:

block: 8451
rotate left by 1−−−−−−−−−→ 4518, s

(2)
2 = 1

block: 45|18
rotate left by 0−−−−−−−−−→ 45|18, s

(2)
1 = 0

So 739628451 7→ (267394518, ((2, 3), (0, 1))). Invertible!
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Lemma
Fix α 4 β of size n Then

n! = |Consα4β| · π(α, β).

Proof: Let

Aα4β =

`(β)⊗
i=1

`(α(i))⊗
j=1

Z/a(i)j Z

, where a
(i)
j =

j∑
r=1

α(i)
r ,

so that |Aα4β| = π(α, β). Then there is a bijection

Sn → Consα4β ×Aα4β.
�

Lemma
Fix α 4 β of size n Then

|Oα4β| · |Sλn | =
∑
α4β
α̃=λ

|Consα4β|.

(Similar proof.)

Therefore

|Oλβ| · |Sλn | =
∑
α4β
α̃=λ

n!

π(α, β)
,

so that

pλ =
∑

comp β

|Oλ,β|Mβ =
∑
α̃=λ

Ψα, where Ψα = zα̃
∑
α4β

1

π(α, β)
Mβ,

as desired.
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Type 2
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ.

In NSym, the type 2 power sum basis is defined by the generating
function relation

H(t) = exp

(∫
Φ(t)dt

)

This is equivalent to

hα =
∑
β4α

1

sp(β, α)
φβ,

where sp(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

φ∗α =
∑
β<α

1

sp(α, β)
Mβ.

Define
Φα = zα̃φ

∗
α, so that 〈φα,Φβ〉 = zαδαβ.



Type 2
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ.

In NSym, the type 2 power sum basis is defined by the generating
function relation

H(t) = exp

(∫
Φ(t)dt

)
This is equivalent to

hα =
∑
β4α

1

sp(β, α)
φβ,

where sp(β, α) is a combinatorial statistic on the refinement β 4 α.

So, the dual in QSym will satisfy

φ∗α =
∑
β<α

1

sp(α, β)
Mβ.

Define
Φα = zα̃φ

∗
α, so that 〈φα,Φβ〉 = zαδαβ.



Type 2
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ.

In NSym, the type 2 power sum basis is defined by the generating
function relation

H(t) = exp

(∫
Φ(t)dt

)
This is equivalent to

hα =
∑
β4α

1

sp(β, α)
φβ,

where sp(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

φ∗α =
∑
β<α

1

sp(α, β)
Mβ.

Define
Φα = zα̃φ

∗
α, so that 〈φα,Φβ〉 = zαδαβ.



Type 2
In Sym the power sum basis is (essentially) self-dual:

〈pλ, pµ〉 = zλδλµ.

In NSym, the type 2 power sum basis is defined by the generating
function relation

H(t) = exp

(∫
Φ(t)dt

)
This is equivalent to

hα =
∑
β4α

1

sp(β, α)
φβ,

where sp(β, α) is a combinatorial statistic on the refinement β 4 α.
So, the dual in QSym will satisfy

φ∗α =
∑
β<α

1

sp(α, β)
Mβ.

Define
Φα = zα̃φ

∗
α, so that 〈φα,Φβ〉 = zαδαβ.



Computing coefficients
Φα = zα̃

∑
β<α

1

sp(α, β)
Mβ.

For example, we saw that

refines

First, for each block, we compute sp(γ) = `(γ)!
∏
k γj :

sp

( )
= 3!(1 · 2 · 1)

Then, for α refining β, the coefficient of Mβ in ψ∗α is 1/sp(α, β),
where

sp

 ,

 = sp

( )
sp
( )

sp
( )

sp

( )

= 3!(1 · 2 · 1) · 1!(2) · 1!(5) · 3!(1 · 1 · 2)
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As another example, z = 2,

Φ = z φ∗ = 2

(
1

2
M +

1

4
M

)

Φ = z φ∗ = 2

(
1

2
M +

1

4
M

)

So

Φ + Φ = M +M +M

= m +m = m m = p p = p .

Theorem (BDHMN)

Type 2 QSym powers sum to Sym powers:

pλ =
∑
α̃=λ

Φα.
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