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Action on tensor space

The Brauer algebra By (0) is generated by

i 141 1 141
we] X ] and ] T itk

with some nice relations.

Let V be a f.d. vector space, with 8: V®V — C a
non-degenerate symmetric (resp. skew symmetric) bilinear form on
V, and * its dual. Then the map By (§) — End(V®*) that sends

sim 19 @ s@1 Tl e 19 g g e @ 1k
where s(u ® v) = v ® u, is a map
B(8) — Endy(V®F)

when g = s0(V) (resp. sp(V)), § = dimV (resp. —dimV’).
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Lie superalgebras and action on tensor space (still)
Let V =V, @ V1 be a Zs-graded vector space. For v € V;, write
v = 1 for its degree.
Let B:V ®V — C be a nondeg., homog., bilinear form satisfying

B(u,v) = (=1)™B(v,u) (supersymmetric).
Then
g={r € End(V) | B(zu,v) + (—=1)"™B(v, zu)}

is a Lie superalgebra (Z2-graded). For example, if 5 is even,
g = osp(V) the orthosymplectic Lie superalgebra (if V3 =0,
g=s0(V); and if Vo =0, g =sp(V)).

The map By(6) — End(V®F) that sends

s 1971 @ g @ 1Fi71 e 1911 @ 3*3 @ 1F—i~1,
where s(u ® v) = (—1)"v ® u, gives
Bi(5) — Endy(VEF)
when § = dimVjy — dimVj.



(Kujawa-Tharp 2014) The marked Brauer algebra By(9, €),
€ = +1, is the space spanned by marked Brauer diagrams

caps get one ¢ each,
d= cups get one B> or « each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

=l O 208
an =€
P = - O
for any adjacent markings @ and @ (meaning no markings of
height between these two).




(Kujawa-Tharp 2014) The marked Brauer algebra By(9, €),
€ = +1, is the space spanned by marked Brauer diagrams

caps get one ¢ each,
d= cups get one B> or « each,
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with equivalence up to isotopy except for the local relations

\»/ —¢ \</ . @ @
an =€

% e O~ ‘o

for any adjacent markings @ and @ (meaning no markings of
height between these two). Again, multiplication is given by
vertical concatenation, with relations =9,

e =— =" and p=—c— ="
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(Kujawa-Tharp 2014) The marked Brauer algebra By(9, €),
€ = +1, is the space spanned by marked Brauer diagrams

caps get one ¢ each,
d= cups get one B or « each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

\»/ —¢ \</ . @ @
an =€
&= O~ o
for any adjacent markings @ and @ (meaning no markings of
height between these two). Again, multiplication is given by
vertical concatenation, with relations O =9,

g = — = Note:
q (1) Bi(9,1) = B(9).
an (2) If € = —1, then multiplication
== is well-defined exactly when § = 0.
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The marked Brauer algebra By(, €) is generated by

i il i it
[ X ] g
Sz: .« e oo and 67,: ..../0\... ,
fori=1,...,k — 1, with relations exactly analogous to those for

the Brauer algebra, with some €'s.

Back to Lie superalgebras: V=1V, @ Vi, let 5: V@V — Cis a
non-degenerate, homogeneous, bilinear form on V, and let g be
the corresponding B-invariant Lie superalgebra. Then with

B:C—=V®V and S:VUQ;VU :Y?}Zyv@u,
the map
e 18 @ p B 1M s 1% g s 1
fori=1,...,k—1, gives
Bi(6,€) — Endy(VEF)

when § = dimVj — dimV; and € = (—1)7 [KT14].
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The peculiar Lie superalgebra p(V)

As we saw, when [ is even, g is osp(V'). But what about when
is odd?

Let V=Vy@d Vi, and let 3: V ® V — C be a non-degenerate,
homogeneous, odd bilinear form on V, and let g be the
corresponding [S-invariant Lie superalgebra.

First, this requires that dimVj = dimV} (so we will have

0 = dimVy — dimVj = 0). The corresponding Lie superalgebra is

g = p(V), one of the “strange”, not contragredient (determined by
their Cartan) Lie superalgebras.

Specifically, with n = dimVp = dimV7,

p(V) = {(é it> €gl(n|n) | B=B"C = —C’t}.
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The peculiar Lie superalgebra p(V)

p(V) = {(é —Zt) e gl(n|n) | B= B, C = —Ct}.

The representation theory of p(V) is still mysterious. In particular,
By (0, —1) was first defined by Moon in 2003 to help study p(V);
Kujawa and Tharp aimed to push further, getting that V&%
decomposes into the sum of indecomposables indexed by partitions
of k,k—2,k—4,--- > 0. Moon calculated the highest weight
vectors for p(V)in V@V and V@V @ V in detail.

Specifically
VeV =Sym’V oA,

where Sym?V and /\2V are both indecomposible, but not simple:
0— L(m@m) — Sym?V 5 C =0

0-C2 AV 5 L@ —o.
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The Brauer algebra By (0) = By(d, 1) has Jucys-Murphy elements

j—1

xj:c—i—Zsi?j—ei,j, ceC, j=1,...,k,
i=1

that pairwise commute (Nazarov 1996).
Action on tensor space: Let v € Ug ® Ug be the split Casimir

invariant, given by
v=2 bab,
beq?

where 2 is a basis of g, and {b* | b € Q} is the dual basis w.r.t.

B. Then vy actson V ® V' as as 51 — e1. So the action of x; on

V@ is the same as that of Zi;ll Yij-
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Action on M ® V®* and cyclotomic quotients
Define the degenerate affine version By () by

Bi(6) = Cly1, - .., yx] @ By(0)/(y;-relations),

where relations for the y;'s are those satisfied between the x;'s in
By(0). Let M = L(\) be the f.d. module indexed by partition A,

and let
j—1

y; acton M ® VO by Z%J’
i=0
where g ; is v applied to M and the jth factor of V/, and ~; ; for
i > 0 is as before. Then letting the finite part act on V®F as
before, and as the identity on M, we have a surjection

By(8) = Endg(M @ V).

Further, let (y1 —a1)(y1 — a2) - - (y1 — aq) be the minimal
polynomial for the action of y; on M ® V. Then for nice M and k,

By(6)/{(y1 — a1)(y1 — az) - (1 — aq)) = Endg(M @ V).
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Jucys-Murphy elements and the sneaky Casimir

Bk(5a 6) = C[yl, v 7?/19] ® Bk((sa e)/(yi—relations).

Questions: For By (0, —1),
(1) what tensor space do we want analogous to M ® V®?
(2) what's the action of the y;'s?

Start with (2): p(V) has trivial center! Namely, if Q is a basis of
p(V), then p(V') does not contain a dual basis with respect to .

In particular, considering p(V') C gl(V), then {b* | b€ Q} is a
basis for p(V))+ C gl(V). So
7= b@bxeUp(V)@Up(V)".
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Jucys-Murphy elements and the sneaky Casimir

Bk(5a 6) = C[yl, v 7?/19] ® Bk((sa e)/(yi—relations).

Questions: For By (0, —1),
(1) what tensor space do we want analogous to M ® V®?
(2) what's the action of the y;'s?

Start with (2): p(V) has trivial center! Namely, if Q is a basis of
p(V), then p(V') does not contain a dual basis with respect to .

In particular, considering p(V') C gl(V), then {b* | b€ Q} is a
basis for p(V))+ C gl(V). So
7= b@bxeUp(V)@Up(V)".
beq2

Still, we can consider its action as a element of Ugl(V) @ Ugl(V),
and indeed, we get

. Rk . .
vi,j acts on V=% as s; 5 — e ;.

Good start! But now for (1)...
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What should M be in M ® V&7

Try 1: For the partition A of size ¢, take the indecomposable M (\)
indexed by A (the one paired with B* by Moon, Kujawa-Tharp) in
V®. Write the action of B (0, —1) on M(\) ® V®* in terms of
the the action of By (0, —1) on V®**; make an inductive
argument.

Issues:

(a) In V. ® V, the minimal polynomial for v is (y — 1)(y + 1).
So img of B1(0,—1) in End(V ® V) (think M =V, k=1) is at
most B1(0,—1)/((y1 — 1)(y1 + 1)) (dimension 2).

But End, ) (V ® V) = By(0,—1) (dimension 3).

(b) Non-semisimple actions! In V @ V = Sym?V @& A*V,
21, B BT A2
e1 : Sym“V — C — A“(V)

has non-trivial image. So, for example, the action of B3(0,—1) on
V®3 does not restrict to a closed action on (Sym?V) ® V.
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Try 3: Kac modules of two types: K()) (small) and K ()) (big) .
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Try 3: Kac modules of two types: K()) (small) and K ()) (big) .
Let ¢ = en(g,) @ and let V/(X) be the simple go-module of
highest weight A. Define

K()\) = Ind®

goeg V(A —9) K(\) = Ind®

90699—1‘/()\)'

Then K(A\) @V = M; & --- @& M, where
0—=KA\+e)— M —-KMN-—¢)—0,

whenever \ + ¢; are dominant, or replace K (x) with 0 whenever
they're not (similar statement for f() Proof uses eigenvalues of ~
on K(\) ®V and K(\) ® V, which are combinatorial in terms of
boxes added/removed (good), but do not differentiate between
adding or removing (not as great).

To do: What are the minimal polynomials for v? What happens at
the next step K(A\) ® V ® V when M; doesn't split? What are the
dimensions?



What should M be in M ® V&7

Try 3: Kac modules of two types: K()) (small) and K ()) (big) .
Let ¢ = en(g,) @ and let V/(X) be the simple go-module of
highest weight A. Define

K()\) = Ind®

goeg V(A —9) K(\) = Ind®

90699—1‘/()\)'

Then K(A\) @V = M; & --- @& M, where
0—=KA\+e)— M —-KMN-—¢)—0,

whenever \ + ¢; are dominant, or replace K (x) with 0 whenever
they're not (similar statement for f() Proof uses eigenvalues of ~
on K(\) ®V and K(\) ® V, which are combinatorial in terms of
boxes added/removed (good), but do not differentiate between
adding or removing (not as great).

To do: What are the minimal polynomials for v? What happens at
the next step K(A\) ® V ® V when M; doesn't split? What are the
dimensions?



