


The classical Brauer algebra

The Brauer algebra Bk(δ) is the space spanned by Brauer diagrams

d =

1

1′

2

2′

3

3′

4

4′

5

5′

k

k′

perfect matchings of
{1, . . . , k, 1′, . . . , k′}

(equivalent under isotopy), with multiplication given by vertical
concatenation, subject to the relation = δ.

For example,

dd′ =

d

d′
= δ .
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Action on tensor space

The Brauer algebra Bk(δ) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . , i = 1, . . . , k − 1,

with some nice relations.

Let V be a f.d. vector space, with β : V ⊗ V → C a
non-degenerate symmetric (resp. skew symmetric) bilinear form on
V , and β∗ its dual. Then the map Bk(δ)→ End(V ⊗k) that sends

si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1, ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1,

where s(u⊗ v) = v ⊗ u, is a map

Bk(δ) −→ Endg(V
⊗k)

when g = so(V ) (resp. sp(V )), δ = dimV (resp. −dimV ).



Action on tensor space

The Brauer algebra Bk(δ) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . , i = 1, . . . , k − 1,

with some nice relations.
Let V be a f.d. vector space, with β : V ⊗ V → C a
non-degenerate symmetric (resp. skew symmetric) bilinear form on
V , and β∗ its dual.

Then the map Bk(δ)→ End(V ⊗k) that sends

si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1, ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1,

where s(u⊗ v) = v ⊗ u, is a map

Bk(δ) −→ Endg(V
⊗k)

when g = so(V ) (resp. sp(V )), δ = dimV (resp. −dimV ).



Action on tensor space

The Brauer algebra Bk(δ) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . , i = 1, . . . , k − 1,

with some nice relations.
Let V be a f.d. vector space, with β : V ⊗ V → C a
non-degenerate symmetric (resp. skew symmetric) bilinear form on
V , and β∗ its dual. Then the map Bk(δ)→ End(V ⊗k) that sends

si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1, ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1,

where s(u⊗ v) = v ⊗ u, is a map

Bk(δ) −→ Endg(V
⊗k)

when g = so(V ) (resp. sp(V )), δ = dimV (resp. −dimV ).



Lie superalgebras and action on tensor space (still)
Let V = V0 ⊕ V1 be a Z2-graded vector space. For v ∈ Vi, write
v̄ = i for its degree.

Let β : V ⊗ V → C be a nondeg., homog., bilinear form satisfying

β(u, v) = (−1)ūv̄β(v, u) (supersymmetric).

Then

g = {x ∈ End(V ) | β(xu, v) + (−1)x̄ūβ(v, xu)}

is a Lie superalgebra (Z2-graded). For example, if β is even,
g = osp(V ) the orthosymplectic Lie superalgebra (if V1 = 0,
g = so(V ); and if V0 = 0, g = sp(V )).
The map Bk(δ)→ End(V ⊗k) that sends

si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1, ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1,

where s(u⊗ v) = (−1)ūv̄v ⊗ u, gives

Bk(δ) −→ Endg(V
⊗k)

when δ = dimV0 − dimV1.
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(Kujawa-Tharp 2014) The marked Brauer algebra Bk(δ, ε),
ε = ±1, is the space spanned by marked Brauer diagrams

d =
caps get one each,
cups get one or each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

= ε

= ε
and

x

y
= ε

x

y

for any adjacent markings x and y (meaning no markings of
height between these two).

Again, multiplication is given by
vertical concatenation, with relations = δ,

= = and = ε = .
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(Kujawa-Tharp 2014) The marked Brauer algebra Bk(δ, ε),
ε = ±1, is the space spanned by marked Brauer diagrams

d =
caps get one each,
cups get one or each,
no two markings at same height.

with equivalence up to isotopy except for the local relations
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for any adjacent markings x and y (meaning no markings of
height between these two). Again, multiplication is given by
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and
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Note:
(1) Bk(δ, 1) = Bk(δ).
(2) If ε = −1, then multiplication
is well-defined exactly when δ = 0.



The marked Brauer algebra Bk(δ, ε) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . ,

for i = 1, . . . , k − 1, with relations exactly analogous to those for
the Brauer algebra, with some ε’s.

Back to Lie superalgebras: V = V0 ⊕ V1, let β : V ⊗ V → C is a
non-degenerate, homogeneous, bilinear form on V , and let g be
the corresponding β-invariant Lie superalgebra. Then with

β∗ : C→ V ⊗ V and
s : V ⊗ V → V ⊗ V

u⊗ v 7→ (−1)ūv̄v ⊗ u,

the map

ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1, si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1,

for i = 1, . . . , k − 1, gives

Bk(δ, ε) −→ Endg(V
⊗k)

when δ = dimV0 − dimV1 and ε = (−1)β̄ [KT14].
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The peculiar Lie superalgebra p(V )

As we saw, when β is even, g is osp(V ). But what about when β
is odd?

Let V = V0 ⊕ V1, and let β : V ⊗ V → C be a non-degenerate,
homogeneous, odd bilinear form on V , and let g be the
corresponding β-invariant Lie superalgebra.

First, this requires that dimV0 = dimV1 (so we will have
δ = dimV0 − dimV1 = 0). The corresponding Lie superalgebra is
g = p(V ), one of the “strange”, not contragredient (determined by
their Cartan) Lie superalgebras.
Specifically, with n = dimV0 = dimV1,

p(V ) ∼=
{(

A B
C −At

)
∈ gl(n|n) | B = Bt, C = −Ct

}
.
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The peculiar Lie superalgebra p(V )

p(V ) ∼=
{(

A B
C −At

)
∈ gl(n|n) | B = Bt, C = −Ct

}
.

The representation theory of p(V ) is still mysterious. In particular,
Bk(0,−1) was first defined by Moon in 2003 to help study p(V );
Kujawa and Tharp aimed to push further, getting that V ⊗k

decomposes into the sum of indecomposables indexed by partitions
of k, k − 2, k − 4, · · · > 0.

Moon calculated the highest weight
vectors for p(V ) in V ⊗ V and V ⊗ V ⊗ V in detail.

Specifically
V ⊗ V = Sym2V ⊕

∧2V,

where Sym2V and
∧2V are both indecomposible, but not simple:

0→ L( )→ Sym2V
β−→ C→ 0

0→ C β∗
−→

∧2V → L( )→ 0.
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Jucys-Murphy elements and the Casimir
For i < j, let

si,j =

i j

j

. . . . . .
. . .

and ei,j =

i j

j

. . . . . .. . . .

The Brauer algebra Bk(δ) = Bk(δ, 1) has Jucys-Murphy elements

xj = c+

j−1∑
i=1

si,j − ei,j , c ∈ C, j = 1, . . . , k,

that pairwise commute (Nazarov 1996).
Action on tensor space: Let γ ∈ Ug⊗ Ug be the split Casimir
invariant, given by

γ =
∑
b∈Ω

b⊗ b∗,

where Ω is a basis of g, and {b ∗ | b ∈ Ω} is the dual basis w.r.t.
β. Then γ acts on V ⊗ V as as s1 − e1. So the action of xj on

V ⊗k is the same as that of
∑j−1

i=1 γi,j .
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Action on M ⊗ V ⊗k and cyclotomic quotients
Define the degenerate affine version Bk(δ) by

Bk(δ) = C[y1, . . . , yk]⊗Bk(δ)/〈yi-relations〉,

where relations for the yi’s are those satisfied between the xi’s in
Bk(δ).

Let M = L(λ) be the f.d. module indexed by partition λ,
and let

yj act on M ⊗ V ⊗k by

j−1∑
i=0

γi,j ,

where γ0,j is γ applied to M and the jth factor of V , and γi,j for
i > 0 is as before. Then letting the finite part act on V ⊗k as
before, and as the identity on M , we have a surjection

Bk(δ)� Endg(M ⊗ V ⊗k).

Further, let (y1 − a1)(y1 − a2) · · · (y1 − ad) be the minimal
polynomial for the action of y1 on M ⊗ V . Then for nice M and k,

Bk(δ)/〈(y1 − a1)(y1 − a2) · · · (y1 − ad)〉
∼−→ Endg(M ⊗ V ⊗k).
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Bk(δ). Let M = L(λ) be the f.d. module indexed by partition λ,
and let

yj act on M ⊗ V ⊗k by

j−1∑
i=0

γi,j ,

where γ0,j is γ applied to M and the jth factor of V , and γi,j for
i > 0 is as before.

Then letting the finite part act on V ⊗k as
before, and as the identity on M , we have a surjection

Bk(δ)� Endg(M ⊗ V ⊗k).

Further, let (y1 − a1)(y1 − a2) · · · (y1 − ad) be the minimal
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Jucys-Murphy elements for Bk(δ, ε) and the sneaky Casimir

For the marked Brauer algebra,

xj = c+

j−1∑
i=1

si,j − ei,j , c ∈ C, j = 1, . . . , k,

are still the Jucys-Murphy elements. So we define the degenerate
affine version similarly, with ε’s where needed,

Bk(δ, ε) = C[y1, . . . , yk]⊗Bk(δ, ε)/〈yi-relations〉.

Questions: For Bk(0,−1),
(1) what tensor space do we want analogous to M ⊗ V ⊗k?
(2) what’s the action of the yi’s?

Start with (2): p(V ) has trivial center! Namely, if Ω is a basis of
p(V ), then p(V ) does not contain a dual basis with respect to β.
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p(V ), then p(V ) does not contain a dual basis with respect to β.

In particular, considering p(V ) ⊆ gl(V ), then {b∗ | b ∈ Ω} is a
basis for p(V )⊥ ⊆ gl(V ).

So

γ =
∑
b∈Ω

b⊗ b∗ ∈ Up(V )⊗ Up(V )⊥.

Still, we can consider its action as a element of Ugl(V )⊗ Ugl(V ),
and indeed, we get

γi,j acts on V ⊗k as si,j − ei,j .

Good start! But now for (1). . .
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What should M be in M ⊗ V ⊗k?
Try 1: For the partition λ of size `, take the indecomposable M(λ)
indexed by λ (the one paired with Bλ by Moon, Kujawa-Tharp) in
V ⊗`.

Write the action of Bk(0,−1) on M(λ)⊗ V ⊗k in terms of
the the action of Bk(0,−1) on V ⊗`+k; make an inductive
argument.

Issues:
(a) In V ⊗ V , the minimal polynomial for γ is (γ − 1)(γ + 1).
So img of B1(0,−1) in End(V ⊗ V ) (think M = V , k = 1) is at
most B1(0,−1)/〈(y1 − 1)(y1 + 1)〉 (dimension 2).
But Endp(V )(V ⊗ V ) ∼= B2(0,−1) (dimension 3).

(b) Non-semisimple actions! In V ⊗ V = Sym2V ⊕
∧2V ,

e1 : Sym2V
β−→ C β∗

−→
∧2(V )

has non-trivial image. So, for example, the action of B3(0,−1) on
V ⊗3 does not restrict to a closed action on (Sym2V )⊗ V .
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What should M be in M ⊗ V ⊗k?
Try 1: M(λ)⊗ V ⊗k ⊆ V ⊗|λ|+k (nope)

Try 2: Induce gl(V ) = g0 modules L(λ) up to p(V ). Again, the
dimensions to not match. (maybe something else)

Try 3: Kac modules of two types: K(λ) (small) and K̃(λ) (big) .
Let φ =

∑
α∈∆(g−1) α and let V (λ) be the simple g0-module of

highest weight λ. Define

K(λ) = Indg
g0⊕g1V (λ− φ) K̃(λ) = Indg

g0⊕g−1
V (λ).

Then K(λ)⊗ V ∼= M1 ⊕ · · · ⊕Mn where

0→ K(λ+ εi)→Mi → K(λ− εi)→ 0,

whenever λ± εi are dominant, or replace K(∗) with 0 whenever
they’re not (similar statement for K̃). Proof uses eigenvalues of γ
on K(λ)⊗ V and K̃(λ)⊗ V , which are combinatorial in terms of
boxes added/removed (good), but do not differentiate between
adding or removing (not as great).
To do: What are the minimal polynomials for γ? What happens at
the next step K(λ)⊗ V ⊗ V when Mi doesn’t split? What are the
dimensions?
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