Representation theory and combinatorics of diagram algebras.

Zajj Daugherty

May 15, 2016

Combinatorial representation theory

Combinatorial representation theory

Representation theory: Given an algebra $A \ldots$

- What are the A-modules/representations?
- What are the simple/indecomposable A-modules/reps?
- What is the action of the center of A ?
- What are their dimensions?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?

Combinatorial representation theory

Representation theory: Given an algebra $A \ldots$

- What are the A-modules/representations?
- What are the simple/indecomposable A-modules/reps?
- What is the action of the center of A ?
- What are their dimensions?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?
In combinatorial representation theory, we use combinatorial
objects to index (construct a bijection to) modules and representations, and to encode information about them.

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

Motivating example: Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k}
$$

Motivating example: Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

Motivating example: Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

These actions commute!

Motivating example: Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. Even better,
\(\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{\left.\begin{array}{c}(all linear maps that

commute with GL\end{array}\right)}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{\)| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L} L_{n}\right)}_{$| (img of GL |
| :---: |
| action) |$}$.

Motivating example: Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,

Why this is exciting:

The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where G^{λ} are distinct irreducible GL_{n}-modules
where S^{λ} are distinct irreducible S_{k}-modules

Motivating example: Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,

$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{$| (all linear maps that |
| :---: |
| commute with GL $\mathrm{GL}_{n} \text {) }$ |$}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{$| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L}_{n}\right)}_{$| (img of GL |
| :---: |
| action) |$}$.

Why this is exciting:

The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where G^{λ} are distinct irreducible GL_{n}-modules where S^{λ} are distinct irreducible S_{k}-modules
For example,

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square)
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square)
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square)
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square)
$$

Representation theory of $V^{\otimes k}$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:
$\delta_{b, c} \sum_{i=1}^{n} v_{i} \otimes v_{i} \otimes v_{a} \otimes v_{d} \otimes v_{d}$

$$
\text { with } \bigcirc=n
$$

More centralizer algebras

Rep theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square)
$$

More centralizer algebras

Rep theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square)
$$

More centralizer algebras

Rep theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square)
$$

More centralizer algebras

Rep theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square)
$$

More centralizer algebras

Rep theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

with $\bigcirc=n$

Temperley-Lieb (1971)
GL_{2} and SL_{2} (and $\mathfrak{g l}_{2}$ and $\mathfrak{s l}_{2}$) acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

with $\longrightarrow=2$

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

$$
\delta_{b, c}^{\delta_{i=1}^{n}} v_{i} \otimes v_{i} \otimes v_{a} \otimes v_{d} \otimes v_{d}
$$

Temperley-Lieb (1971)
GL_{2} and SL_{2} (and $\mathfrak{g l}_{2}$ and $\mathfrak{s l}_{2}$) acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

Either way:
Diagrams encoding maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.

The braid group shares a commuting action with \mathcal{U} on $V^{\otimes k}$:

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$ for any \mathcal{U}-module V.

The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k}$:

Around the pole:
$M \otimes V$

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.

The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Around the pole:
$M \otimes V$

Universal	Type B, C, D	Type A	Small Type A
	(orthog. \& sympl.)	(gen. \& sp. linear)	$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Universal

Type B, C, D
(orthog. \& sympl.)

Two-pole braids $\frac{11}{t r} \cdots \cdots$

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Two-boundary TL

Type B, C, D
(orthog. \& sympl.)

Type B, C, D (orthog. \& sympl.)

Nazarov (95): degenerate affine BMW algebras

$\ell==z_{\ell} \in \mathbb{C}$
act on $M \otimes V^{\otimes k}$, commuting with the action of the Lie algebras of types B, C, D.

Type B, C, D (orthog. \& sympl.)

Nazarov (95): degenerate affine BMW algebras

act on $M \otimes V^{\otimes k}$, commuting with the action of the Lie algebras of types B, C, D.

Häring-Oldenburg (98) and Orellana-Ram (04): affine BMW algebras act on $M \otimes V^{\otimes k}$, commuting with the action of the quantum groups of types B, C, D.

Type B, C, D
(orthog. \& sympl.)

Nazarov (95): degenerate affine BMW algebras

act on $M \otimes V^{\otimes k}$, commuting with the action of the Lie algebras of types B, C, D.

Häring-Oldenburg (98) and Orellana-Ram (04): affine BMW algebras act on $M \otimes V^{\otimes k}$, commuting with the action of the quantum groups of types B, C, D.

Centralizer perspective: (D.-Ram-Virk) Use centralizer relationships to study these the affine and degenerate affine algebras simultaneously (representation theory of the quantum groups and the Lie algebras are basically the same). Some results:
(a) The center of each algebra.
(b) Difficult "admissibility conditions" handled.
(c) Powerful "intertwiner" operators.

Universal

Type B, C, D
(orthog. \& sympl.)

Two-pole braids $\frac{11}{t r} \cdots \cdots$

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Two-boundary TL

Universal
Type B, C, D
(orthog. \& sympl.)

Type A
Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Hecke algebra
$\mathscr{S}=a \grave{\circ}+!$

Two-pole BMW

$\frac{60}{0}$
$\frac{0}{2}$
$\frac{0}{6}$
$-\frac{1}{1}$

Two-boundary TL

$$
V=\square
$$

Universal
Type B, C, D
(orthog. \& sympl.)

Type A
(gen. \& sp. linear)

Two boundary algebras:
Mitra, Nienhuis, De Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra $T L_{k}$:


```
Affine Hecke
    of type C
    (+twists)
```


Two boundary algebras:
Mitra, Nienhuis, De Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra $T L_{k}$:

De Gier, Nichols (2008): Explored representation theory of $T L_{k}$ using diagrams and established a connection to the affine Hecke algebras of type A and C.

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type $\mathrm{C}, \mathcal{H}_{k}$, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\begin{aligned}
& 2 \text { if } \quad{ }^{i} \quad{ }_{0}^{j}
\end{aligned}
$$

and $T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1$.

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type $\mathrm{C}, \mathcal{H}_{k}$, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1 .
$$

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type $\mathrm{C}, \mathcal{H}_{k}$, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1 .
$$

The two-boundary (two-pole) braid group B_{k} is generated by

$$
T_{k}=\overbrace{\boldsymbol{\sigma}}^{\boldsymbol{\Pi}} T_{0}=\underbrace{\Pi \quad \rho}_{0} \quad \text { and } \quad T_{i}=\overbrace{i}^{i+1} \quad \text { for } 1 \leq i \leq k-1 .
$$

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type $\mathrm{C}, \mathcal{H}_{k}$, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1 .
$$

The two-boundary (two-pole) braid group B_{k} is generated by

Relations:

$$
T_{i} T_{i+1} T_{i}=\underbrace{3}_{6}=
$$

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_{k}, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1
$$

The two-boundary (two-pole) braid group B_{k} is generated by

$$
T_{k}=\overbrace{\sigma}^{\Pi} T_{0}=\underbrace{\| \rho}_{0} \quad \text { and } \quad T_{i}=\overbrace{i}^{i+1} \quad \text { for } 1 \leq i \leq k-1 .
$$

Relations:

Affine type C Hecke algebra and two-boundary braids

Punchline:

- For any for any complex reductive Lie algebras \mathfrak{g}, the quantum group $\mathcal{U}_{q} \mathfrak{g}$ and the two-boundary braid group B_{k} have commuting actions on $M \otimes(V)^{\otimes k} \otimes N$.
- When $\mathfrak{g}=\mathfrak{g l}_{n}$, for good choices of M, N, and V, the action of the two-boundary braid group factors to an action of the affine Hecke algebra of type C.

Affine type C Hecke algebra and two-boundary braids

Punchline:

- For any for any complex reductive Lie algebras \mathfrak{g}, the quantum group $\mathcal{U}_{q} \mathfrak{g}$ and the two-boundary braid group B_{k} have commuting actions on $M \otimes(V)^{\otimes k} \otimes N$.
- When $\mathfrak{g}=\mathfrak{g l}_{n}$, for good choices of M, N, and V, the action of the two-boundary braid group factors to an action of the affine Hecke algebra of type C.
Some consequences:
(a) A combinatorial classification and construction of irreducible representations of H_{k} (type C with distinct parameters).
(b) A diagrammatic intuition for H_{k}.
(c) A classification of the representations of $T L_{k}$ via the action of its center.

Universal

Type B, C, D
(orthog. \& sympl.)

sdnoィ̊ mnłuenð

Two-pole braids $\frac{9}{4} \%$

Type A
(gen. \& sp. linear)

Heck algebra
$\grave{S}=a \grave{\zeta}+!$

Affine Heck of type A (+twists)

Affine Heck of type C (+twists)

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Two-boundary TL

