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Permutations and the symmetric group

Permutation diagrams:
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Permutations “multiply” by stacking and resolving.

The symmetric group Sn is the group of permutations of 1, . . . , n
with multiplication given by stacking and resolving diagrams.
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Some examples:
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I can build any permutation by multiplying some sequence of
adjacent transpositions. For example,
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Let’s call si the permutation that swaps i and i+ 1.
For example, one way to write the above permutation is (read
multiplication from top to bottom)

s2s4s3s1.
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A representation of a group is a map from the group to a set of
matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.
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v3

=

0 1 0
0 0 1
1 0 0



Pick a basis for R3:

v1 =

1
0
0

 v2 =

0
1
0

 v3 =

0
0
1


Map each permutation to the matrix which permutes the basis
vectors in the same way.

Aside: we actually have a representation of the group ring

RSn =

{∑
σ∈Sn

rσσ | rσ ∈ R

}
, with multiplication like polynomials.
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Note that I only had to tell you the matrices for s1 and s2! This is
because the representation has the same multiplication rules as the
permutations, and every permutation can be built out of these
transpositions.
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subspace R{v1 + v2 + v3}, since

M(v1 + v2 + v3) = v1 + v2 + v3

for all permutation matrices M .

Change to basis

w1 = v1 − v2, w2 = v2 − v3, w3 = v1 + v2 + v3
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Start with the permutation representation P with basis {v1, v2, v3}.

Change to basis

w1 = v1 − v2, w2 = v2 − v3, w3 = v1 + v2 + v3

We say P is isomorphic to the sum of two smaller representations:
P ∼= A⊕B

We say A and B are simple because neither has any invariant
subspaces.
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How about some combinatorics?

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which
sum to n.

Example: the partitions of 3 are (3), (2, 1), and (1, 1, 1).

We draw partitions as n boxes piled up and to the left, where the
parts are the number of boxes in a row:

λ = (5, 4, 4, 2) =
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What other combinatorial data?

The content of a box in a partition is its diagonal number:

λ = (5, 4, 4, 2) =

-1

-2

-3

0 1 2 3 4

0 1 2 3 4

−1 0 1 2

−2−1 0 1

−3−2

Again:
∗ each partition is secretly a representation
∗ each path is secretly a basis vector
Now: entries in matrices for s1, s2, . . . , are given by expressions in
the contents of boxes added.
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from i− 1 to i.

Then the coefficient in si · v
. . . on v is 1/(ci+1 − ci)
. . . on u is
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. . . on any other path is 0.
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Counting tableaux and dimensions
∅

1

11

121

13231

1 = 1

1 + 1 = 2

1 + 2 + 1 = 4

1 + 3 + 2 + 3 + 1 = 10

12 = 1

12 + 12 = 2

12 + 22 + 12 = 6

12 + 32 + 22 + 32 + 12 = 24

12 = 1!

12 + 12 = 2!

12 + 22 + 12 = 3!

12 + 32 + 22 + 32 + 12 = 4!

12 = |S1|

12 + 12 = |S2|

12 + 22 + 12 = |S3|

12 + 32 + 22 + 32 + 12 = |S4|

The matrix ring for an m-dimensional vec. sp. is m2-dimensional!
Artin-Wedderburn theorem: “Nice” rings are isomorphic to the
direct sum of matrix rings.

For example,

RS3 ∼=M1(R)⊕M2(R)⊕M1(R) ∼=M( )⊕M
( )

⊕M
( )
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