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Permutations and the symmetric group

Permutation diagrams:

1

2 3 4 5
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Permutations “multiply” by stacking and resolving.
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The symmetric group S, is the group of permutations of 1,...,n
with multiplication given by stacking and resolving diagrams.
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| can build any permutation by multiplying some sequence of
adjacent transpositions. For example,
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adjacent transpositions. For example,
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Let's call s; the permutation that swaps ¢ and 7 + 1.
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| can build any permutation by multiplying some sequence of
adjacent transpositions. For example,

1 2 3 4 5
2 2
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Let's call s; the permutation that swaps ¢ and 7 + 1.
For example, one way to write the above permutation is (read
multiplication from top to bottom)
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| can build any permutation by multiplying some sequence of
adjacent transpositions. For example,

1 2 3 4 5
2 2
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Let's call s; the permutation that swaps ¢ and 7 + 1.
For example, one way to write the above permutation is (read
multiplication from top to bottom)
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| can build any permutation by multiplying some sequence of
adjacent transpositions. For example,

1 2 3 4 5
2 2
1 2 3 4 5
1 2 3 4 5
[ ]
1 2 3 4 5

Let's call s; the permutation that swaps ¢ and 7 + 1.
For example, one way to write the above permutation is (read
multiplication from top to bottom)

§28483571.



A representation of a group is a map from the group to a set of
matrices that follows same multiplication rules.
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A representation of a group is a map from the group to a set of
matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.

(% V2 VU3

U1 U2 U3

Pick a basis for R3:
1 0 0
v1 = 1(0 vy = (1 v3 =10
0 0
Map each permutation to the matrix which permutes the basis
vectors in the same way.
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A representation of a group is a map from the group to a set of
matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.
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1 0 0
v1 = 1(0 vy = (1 v3 =10
0 0 1

Map each permutation to the matrix which permutes the basis
vectors in the same way.



A representation of a group is a map from the group to a set of
matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.

(% V2 VU3
01 0
=10 0 1
1 00
U1 (%) V3
Pick a basis for R3:
1 0 0
v1 = 1(0 vy = (1 v3 =10
0 0 1

Map each permutation to the matrix which permutes the basis
vectors in the same way.

Aside: we actually have a representation of the group ring

RS, = { Z re0 | 7o € R}, with multiplication like polynomials.
€Sy
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For example,
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Note that | only had to tell you the matrices for s; and s5! This is
because the representation has the same multiplication rules as the
permutations, and every permutation can be built out of these
transpositions.
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Notice that the permutation representation has an invariant
subspace R{v; + v9 + v3}, since

M (vy + v 4+ v3) = vy + v2 + v3

for all permutation matrices M.



123 (100 (001
e i [is
1 2 3 ¥001_/ 193 \010_/
123 (o10) 123 (o10)
i [hhs S
12 3 \001J 12 3 \100J
1 2 3 ’100“ 1 2 3 ’001“
T =001 >KH010
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Notice that the permutation representation has an invariant
subspace R{v; + v9 + v3}, since

M (vy + v 4+ v3) = vy + v2 + v3

for all permutation matrices M.
Change to basis

w1 = V1 — Vg, W = Vg — Vs, w3 = v + v2 + U3
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Notice that the permutation representation has an invariant
subspace R{v; + v9 + v3}, since

M (vy + v 4+ v3) = vy + v2 + v3

for all permutation matrices M.
Change to basis

w1 = V1 — Vg, W = Vg — Vs, w3 = v + v2 + U3
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Notice that the permutation representation has an invariant
subspace R{v; + v9 + v3}, since

M (vy + v 4+ v3) = vy + v2 + v3

for all permutation matrices M.
Change to basis

w1 = V1 — Vg, W = Vg — Vs, w3 = v + v2 + U3

= OO



123 (100) (100 (001 0-1
[IIH010~010 WH100~1-1
v 44 (oo1) [001] {4y (oto) (o0
123 f(o10) [110) 133 f(o10)
XIH100~010 %HOOl
/%4 |oo1) (001 73y (oo
1 2 3 ’100“ 1 2 3 ’001“
T |00 1 >KH010
v 4y oo 72y 1o

Notice that the permutation representation has an invariant
subspace R{v; + v9 + v3}, since

M (vy + v 4+ v3) = vy + v2 + v3

for all permutation matrices M.
Change to basis

w1 = V1 — Vg, W = Vg — Vs, w3 = v + v2 + U3

= OO
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Notice that the permutation representation has an invariant

subspace R{v; + v9 + v3}, since

M(v1 +v2 +v3) = v +v2 +v3

for all permutation matrices M.
Change to basis

w1 = V1 — V2, W2 = V2 — U3,

wg = v1 + v2 + U3
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Notice that the permutation representation has an invariant
subspace R{v; + v9 + v3}, since

M (vy + v 4+ v3) = vy + v2 + v3

for all permutation matrices M.
Change to basis

w1 = V1 — Vg, W = Vg — Vs, w3 = v + v2 + U3
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Start with the permutation representation P with basis {v1, va, v3}.
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Start with the permutation representation P with basis {v1, va, v3}.

Change to basis

V1 + Vg + U3

w3 =

wz = V2 — U3,

w) = V1 — V2,
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Start with the permutation representation P with basis {v1, va, v3}.

Change to basis

V1 + Vg + U3

w3 =

wz = V2 — U3,

w) = V1 — V2,
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

w1 = v — Vg, Wy = V2 — V3, w3 = v1 + vy + U3
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

w1 = v — Vg, Wy = V2 — V3, w3 = v1 + vy + U3

We say P is isomorphic to the sum of two smaller representations:
P2A®
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

w1 = v — Vg, Wy = V2 — V3, w3 = v1 + vy + U3

We say P is isomorphic to the sum of two smaller representations:
P2A®

We say A and B are simple because neither has any invariant

subspaces.
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

wy = V3(v1 — v2), wy = v1 + v2 — 2vs, w3 = vy +v2 + U3

We say P is isomorphic to the sum of two smaller representations:
P2A®

We say A and B are simple because neither has any invariant

subspaces.



How about some combinatorics?

Let n be a non-negative integer.
A partition X of n is a non-ordered list of positive integers which

sum to n.

Example: the partitions of 3 are (3), (2,1), and (1,1,1).



How about some combinatorics?

Let n be a non-negative integer.
A partition X of n is a non-ordered list of positive integers which

sum to n.
Example: the partitions of 3 are (3), (2,1), and (1,1,1).

We draw partitions as n boxes piled up and to the left, where the
parts are the number of boxes in a row:

A= (5,4,4,2) =
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A-Tableau: a path from ) down to a partition .
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A-Tableau: a path from ) down to a partition .
Theorem 1: (Up to isomorphism) the simple .S,,-representations are
indexed by partitions of n.
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A-Tableau: a path from ) down to a partition .

Theorem 1: (Up to isomorphism) the simple .S,,-representations are
indexed by partitions of n.

Theorem 2: If A is a partition of n, then the corresponding
representation has basis indexed by A-tableaux, and matrices
determined by other combinatorial data about those paths.
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A-Tableau: a path from ) down to a partition .

Theorem 1: (Up to isomorphism) the simple .S,,-representations are
indexed by partitions of n.

Theorem 2: If A is a partition of n, then the corresponding
representation has basis indexed by A-tableaux, and matrices
determined by other combinatorial data about those paths.
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What other combinatorial data?

The content of a box in a partition is its diagonal number:
o1 2 3 4

afo]i]2]3]4]

2f-1of1]2
A= (5’4’4’ 2) T 3]-2-1o0]1
—3]-2




What other combinatorial data?
The content of a box in a partition is its diagonal number:
o1 2 3 4
afo]i]2]3]4]
201012
A= (5’4’4’ 2) Y N I
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What other combinatorial data?

The content of a box in a partition is its diagonal number:
o1 2 3 4

o[1]2]3]4]
ol1]2
o —1fo 1

3[—2]

AR R
|

A= (5,4,4,2) =

Again:

x each partition is secretly a representation

x each path is secretly a basis vector

Now: entries in matrices for s1, so, ..., are given by expressions in
the contents of boxes added.
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Let ¢; be the content of the box added
from ¢ — 1 to <.
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The rule for s;:

Suppose v goes with the
path

o
S
N
level i: o °
(N
/
..
and u is almost the same,
except at the ith step.

Let ¢; be the content of the box added
from ¢ — 1 to <.

Then the coefficient in s; - v
...on v is 1/(Ci+1 — CZ')
cconwis /1= (1/(cip1 — ¢;))?

...on any other path is 0.




The rule for s;:

Suppose v goes with the
path
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and u is almost the same,
except at the ith step.

Back to S3:

Let ¢; be the content of the box added
from ¢ — 1 to <.

Then the coefficient in s; - v
...onvis 1/(Ci+1 — CZ')
cconwis /1= (1/(cip1 — ¢))?

...on any other path is 0.
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The rule for s;:

Suppose v goes with the
path

o
S
N
level i: o °
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..
and u is almost the same,
except at the ith step.

Back to S3:

v: @OD»IHLH:‘ . Y “
u

Let ¢; be the content of the box added
from ¢ — 1 to <.

Then the coefficient in s; - v
...on v is 1/(Ci+1 — CZ')

...onuis \/1 —(1/(cit1 — ¢i))?

...on any other path is 0.
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The rule for s;:

Suppose v goes with the Let ¢; be the content of the box added

path from i — 1 to 1.
./ Then the coefficient in s; - v
level i- .C/ \’:1 ...on v is 1/(Ci+1 — CZ')
e\ cconwis /1= (1/(cip1 — ¢))?
/ ...on any other path is 0.
and w is almost the same, 12 3
except at the ith step. 51 = >< I
1 2 3
Back to S3:
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The rule for s;:

Suppose v goes with the
path
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and u is almost the same,
except at the ith step.

Back to S3:
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Let ¢; be the content of the box added
from ¢ — 1 to <.

Then the coefficient in s; - v
...on v is 1/(Ci+1 — CZ')
cconwis /1= (1/(cip1 — ¢))?

...on any other path is 0.
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The rule for s;:

Suppose v goes with the
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Back to S3:
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Let ¢; be the content of the box added
from ¢ — 1 to <.

Then the coefficient in s; - v
...on v is 1/(Ci+1 — CZ')
cconwis /1= (1/(cip1 — ¢))?

...on any other path is 0.
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The rule for s;:

Suppose v goes with the
path

o
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and u is almost the same,
except at the ith step.

Back to S3:

Let ¢; be the content of the box added
from ¢ — 1 to <.

Then the coefficient in s; - v
...on v is 1/(Ci+1 — CZ')
cconwis /1= (1/(cip1 — ¢))?

...on any other path is 0.
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The matrix ring for an m-dimensional vec. sp. is m?-dimensionall
Artin-Wedderburn theorem: “Nice” rings are isomorphic to the
direct sum of matrix rings.



Counting tableaux and dimensions
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The matrix ring for an m-dimensional vec. sp. is m?-dimensionall
Artin-Wedderburn theorem: “Nice” rings are isomorphic to the
direct sum of matrix rings.

For example,
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