Permutations, partitions, lattices, and some linear algebra:

a taste of combinatorial representation theory.

Zajj Daugherty
City College of New York

April 8, 2016

Permutations and the symmetric group

Permutation diagrams:

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.
The symmetric group S_{n} is the group of permutations of $1, \ldots, n$ with multiplication given by stacking and resolving diagrams.

Some examples:

$$
S_{1}: \quad \prod_{i}^{1}
$$

S_{3} :

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

Let's call s_{i} the permutation that swaps i and $i+1$.

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

Let's call s_{i} the permutation that swaps i and $i+1$.
For example, one way to write the above permutation is (read multiplication from top to bottom)

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

Let's call s_{i} the permutation that swaps i and $i+1$.
For example, one way to write the above permutation is (read multiplication from top to bottom)

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

Let's call s_{i} the permutation that swaps i and $i+1$.
For example, one way to write the above permutation is (read multiplication from top to bottom)

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

Let's call s_{i} the permutation that swaps i and $i+1$.
For example, one way to write the above permutation is (read multiplication from top to bottom)

I can build any permutation by multiplying some sequence of adjacent transpositions. For example,

Let's call s_{i} the permutation that swaps i and $i+1$.
For example, one way to write the above permutation is (read multiplication from top to bottom)

A representation of a group is a map from the group to a set of matrices that follows same multiplication rules.

A representation of a group is a map from the group to a set of matrices that follows same multiplication rules.
Example: Permutation representation of the symmetric group.

A representation of a group is a map from the group to a set of matrices that follows same multiplication rules.
Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

A representation of a group is a map from the group to a set of matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Map each permutation to the matrix which permutes the basis vectors in the same way.

A representation of a group is a map from the group to a set of matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Map each permutation to the matrix which permutes the basis vectors in the same way.

A representation of a group is a map from the group to a set of matrices that follows same multiplication rules.
Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Map each permutation to the matrix which permutes the basis vectors in the same way.
Aside: we actually have a representation of the group ring
$\mathbb{R} S_{n}=\left\{\sum_{\sigma \in S_{n}} r_{\sigma} \sigma \mid r_{\sigma} \in \mathbb{R}\right\}$, with multiplication like polynomials.

$$
\begin{aligned}
& \left.\begin{array}{lll}
1 & 2 & 3 \\
i & i & i \\
1 & 0 & 0 \\
1 & 2 &
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left.\begin{array}{llll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left.\begin{array}{llll}
1 & 2 & 3 \\
i & & 0 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \text { (2) } \\
& \text { (2) } \\
& \text { (}
\end{aligned}
$$

For example,

For example,

Note that I only had to tell you the matrices for s_{1} and s_{2} ! This is because the representation has the same multiplication rules as the permutations, and every permutation can be built out of these transpositions.

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.

$\overbrace{1}^{1}{\underset{i}{2}}_{2}^{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& {\underset{i}{1}}_{\substack{1 \\
i}}^{2} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \prod_{1}^{1}{\underset{2}{2}}_{\substack{3}}^{3} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \underbrace{1}_{i} \stackrel{2}{2} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

${\underset{i}{2}}_{\underbrace{1}_{3}}^{2} \leftrightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

${\underset{i}{2}}_{\sum_{3}^{2}}^{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$\stackrel{1}{1}+\stackrel{3}{4} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
 $\underbrace{1}_{i}{\underset{2}{2}}_{3}^{3} \mapsto\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

 $\prod_{i}^{1}{\underset{2}{2}}_{2}^{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.

$$
\begin{aligned}
& \underbrace{1}_{i} \underbrace{2}_{3} \mapsto\left[\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{i}{1}}_{\substack{2}}^{3} \mapsto\left[\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\right) \sim\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \underset{i}{1} \stackrel{2}{2} \rightarrow\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \sim\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& \underbrace{1}_{i} \underbrace{2}_{i} \stackrel{y}{3} \mapsto\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& {\underset{i}{2}}_{\substack{1 \\
\vdots}}^{2} \cdot \stackrel{3}{3} \mapsto\left[\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \sim\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \varlimsup_{1}^{1} \sum_{2}^{2} \underbrace{3}_{3} \mapsto\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\right. \\
& \underbrace{2}_{i=1} \mapsto\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \sim\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

We say P is isomorphic to the sum of two smaller representations:

$$
P \cong A \oplus B
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

We say P is isomorphic to the sum of two smaller representations:

$$
P \cong A \oplus B
$$

We say A and B are simple because neither has any invariant subspaces.

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis $w_{1}=\sqrt{3}\left(v_{1}-v_{2}\right), \quad w_{2}=v_{1}+v_{2}-2 v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}$

We say P is isomorphic to the sum of two smaller representations:

$$
P \cong A \oplus B
$$

We say A and B are simple because neither has any invariant subspaces.

How about some combinatorics?

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which sum to n.

Example: the partitions of 3 are (3), (2, 1), and ($1,1,1$).

How about some combinatorics?

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which sum to n.

Example: the partitions of 3 are (3), (2, 1), and ($1,1,1$).
We draw partitions as n boxes piled up and to the left, where the parts are the number of boxes in a row:

$$
\lambda=(5,4,4,2)=\begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

Young's lattice:

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.
Theorem 1: (Up to isomorphism) the simple S_{n}-representations are indexed by partitions of n.

λ-Tableau: a path from \emptyset down to a partition λ.
Theorem 1: (Up to isomorphism) the simple S_{n}-representations are indexed by partitions of n.
Theorem 2: If λ is a partition of n, then the corresponding representation has basis indexed by λ-tableaux, and matrices determined by other combinatorial data about those paths.

λ-Tableau: a path from \emptyset down to a partition λ.
Theorem 1: (Up to isomorphism) the simple S_{n}-representations are indexed by partitions of n.
Theorem 2: If λ is a partition of n, then the corresponding representation has basis indexed by λ-tableaux, and matrices determined by other combinatorial data about those paths.

What other combinatorial data?

What other combinatorial data?
The content of a box in a partition is its diagonal number:

What other combinatorial data?
The content of a box in a partition is its diagonal number:

What other combinatorial data?
The content of a box in a partition is its diagonal number:

Again:

* each partition is secretly a representation * each path is secretly a basis vector

Now: entries in matrices for s_{1}, s_{2}, \ldots, are given by expressions in the contents of boxes added.

The rule for s_{i} :

The rule for s_{i} :
Suppose v goes with the path

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.
and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.
and u is almost the same, except at the i th step.

The rule for s_{i} :

Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots. on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
v: $\emptyset \stackrel{0}{\square} \square \stackrel{-1}{ } \square \stackrel{1}{\square} \square$
$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square} \square$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

$$
s_{1}=\underbrace{1}_{i}{\underset{i}{2}}_{0}^{2}
$$

Back to S_{3} :
v :

$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{-} \square \stackrel{-1}{\square} \square$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

$$
s_{1}=\underbrace{1}_{i}{\underset{i}{2}}_{0}^{2}
$$

Back to S_{3} :
$v: \quad \emptyset \xrightarrow{0} \square \stackrel{-1}{-1} \square$

	v	u
v	$1 /(-1-0)$	0
u	0	$1 /(1-0)$

$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square} \square$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots...on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots. on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
v :

$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{-} \square \stackrel{-1}{\square} \square$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

$$
s_{2}={\underset{i}{1}}_{\substack{1 \\ 0}}^{3}
$$

Back to S_{3} :
$v:$

	v	u
v	$1 /(1-(-1))$	
u		$1 /(-1-1)$

$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square}$

The rule for s_{i} :

Suppose v goes with the path

and u is almost the same, except at the i th step.

Back to S_{3} :
$v:$

	v	u
v	$1 /(1-(-1))$	$\sqrt{1-1 / 4}$
u	$\sqrt{1-1 / 4}$	$1 /(-1-1)$

(1)

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

(-1)

(1) $\quad\left(\begin{array}{cc}1 / 2 & \sqrt{3} / 2 \\ \sqrt{3} / 2 & -1\end{array}\right)$
(-1)
"trivial"
"alternating"

Counting tableaux and dimensions

The matrix ring for an m-dimensional vec. sp. is m^{2}-dimensional!

Counting tableaux and dimensions

The matrix ring for an m-dimensional vec. sp . is m^{2}-dimensional! Artin-Wedderburn theorem: "Nice" rings are isomorphic to the direct sum of matrix rings.

Counting tableaux and dimensions

The matrix ring for an m-dimensional vec. sp . is m^{2}-dimensional! Artin-Wedderburn theorem: "Nice" rings are isomorphic to the direct sum of matrix rings.
For example,
$\mathbb{R} S_{3} \cong M_{1}(\mathbb{R}) \oplus M_{2}(\mathbb{R}) \oplus M_{1}(\mathbb{R}) \cong M(\square \square) \oplus M(\square) \oplus M(\square)$

