Representation theory of the two-boundary Temperley-Lieb algebra

> Zajj Daugherty (Joint work in progress with Arun Ram)

> > September 10, 2014

The *Temperley-Lieb algebra* $TL_k(q)$ is the algebra of non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relation

$$\bigcirc = q + q^{-1}$$

The *Temperley-Lieb algebra* $TL_k(q)$ is the algebra of non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relation

$$\bigcirc = q + q^{-1}$$

The *Temperley-Lieb algebra* $TL_k(q)$ is the algebra of non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relation

$$\bigcirc = q + q^{-1}$$

The *Temperley-Lieb algebra* $TL_k(q)$ is the algebra of non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relation

$$\bigcirc = q + q^{-1}$$

The *Temperley-Lieb algebra* $TL_k(q)$ is the algebra of non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relation

$$\bigcirc = q + q^{-1}$$

The one-boundary Temperley-Lieb algebra $TL_k^{(1)}(q, z_0)$ is the algebra of one-walled non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relations

The algebra $TL_k^{(1)}(q,z_0)$ is generated by

$$e_i = \left| \begin{array}{c} & & \\ &$$

for $i = 1, \ldots, k-1$

The algebra $TL_k^{(1)}(q,z_0)$ is generated by

$$e_i = \left[\begin{array}{c} & & \\ &$$

for $i = 1, \ldots, k - 1$, with relations

 $e_i e_{i\pm 1} e_i = e_i$ for $i \ge 1$

The algebra $TL_k^{(1)}(q,z_0)$ is generated by

$$e_i = \left[\begin{array}{c} & & \\ &$$

for $i = 1, \ldots, k - 1$, with relations

$$e_i e_{i\pm 1} e_i = e_i$$
 for $i \ge 1$

$$\overrightarrow{\bigcirc} = \overrightarrow{\bigcirc} |$$
 or
$$\overrightarrow{\bigcirc} = | \overrightarrow{\bigcirc} |$$

The algebra $TL_k^{(1)}(q,z_0)$ is generated by

$$e_i = \left[\begin{array}{c} & & \\ &$$

for $i = 1, \ldots, k - 1$, with relations

$$e_i e_{i\pm 1} e_i = e_i$$
 for $i \ge 1$

$$\overbrace{\frown}^{\smile} = \overbrace{\frown}^{\smile} |$$

$$\overbrace{}$$

or

$$\widecheck{\bigcirc} = (q+q^{-1}) \overleftarrow{\frown}$$

$$e_i^2 = ae_i$$

The algebra $TL_k^{(1)}(q,z_0)$ is generated by

$$e_i = \left[\begin{array}{c} & & \\ &$$

for $i = 1, \ldots, k - 1$, with relations

$$\boxed{\overbrace{\frown}} = \overbrace{\frown}$$
 or
$$\boxed{\overbrace{\frown}} = \boxed{\overbrace{\frown}}$$

 $b = z_0 k$

$$e_i^2 = ae_i$$

 $e_i e_{i+1} e_i = e_i$ for $i \ge 1$

The algebra $TL_k^{(1)}(q,z_0)$ is generated by

$$e_i = \left[\begin{array}{c} & & \\ &$$

for $i = 1, \ldots, k - 1$, with relations

Side loops are resolved with a 1 or a z_0 depending on whether there are an even or odd number of connections below their lowest point.

The one-boundary Temperley-Lieb algebra $TL_k^{(1)}(q, z_0)$ is the algebra of one-walled non-crossing pairings on 2k vertices

with multiplication given by stacking diagrams, subject to the relations

Our main object: two-boundary Temperley-Lieb algebra Nienhuis, De Gier, Batchelor (2004):

The two-boundary Temperley-Lieb algebra $TL_k^{(2)}(q, z_0, z_k) = \mathcal{T}_k$ is the algebra of two-walled non-crossing pairings on 2k vertices

so that each wall always has an even number of connections, with multiplication given by stacking diagrams, subject to the relations

Our main object: two-boundary Temperley-Lieb algebra Nienhuis, De Gier, Batchelor (2004):

The two-boundary Temperley-Lieb algebra $TL_k^{(2)}(q, z_0, z_k) = \mathcal{T}_k$ is the algebra of two-walled non-crossing pairings on 2k vertices

so that each wall always has an even number of connections, with multiplication given by stacking diagrams, subject to the relations

Our main object: two-boundary Temperley-Lieb algebra Nienhuis, De Gier, Batchelor (2004):

The two-boundary Temperley-Lieb algebra $TL_k^{(2)}(q, z_0, z_k) = \mathcal{T}_k$ is the algebra of two-walled non-crossing pairings on 2k vertices

so that each wall always has an even number of connections, with multiplication given by stacking diagrams, subject to the relations

Our main object: two-boundary Temperley-Lieb algebra

 TL_k is finite-dimensional (*n*th Catalan number)

 $TL_k^{(1)}$ is finite-dimensional

de Gier, Nichols (2008): Explored representation theory of \mathcal{T}_k .

1 Take quotients giving $\mathbf{k} = z$

to get finite-dimensional algebras.

- 2 Establish connection to the affine Hecke algebras of type A and C to facilitate calculations.
- **3** Use diagrammatics and an action on $(\mathbb{C}^2)^{\otimes k}$ to help classify representations in quotient (most modules are 2^k dim'l; some split).

de Gier, Nichols (2008): Explored representation theory of T_k .

1 Take quotients giving z = z to get finite-dimensional algebras.

SWD√

- 2 Establish connection to the affine Hecke algebras of type A and C to facilitate calculations.
- Output State is a state of the state of

Fix $q \in \mathbb{C}^*$. Let $U = U_q \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g} . Let V, M be U-modules. Then $U \otimes U$ has invertible $R = \sum_R R_1 \otimes R_2$ that yields a map

$$\begin{array}{cccccccc} \check{R}_{VM} \colon & V \otimes M & \longrightarrow & M \otimes V \\ & v \otimes m & \longmapsto & \sum_{R} R_{1}m \otimes R_{2}v & & \swarrow \\ & & V \otimes M \end{array}$$

that (1) satisfies braid relations, and (2) commutes with the action of $U_q \mathfrak{g}$.

Fix $q \in \mathbb{C}^*$. Let $U = U_q \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g} . Let V, M be U-modules. Then $U \otimes U$ has invertible $R = \sum_R R_1 \otimes R_2$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of
$$U_q \mathfrak{g}$$
.

The braid group shares a commuting action with $U_q \mathfrak{g}$ on $V^{\otimes k}$:

Fix $q \in \mathbb{C}^*$. Let $U = U_q \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g} . Let V, M be U-modules. Then $U \otimes U$ has invertible $R = \sum_R R_1 \otimes R_2$ that yields a map

$$\begin{array}{cccccccc} \check{R}_{VM} \colon & V \otimes M & \longrightarrow & M \otimes V \\ & v \otimes m & \longmapsto & \sum_{R} R_{1}m \otimes R_{2}v & & \swarrow \\ & & V \otimes M \end{array}$$

that (1) satisfies braid relations, and (2) commutes with the action of $U_q \mathfrak{g}$.

The one-boundary/affine braid group shares a commuting action with $U_q \mathfrak{g}$ on $N \otimes V^{\otimes k}$:

Around the pole:

$$\bigoplus_{N\otimes V}^{N\otimes V} = \check{R}_{NV}\check{R}_{VN}$$

Fix $q \in \mathbb{C}^*$. Let $U = U_q \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g} . Let V, M be U-modules. Then $U \otimes U$ has invertible $R = \sum_R R_1 \otimes R_2$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of
$$U_q \mathfrak{g}$$
.

The two-boundary braid group shares a commuting action with $U_q\mathfrak{g}$ on $N \otimes V^{\otimes k} \otimes M$:

Around the pole:

Fix constants t_0, t_k , and $t = t_1 = \cdots = t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_k , is generated by T_0, T_1, \ldots, T_k with relations

$$\underbrace{T_i T_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{T_j T_i \dots}_{m_{i,j} \text{ factors}} \qquad \text{where} \qquad m_{i,j} = \begin{array}{ccc} 2 & \text{if} & \stackrel{i}{\text{O}} & \stackrel{j}{\text{O}} \\ 3 & \text{if} & \stackrel{i}{\text{O}} & \stackrel{j}{\text{O}} \\ 4 & \text{if} & \stackrel{i}{\text{O}} & \stackrel{j}{\text{O}} \end{array}$$

and $T_i^2 = (t_i^{1/2} - t_i^{-1/2})T_i + 1.$

Fix constants t_0, t_k , and $t = t_1 = \cdots = t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_k , is generated by T_0, T_1, \ldots, T_k with relations

$$\underbrace{T_i T_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{T_j T_i \dots}_{m_{i,j} \text{ factors}} \quad \text{and} \quad T_i^2 = (t_i^{1/2} - t_i^{-1/2})T_i + 1.$$

Fix constants t_0, t_k , and $t = t_1 = \cdots = t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_k , is generated by T_0, T_1, \ldots, T_k with relations

$$\underbrace{T_i T_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{T_j T_i \dots}_{m_{i,j} \text{ factors}} \quad \text{and} \quad T_i^2 = (t_i^{1/2} - t_i^{-1/2})T_i + 1.$$

The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \bigwedge_{i=1}^{n} \quad T_0 = \bigvee_{i=1}^{n} \quad \text{and} \quad T_i = \bigvee_{i=i+1}^{i=i+1} \quad \text{for } 1 \le i \le k-1.$$

$$\bigcirc 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad \cdots \qquad \bigcirc k-2 \qquad k-1 \qquad k$$

Fix constants t_0, t_k , and $t = t_1 = \cdots = t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_k , is generated by T_0, T_1, \ldots, T_k with relations

$$\underbrace{T_i T_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{T_j T_i \dots}_{m_{i,j} \text{ factors}} \quad \text{and} \quad T_i^2 = (t_i^{1/2} - t_i^{-1/2})T_i + 1.$$

The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \bigwedge_{i=1}^{n} \quad T_0 = \bigvee_{i=1}^{n} \quad \text{and} \quad T_i = \bigvee_{i=i+1}^{i=i+1} \quad \text{for } 1 \le i \le k-1.$$

Relations:

$$T_i T_{i+1} T_i = \sum_{i+1} T_i T_{i+1} = \sum_{i+1} T_i T_i T_{i+1}$$

Fix constants t_0, t_k , and $t = t_1 = \cdots = t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_k , is generated by T_0, T_1, \ldots, T_k with relations

$$\underbrace{T_i T_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{T_j T_i \dots}_{m_{i,j} \text{ factors}} \quad \text{and} \quad T_i^2 = (t_i^{1/2} - t_i^{-1/2})T_i + 1.$$

The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \bigwedge_{i=1}^{n} \quad T_0 = \bigvee_{i=1}^{n} \quad \text{and} \quad T_i = \bigvee_{i=i+1}^{i=i+1} \quad \text{for } 1 \le i \le k-1.$$

Relations:

(1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules.

The two-boundary braid group \mathcal{B}_k acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

(2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_k , acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

(1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules.

The two-boundary braid group \mathcal{B}_k acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

(2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_k , acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Now using braid diagrammatics, [GN 08] says that by identifying

then \mathcal{T}_k is a quotient of \mathcal{H}_k by...

(1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules.

The two-boundary braid group \mathcal{B}_k acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

(2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_k , acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Now using braid diagrammatics, [GN 08] says that by identifying

$$\begin{array}{c} \overbrace{} = t^{1/2} \left(\begin{array}{c} -\swarrow \\ \end{array} \right) \left(\begin{array}{c} -\swarrow \\ \end{array} \right), \ c_0 \left(\begin{array}{c} \\ \end{array} \right) = t_0^{1/2} \left(\left(\begin{array}{c} -\swarrow \\ \end{array} \right), \ \text{and} \ c_k \left(\begin{array}{c} \\ \end{array} \right) = t_k^{1/2} \right) \left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) \right) \\ (\text{where } c_i = t_i^{1/2} t^{-1/2} + t_i^{-1/2} t^{1/2}), \end{array}$$

then \mathcal{T}_k is a quotient of \mathcal{H}_k by

$$e_i e_{i\pm 1} e_i$$
 for $1 \le i \le k-1$: $\widecheck{\bigcirc} = \widecheck{\bigcirc} |$ or $\widecheck{\bigcirc} = \widecheck{\bigcirc} |$ and reverses

(1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules.

The two-boundary braid group \mathcal{B}_k acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

(2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_k , acts on $N \otimes (V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Now using braid diagrammatics, [GN 08] says that by identifying

then \mathcal{T}_k is a quotient of \mathcal{H}_k by

$$e_i e_{i\pm 1} e_i$$
 for $1 \le i \le k-1$: $\widecheck{\bigcirc} = \overbrace{\frown} = \overbrace{\frown} = i$ or $\widecheck{\bigcirc} = \overbrace{\frown} = i$ and reverses

(3) When $\mathfrak{g} = \mathfrak{gl}_2$, \mathcal{T}_k acts on $N \otimes (V)^{\otimes k} \otimes M$ (for good choices).

Consider the fin-dim'l simple $U_q \mathfrak{gl}_n$ -modules $L(\lambda)$ indexed by partitions:

The content of a box is its diagonal number.

The content of a box is its diagonal number. Fix $V = L(\Box)$. The generators of \mathcal{H}_k acting on $N \otimes V^{\otimes k} \otimes M$ look like

The eigenvalues of these operators (of which there should be two, since

 $(T_k - t_k^{1/2})(T_k + t_k^{-1/2}) = (T_0 - t_0^{1/2})(T_0 + t_0^{-1/2}) = (T_i - t^{1/2})(T_i + t^{-1/2}) = 0$)

are controlled by contents of addable boxes.

The content of a box is its diagonal number. Fix $V = L(\Box)$. The generators of \mathcal{H}_k acting on $N \otimes V^{\otimes k} \otimes M$ look like

The eigenvalues of these operators (of which there should be two, since

$$(T_k - t_k^{1/2})(T_k + t_k^{-1/2}) = (T_0 - t_0^{1/2})(T_0 + t_0^{-1/2}) = (T_i - t^{1/2})(T_i + t^{-1/2}) = 0$$
)

are controlled by contents of addable boxes. So let M and N be indexed by rectangular partitions, which have two addable boxes:

The content of a box is its diagonal number. Fix $V = L(\Box)$. The generators of \mathcal{H}_k acting on $N \otimes V^{\otimes k} \otimes M$ look like

The eigenvalues of these operators (of which there should be two, since

 $(T_k - t_k^{1/2})(T_k + t_k^{-1/2}) = (T_0 - t_0^{1/2})(T_0 + t_0^{-1/2}) = (T_i - t^{1/2})(T_i + t^{-1/2}) = 0$)

are controlled by contents of addable boxes. So let M and N be indexed by rectangular partitions, which have two addable boxes:

 \mathcal{H}_k has a commuting action with $U_q\mathfrak{gl}_n$ on the space $L((b^d)) \otimes (L(\Box))^{\otimes k} \otimes L((a^c))$ with c, d < n

New favorite generators:

New favorite generators:

Then

$$M\otimes N=L((a^c))\otimes L((b^d))=\bigoplus_{\lambda\in\Lambda}L(\lambda),\qquad ({\rm multiplicity\ one!})$$

New favorite generators:

Then

$$M \otimes N = L((a^c)) \otimes L((b^d)) = \bigoplus_{\lambda \in \Lambda} L(\lambda),$$

(multiplicity one!)

New favorite generators:

Then

$$M \otimes N = L((a^c)) \otimes L((b^d)) = \bigoplus_{\lambda \in \Lambda} L(\lambda),$$

(multiplicity one!)

New favorite generators:

Then

$$M \otimes N = L((a^c)) \otimes L((b^d)) = \bigoplus_{\lambda \in \Lambda} L(\lambda),$$

(multiplicity one!)

New favorite generators:

Then

$$M\otimes N=L((a^c))\otimes L((b^d))=\bigoplus_{\lambda\in\Lambda}L(\lambda),\qquad ({\rm mult}$$

(multiplicity one!)

 $\begin{bmatrix} a \\ c \end{bmatrix}$ M

$L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

$L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

$L\left(\square\right) \otimes L\left(\square\right) \otimes L$

$L\left(\square\right) \otimes L\left(\square\right) \otimes L$

 \mathcal{H}_k representations in tensor space are labeled by certain partitions λ , with basis labeled by tableaux from some partition μ in $(a^c) \otimes (b^d)$ to λ .

Central characters

The Hecke algebra \mathcal{H}_k features invertible, pairwise commuting elements Y_1, \ldots, Y_k (weight lattice part).

The Hecke algebra \mathcal{H}_k features invertible, pairwise commuting elements Y_1, \ldots, Y_k (weight lattice part).

The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}[Y_1^{\pm 1}, \ldots, Y_k^{\pm 1}]$ by permuting the subscripts, with $Y_{-i} = Y_i^{-1}$. Then the center of \mathcal{H}_k is symmetric Laurent polynomials

$$Z(\mathcal{H}_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{\mathcal{W}}.$$

$$Y_j = \underbrace{\left\| - \right\| - \left| - \right|^j}_{\bigcup \bigcup \bigcup \bigcup \bigcup \bigcup i } \int_{j}^{j} \left[\right]$$

The Hecke algebra \mathcal{H}_k features invertible, pairwise commuting elements Y_1, \ldots, Y_k (weight lattice part). The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}[Y_1^{\pm 1}, \ldots, Y_k^{\pm 1}]$ by permuting the subscripts, with $Y_{-i} = Y_i^{-1}$. Then the center of \mathcal{H}_k is symmetric Laurent polynomials

$$Z(\mathcal{H}_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{\mathcal{W}}.$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}^{\times}$$

with equivalence under \mathcal{W} action;

The Hecke algebra \mathcal{H}_k features invertible, pairwise commuting elements Y_1, \ldots, Y_k (weight lattice part). The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}[Y_1^{\pm 1}, \ldots, Y_k^{\pm 1}]$ by permuting the subscripts, with $Y_{-i} = Y_i^{-1}$. Then the center of \mathcal{H}_k is symmetric Laurent polynomials

$$Z(\mathcal{H}_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{\mathcal{W}}.$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}^{\times}$$

with equivalence under $\mathcal W$ action; i.e. representative k-tuples

$$\gamma = (\gamma_1, \dots, \gamma_k)$$
 with $\gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1}$

The Hecke algebra \mathcal{H}_k features invertible, pairwise commuting elements Y_1, \ldots, Y_k (weight lattice part). The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}[Y_1^{\pm 1}, \ldots, Y_k^{\pm 1}]$ by permuting the subscripts, with $Y_{-i} = Y_i^{-1}$. Then the center of \mathcal{H}_k is symmetric Laurent polynomials

$$Z(\mathcal{H}_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{\mathcal{W}}.$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}^{\times}$$

with equivalence under $\mathcal W$ action; i.e. representative k-tuples

$$\gamma = (\gamma_1, \dots, \gamma_k)$$
 with $\gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1}$
 $\mathbf{c} = (c_1, \dots, c_k)$ with $\gamma(Y_i^{\pm 1}) = t^{\pm c_i}$

(when c is real, favorite representatives satisfy $0 \le c_1 \le \cdots \le c_k$.)

Restrict to real points.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. When k = 2:

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. When k = 2:

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. When k = 2:

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on \mathcal{H}_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Thm. (D.-Ram)

(1) Calibrated representations of \mathcal{H}_k are indexed by skew local regions at regular (interior red) points.

Thm. (D.-Ram)

(1) Calibrated representations of \mathcal{H}_k are indexed by skew local regions at regular (interior red) points.

(2) The representations of \mathcal{H}_k which factor through the TL quotient are (see above).

Thm. (D.-Ram)

(1) Calibrated representations of \mathcal{H}_k are indexed by skew local regions at regular (interior red) points.

(2) The representations of \mathcal{H}_k which factor through the TL quotient are (see above).

