Representation theory of the two-boundary Temperley-Lieb algebra

Zajj Daugherty
(Joint work in progress with Arun Ram)

September 10, 2014

Temperley-Lieb algebras

The Temperley-Lieb algebra $T L_{k}(q)$ is the algebra of non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relation

$$
O=q+q^{-1}
$$

Temperley-Lieb algebras

The Temperley-Lieb algebra $T L_{k}(q)$ is the algebra of non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relation

$$
O=q+q^{-1}
$$

Multiplication:

Temperley-Lieb algebras

The Temperley-Lieb algebra $T L_{k}(q)$ is the algebra of non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relation

$$
O=q+q^{-1}
$$

Multiplication:

Temperley-Lieb algebras

The Temperley-Lieb algebra $T L_{k}(q)$ is the algebra of non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relation

$$
O=q+q^{-1}
$$

Multiplication:

Temperley-Lieb algebras

The Temperley-Lieb algebra $T L_{k}(q)$ is the algebra of non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relation

$$
O=q+q^{-1}
$$

Multiplication:

Temperley-Lieb algebras

The one-boundary Temperley-Lieb algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is the algebra of one-walled non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relations

$$
O=q+q^{-1} \quad \text { and }
$$

Odd/even relations

The algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is generated by
for $i=1, \ldots, k-1$

Odd/even relations

The algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is generated by
for $i=1, \ldots, k-1$, with relations

$$
e_{i} e_{i \pm 1} e_{i}=e_{i} \text { for } i \geq 1
$$

$$
\underset{\frown}{\smile}=\frown 1
$$

Odd/even relations

The algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is generated by
for $i=1, \ldots, k-1$, with relations

$$
e_{i} e_{i \pm 1} e_{i}=e_{i} \text { for } i \geq 1
$$

Odd/even relations

The algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is generated by
for $i=1, \ldots, k-1$, with relations
$e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i \geq 1$

$$
\underset{\square}{\smile}=\frown 1 \text { or } \stackrel{\ddots}{\curvearrowleft}=1 \frown
$$

$$
e_{i}^{2}=a e_{i}
$$

$$
\bigcirc
$$

Odd/even relations

The algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is generated by
for $i=1, \ldots, k-1$, with relations
$e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i \geq 1$ $\underset{\square}{\asymp}=\frown 1$ or $\quad \stackrel{\square}{\curvearrowleft}=1 \frown$

$$
e_{i}^{2}=a e_{i}
$$

$$
\bigcirc\left(\frown_{\frown}=\left(q+q^{-1}\right) \frown\right. \text { or }
$$

$$
\begin{aligned}
& \% \\
& \xi=z_{0} \% \\
& \kappa
\end{aligned}
$$

Odd/even relations

The algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is generated by
for $i=1, \ldots, k-1$, with relations

$$
\begin{aligned}
& e_{i} e_{i \pm 1} e_{i}=e_{i} \text { for } i \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& e_{i}^{2}=a e_{i} \\
& \bigcirc\left(q+q^{-1}\right) \frown \text { or } \\
& \%=z_{0} \text { 反 }
\end{aligned}
$$

Side loops are resolved with a 1 or a z_{0} depending on whether there are an even or odd number of connections below their lowest point.

Temperley-Lieb algebras

The one-boundary Temperley-Lieb algebra $T L_{k}^{(1)}\left(q, z_{0}\right)$ is the algebra of one-walled non-crossing pairings on $2 k$ vertices

with multiplication given by stacking diagrams, subject to the relations

$$
O=q+q^{-1} \quad \text { and }
$$

Our main object: two-boundary Temperley-Lieb algebra

 Nienhuis, De Gier, Batchelor (2004):The two-boundary Temperley-Lieb algebra $T L_{k}^{(2)}\left(q, z_{0}, z_{k}\right)=\mathcal{T}_{k}$ is the algebra of two-walled non-crossing pairings on $2 k$ vertices

so that each wall always has an even number of connections, with multiplication given by stacking diagrams, subject to the relations

$$
O=q+q^{-1} \quad \text { and }
$$

Our main object: two-boundary Temperley-Lieb algebra

 Nienhuis, De Gier, Batchelor (2004):The two-boundary Temperley-Lieb algebra $T L_{k}^{(2)}\left(q, z_{0}, z_{k}\right)=\mathcal{T}_{k}$ is the algebra of two-walled non-crossing pairings on $2 k$ vertices

so that each wall always has an even number of connections, with multiplication given by stacking diagrams, subject to the relations

$$
O=q+q^{-1} \quad \text { and }
$$

Our main object: two-boundary Temperley-Lieb algebra

 Nienhuis, De Gier, Batchelor (2004):The two-boundary Temperley-Lieb algebra $T L_{k}^{(2)}\left(q, z_{0}, z_{k}\right)=\mathcal{T}_{k}$ is the algebra of two-walled non-crossing pairings on $2 k$ vertices

$$
\text { generators: } \begin{aligned}
e_{i} & =\curvearrowleft \\
e_{0} & =\stackrel{8}{\%} \\
e_{k} & =\%
\end{aligned}
$$

so that each wall always has an even number of connections, with multiplication given by stacking diagrams, subject to the relations

$$
O=q+q^{-1} \quad \text { and }
$$

Our main object: two-boundary Temperley-Lieb algebra $T L_{k}$ is finite-dimensional (nth Catalan number)

Our main object: two-boundary Temperley-Lieb algebra $T L_{k}$ is finite-dimensional (nth Catalan number)
$T L_{k}^{(1)}$ is finite-dimensional

Our main object: two-boundary Temperley-Lieb algebra

 $T L_{k}$ is finite-dimensional (nth Catalan number)$T L_{k}^{(1)}$ is finite-dimensional
\& $T L_{k}^{(2)}=\mathcal{T}_{k}$ is infinite-dimensional!

Our main object: two-boundary Temperley-Lieb algebra

 $T L_{k}$ is finite-dimensional (nth Catalan number)$T L_{k}^{(1)}$ is finite-dimensional
$T L_{k}^{(2)}=\mathcal{T}_{k}$ is infinite-dimensional!

de Gier, Nichols (2008): Explored representation theory of \mathcal{T}_{k}.
(1) Take quotients giving

to get finite-dimensional algebras.
(2) Establish connection to the affine Hecke algebras of type A and C to facilitate calculations.
(3) Use diagrammatics and an action on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ to help classify representations in quotient (most modules are 2^{k} dim'l; some split).

Our main object: two-boundary Temperley-Lieb algebra

$T L_{k}$ is finite-dimensional (nth Catalan number) SWD \checkmark
$T L_{k}^{(1)}$ is finite-dimensional
de Gier, Nichols (2008): Explored representation theory of \mathcal{T}_{k}.
(1) Take quotients giving $\$=z$
to get finite-dimensional algebras.
(2) Establish connection to the $\overbrace{\text { affine Hecke algebras of type } A}^{\text {SWD } ~}$ and C to facilitate calculations.
(3) Use diagrammatics and an action on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ to help classify representations in quotient (most modules are 2^{k} dim'l; some split).

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules. Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that
(1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules. Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

The braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $V^{\otimes k}$:

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules.
Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

The one-boundary/affine braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $N \otimes V^{\otimes k}$:

Around the pole:

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules.
Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

The two-boundary braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $N \otimes V^{\otimes k} \otimes M$:

Around the pole:

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type $\mathrm{C}, \mathcal{H}_{k}$, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

and $T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1$.

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_{k}, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1 .
$$

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type $\mathrm{C}, \mathcal{H}_{k}$, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1 .
$$

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_{k}, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1
$$

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

Relations:

$$
T_{i} T_{i+1} T_{i}=
$$

Affine type C Hecke algebra and two-boundary braids

Fix constants t_{0}, t_{k}, and $t=t_{1}=\cdots=t_{k-1}$. The affine Hecke algebra of type C, \mathcal{H}_{k}, is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} \quad \text { and } \quad T_{i}^{2}=\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) T_{i}+1
$$

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{\|}^{!} T_{0}=\underbrace{\AA \rho}_{\mathrm{U}} \text { and } T_{i}=\int_{i}^{i} \int_{i+1}^{i+1} \quad \text { for } 1 \leq i \leq k-1
$$

Relations:

Theorem (D.-Ram, degenerate versions of $1 \& 2$ in [D. 10])
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.
The two-boundary braid group \mathcal{B}_{k} acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l} l_{n}$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_{k}, acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Theorem (D.-Ram, degenerate versions of $1 \& 2$ in [D. 10])
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.
The two-boundary braid group \mathcal{B}_{k} acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l}_{n}$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_{k}, acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Now using braid diagrammatics, [GN 08] says that by identifying

$$
\begin{aligned}
& \text { (where } c_{i}=t_{i}^{1 / 2} t^{-1 / 2}+t_{i}^{-1 / 2} t^{1 / 2} \text {), }
\end{aligned}
$$

then \mathcal{T}_{k} is a quotient of \mathcal{H}_{k} by \ldots

Theorem (D.-Ram, degenerate versions of $1 \& 2$ in [D. 10])
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.
The two-boundary braid group \mathcal{B}_{k} acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l}_{n}$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_{k}, acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Now using braid diagrammatics, [GN 08] says that by identifying

$$
\begin{aligned}
& \text { (where } c_{i}=t_{i}^{1 / 2} t^{-1 / 2}+t_{i}^{-1 / 2} t^{1 / 2} \text {), }
\end{aligned}
$$

then \mathcal{T}_{k} is a quotient of \mathcal{H}_{k} by

Theorem (D.-Ram, degenerate versions of $1 \& 2$ in [D. 10])
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}.

Let M, N, and V be finite-dimensional modules.
The two-boundary braid group \mathcal{B}_{k} acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l}_{n}$, then (for good simple choices of M, N, and V), the affine Hecke algebra of type C, \mathcal{H}_{k}, acts on $N \otimes(V)^{\otimes k} \otimes M$ and this action commutes with the action of U.

Now using braid diagrammatics, [GN 08] says that by identifying

$$
\text { (where } c_{i}=t_{i}^{1 / 2} t^{-1 / 2}+t_{i}^{-1 / 2} t^{1 / 2} \text {), }
$$

then \mathcal{T}_{k} is a quotient of \mathcal{H}_{k} by
$e_{i} e_{i \pm 1} e_{i} \quad$ for $1 \leq i \leq k-1: \quad \asymp=\smile \mid$ or $\quad \preceq=\left\lvert\, \smile\binom{$ and }{ reverses }\right.
(3) When $\mathfrak{g}=\mathfrak{g l}_{2}, \mathcal{T}_{k}$ acts on $N \otimes(V)^{\otimes k} \otimes M$ (for good choices).

Consider the fin-dim'I simple $U_{q} \mathfrak{g l}_{n}$-modules $L(\lambda)$ indexed by partitions:

Consider the fin-dim'I simple $U_{q} \mathfrak{g l}_{n}$-modules $L(\lambda)$ indexed by partitions:

The content of a box is its diagonal number.

Consider the fin-dim'l simple $U_{q} \mathfrak{g l}_{n}$-modules $L(\lambda)$ indexed by partitions:

The content of a box is its diagonal number.
Fix $V=L$ (口). The generators of \mathcal{H}_{k} acting on $N \otimes V^{\otimes k} \otimes M$ look like

$$
T_{k}=\overbrace{V \otimes M}^{V \otimes M} T_{0}=\underbrace{\overbrace{U}^{V}}_{\underset{N \otimes V}{N \otimes V}} \text { and } T_{i}=\underbrace{V \otimes V}_{V \otimes V}
$$

The eigenvalues of these operators (of which there should be two, since
$\left.\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=\left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0\right)$
are controlled by contents of addable boxes.

Consider the fin-dim'I simple $U_{q} \mathfrak{g l}_{n}$-modules $L(\lambda)$ indexed by partitions:

The content of a box is its diagonal number.
Fix $V=L$ (口). The generators of \mathcal{H}_{k} acting on $N \otimes V^{\otimes k} \otimes M$ look like

$$
T_{k}=\underbrace{V \otimes M}_{V \otimes M} \quad T_{0}=\underbrace{\prod_{V \otimes V}^{N \otimes V}}_{\substack{\text { ® }}} \text { and } T_{i}=\underbrace{V \otimes V}_{V \otimes V}
$$

The eigenvalues of these operators (of which there should be two, since
$\left.\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=\left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0\right)$
are controlled by contents of addable boxes. So let M and N be indexed by rectangular partitions, which have two addable boxes:

$$
\left(a^{c}\right)=c \stackrel{a}{\substack{-c \\ \vdots}} \stackrel{a}{a}
$$

Consider the fin-dim'I simple $U_{q} \mathfrak{g l}_{n}$-modules $L(\lambda)$ indexed by partitions:

The content of a box is its diagonal number.
Fix $V=L$ (口). The generators of \mathcal{H}_{k} acting on $N \otimes V^{\otimes k} \otimes M$ look like

$$
T_{k}=\underbrace{V \otimes M}_{V \otimes M} \quad T_{0}=\underbrace{\substack{N \otimes V}}_{\underset{N \otimes V}{N}} \quad \text { and } \quad T_{i}=\underbrace{V \otimes V}_{V \otimes V}
$$

The eigenvalues of these operators (of which there should be two, since
$\left.\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=\left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0\right)$
are controlled by contents of addable boxes. So let M and N be indexed by rectangular partitions, which have two addable boxes:

$$
\left(a^{c}\right)=c \prod_{\substack{-\sigma \\ \vdots}}^{a} \cdot \ddot{a}
$$

\mathcal{H}_{k} has a commuting action with $U_{q} \mathfrak{g l}_{n}$ on the space

$$
L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k} \otimes L\left(\left(a^{c}\right)\right) \quad \text { with } c, d<n
$$

Exploring tensor space structure

Move the right pole to the left:

$$
\begin{aligned}
& N \otimes V \otimes V \otimes V \otimes V \otimes V \otimes M \\
& \prod_{N \otimes V} \bullet \bullet \\
& i
\end{aligned}
$$

Exploring tensor space structure

Move the right pole to the left:

New favorite generators:

Exploring tensor space structure

Move the right pole to the left:

New favorite generators:

Then

$$
M \otimes N=L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda} L(\lambda), \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring tensor space structure

Move the right pole to the left:

New favorite generators:

Then

$$
M \otimes N=L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus L(\lambda), \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring tensor space structure

Move the right pole to the left:

New favorite generators:

Then

$$
M \otimes N=L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus L(\lambda), \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring tensor space structure

Move the right pole to the left:

New favorite generators:

Then

$$
M \otimes N=L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda), \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring tensor space structure

Move the right pole to the left:

New favorite generators:

Then

$$
M \otimes N=L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda), \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions...

Exploring tensor space structure

$$
\begin{array}{ll}
{ }^{a} & M \\
\hline
\end{array}
$$

Exploring tensor space structure

Exploring tensor space structure

Exploring tensor space structure

$L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$$
L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)
$$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto & t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto & t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

$$
\begin{aligned}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto t^{2.5} \\
Y_{3} & \mapsto t^{4.5} \\
Y_{4} & \mapsto t^{3.5} \\
Y_{5} & \mapsto t^{5.5}
\end{aligned}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

$$
\begin{array}{ll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto t^{2.5} \\
Y_{3} & \mapsto t^{4.5} \\
Y_{4} & \mapsto t^{3.5} \\
Y_{5} & \mapsto
\end{array} t^{5.5}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto & t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto & t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{array}
$$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .
$L\binom{\square}{\square} \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

$$
\begin{array}{lll}
Y_{1} & \mapsto t^{-5.5} \\
Y_{2} & \mapsto t^{2.5} \\
Y_{3} & \mapsto & t^{4.5} \\
Y_{4} & \mapsto & t^{3.5} \\
Y_{5} & \mapsto & t^{5.5}
\end{array}
$$

\mathcal{H}_{k} representations in tensor space are labeled by certain partitions λ, with basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ. Rep are calibrated, i.e. Y_{j} 's act by constants controlled by content.

boxes that must
$\square=$ appear in the partition at level 0 .

Central characters

The Hecke algebra \mathcal{H}_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part).

$$
Y_{j}=\frac{\eta-\eta-\eta-\eta \rightarrow^{j}}{U u \cdot!}!
$$

Central characters

The Hecke algebra \mathcal{H}_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part).
The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ by permuting the subscripts, with $Y_{-i}=Y_{i}^{-1}$. Then the center of \mathcal{H}_{k} is symmetric Laurent polynomials

$$
Z\left(\mathcal{H}_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{\mathcal{W}}
$$

$$
\left.Y_{j}=\frac{\Pi-\eta-1-\prod^{j}}{U u \bullet \bullet}!\right\rfloor
$$

Central characters

The Hecke algebra \mathcal{H}_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part).
The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ by permuting the subscripts, with $Y_{-i}=Y_{i}^{-1}$. Then the center of \mathcal{H}_{k} is symmetric Laurent polynomials

$$
Z\left(\mathcal{H}_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{\mathcal{W}}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}^{\times}
$$

with equivalence under \mathcal{W} action;

Central characters

The Hecke algebra \mathcal{H}_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part).
The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ by permuting the subscripts, with $Y_{-i}=Y_{i}^{-1}$. Then the center of \mathcal{H}_{k} is symmetric Laurent polynomials

$$
Z\left(\mathcal{H}_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{\mathcal{W}}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}^{\times}
$$

with equivalence under \mathcal{W} action; i.e. representative k-tuples

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1}
$$

Central characters

The Hecke algebra \mathcal{H}_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part).
The Weyl group \mathcal{W} of type C (the group of signed permutations) acts on $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ by permuting the subscripts, with $Y_{-i}=Y_{i}^{-1}$. Then the center of \mathcal{H}_{k} is symmetric Laurent polynomials

$$
Z\left(\mathcal{H}_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{\mathcal{W}}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}^{\times}
$$

with equivalence under \mathcal{W} action; i.e. representative k-tuples

$$
\begin{gathered}
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1} \\
\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \quad \text { with } \quad \\
\gamma\left(Y_{i}^{ \pm 1}\right)=t^{ \pm c_{i}}
\end{gathered}
$$

(when \mathbf{c} is real, favorite representatives satisfy $0 \leq c_{1} \leq \cdots \leq c_{k}$.)

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

Central characters as points

Restrict to real points.

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$.
When $k=2$:

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Thm. (D.-Ram)
(1) Calibrated representations of \mathcal{H}_{k} are indexed by skew local regions at regular (interior red) points.

Thm. (D.-Ram)
(1) Calibrated representations of \mathcal{H}_{k} are indexed by skew local regions at regular (interior red) points.
(2) The representations of \mathcal{H}_{k} which factor through the TL quotient are (see above).

Thm. (D.-Ram)
(1) Calibrated representations of \mathcal{H}_{k} are indexed by skew local regions at regular (interior red) points.
(2) The representations of \mathcal{H}_{k} which factor through the TL quotient are (see above).

