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Temperley-Lieb algebras
The Temperley-Lieb algebra TLk(q) is the algebra of non-crossing
pairings on 2k vertices
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= q + q−1
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= ∗(q + q−1)2



Temperley-Lieb algebras
The Temperley-Lieb algebra TLk(q) is the algebra of non-crossing
pairings on 2k vertices

1

1

2

2

3

3

4

4

k

k

with multiplication given by stacking diagrams, subject to the
relation

= q + q−1

Multiplication:

= ∗(q + q−1)2



Temperley-Lieb algebras
The Temperley-Lieb algebra TLk(q) is the algebra of non-crossing
pairings on 2k vertices

1

1

2

2

3

3

4

4

k

k

with multiplication given by stacking diagrams, subject to the
relation

= q + q−1

Multiplication:

= ∗(q + q−1)2



Temperley-Lieb algebras
The Temperley-Lieb algebra TLk(q) is the algebra of non-crossing
pairings on 2k vertices

1

1

2

2

3

3

4

4

k

k

with multiplication given by stacking diagrams, subject to the
relation

= q + q−1

Multiplication:

= ∗(q + q−1)2



Temperley-Lieb algebras
The Temperley-Lieb algebra TLk(q) is the algebra of non-crossing
pairings on 2k vertices

1

1

2

2

3

3

4

4

k

k

with multiplication given by stacking diagrams, subject to the
relation

= q + q−1

Multiplication:

= ∗(q + q−1)2



Temperley-Lieb algebras

The one-boundary Temperley-Lieb algebra TL
(1)
k (q, z0) is the

algebra of one-walled non-crossing pairings on 2k vertices
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Odd/even relations

The algebra TL
(1)
k (q, z0) is generated by

ei =

i

i

and e0 =

1

1

for i = 1, . . . , k − 1

, with relations

eiei±1ei = ei for i ≥ 1 =

or =

e2i = aei = (q + q−1) or = z0

Side loops are resolved with a 1 or a z0 depending on whether there
are an even or odd number of connections below their lowest point.
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Our main object: two-boundary Temperley-Lieb algebra
Nienhuis, De Gier, Batchelor (2004):

The two-boundary Temperley-Lieb algebra TL
(2)
k (q, z0, zk) = Tk is

the algebra of two-walled non-crossing pairings on 2k vertices
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so that each wall always has an even number of connections, with
multiplication given by stacking diagrams, subject to the relations

= q + q−1 and

if even #
connections

below

= = 1 or
if odd #

connections
below

= z0, = zk.
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Our main object: two-boundary Temperley-Lieb algebra
TLk is finite-dimensional (nth Catalan number)

SWDX

TL
(1)
k is finite-dimensional SWDX

TL
(2)
k = Tk is infinite-dimensional!

2`

de Gier, Nichols (2008): Explored representation theory of Tk.

1 Take quotients giving = z

to get finite-dimensional algebras.

2 Establish connection to the affine Hecke algebras of type A and C
to facilitate calculations.

3 Use diagrammatics and an action on (C2)⊗k to help classify
representations in quotient (most modules are 2k dim’l; some split).
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Quantum groups and braids
Fix q ∈ C∗. Let U = Uqg be the Drinfel’d-Jimbo quantum group
associated to a reductive Lie algebra g. Let V,M be U -modules.
Then U ⊗ U has invertible R =

∑
RR1 ⊗R2 that yields a map

ŘVM : V ⊗M −→ M ⊗ V
v ⊗m 7−→

∑
R

R1m⊗R2v

M ⊗ V

V ⊗M

that (1) satisfies braid relations, and
(2) commutes with the action of Uqg.

The braid group shares a commuting action
with Uqg on V ⊗k:

V

V

⊗
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V

V
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V

V
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⊗M

Around the pole:

N⊗V

N⊗V

= ŘNV ŘV N
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Affine type C Hecke algebra and two-boundary braids
k0 1 2 3 4 k−2 k−1

· · ·
Fix constants t0, tk, and t = t1 = · · · = tk−1. The affine Hecke algebra
of type C, Hk, is generated by T0, T1, . . . , Tk with relations

TiTj . . .︸ ︷︷ ︸
mi,j factors

= TjTi . . .︸ ︷︷ ︸
mi,j factors

where mi,j =

2 if
i j

3 if
i j

4 if
i j

and T 2
i = (t

1/2
i − t−1/2

i )Ti + 1.

The two-boundary (two-pole) braid group Bk is generated by

Tk = T0 = and Ti =

i

i

i+1

i+1

for 1 ≤ i ≤ k − 1.

Relations:

TiTi+1Ti = = = Ti+1TiTi+1

T1T0T1T0 = = = T0T1T0T1
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Theorem (D.-Ram, degenerate versions of 1&2 in [D. 10])

(1) Let U = Uqg for any complex reductive Lie algebras g.
Let M , N , and V be finite-dimensional modules.

The two-boundary braid group Bk acts on N ⊗ (V )⊗k ⊗M and this
action commutes with the action of U .

(2) If g = gln, then (for good simple choices of M , N , and V ),
the affine Hecke algebra of type C, Hk, acts on N ⊗ (V )⊗k ⊗M
and this action commutes with the action of U .

Now using braid diagrammatics, [GN 08] says that by identifying

= t1/2 − , c0 = t
1/2
0 − , and ck = t

1/2
k −

(where ci = t
1/2
i t−1/2 + t

−1/2
i t1/2),

then Tk is a quotient of Hk by. . .

eiei±1ei for 1 ≤ i ≤ k−1 : = or =

(
and

reverses

)
(3) When g = gl2, Tk acts on N ⊗ (V )⊗k ⊗M (for good choices).
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Consider the fin-dim’l simple Uqgln-modules L(λ) indexed by partitions:

λ =

0 1 2 3

-1

-2

The content of a box is its diagonal number.
Fix V = L( ). The generators of Hk acting on N ⊗ V ⊗k ⊗M look like

Tk =

V ⊗M

V ⊗M

T0 =

N⊗V

N⊗V

and Ti =

V ⊗ V

V ⊗ V

The eigenvalues of these operators (of which there should be two, since

(Tk−t1/2k )(Tk+t
−1/2
k ) = (T0−t1/20 )(T0+t

−1/2
0 ) = (Ti−t1/2)(Ti+t

−1/2) = 0 )

are controlled by contents of addable boxes. So let M and N be indexed
by rectangular partitions, which have two addable boxes:

(ac) = c

a
a

-c

Hk has a commuting action with Uqgln on the space

L((bd))⊗
(
L( )

)⊗k ⊗ L((ac)) with c, d < n
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Central characters
The Hecke algebra Hk features invertible, pairwise commuting
elements Y1, . . . , Yk (weight lattice part).

The Weyl group W of type C (the group of signed permutations)
acts on C[Y ±11 , . . . , Y ±1k ] by permuting the subscripts, with
Y−i = Y −1i . Then the center of Hk is symmetric Laurent
polynomials

Z(Hk) = C[Y ±11 , . . . , Y ±1k ]W .

Yj =

j

j

We can encode central characters as maps

γ : {Y ±11 , . . . , Y ±1k } → C×

with equivalence under W action; i.e. representative k-tuples

γ = (γ1, . . . , γk) with γ(Y ±1i ) = (γi)
±1

c = (c1, . . . , ck) with γ(Y ±1i ) = t±ci

(when c is real, favorite representatives satisfy 0 ≤ c1 ≤ · · · ≤ ck.)



Central characters
The Hecke algebra Hk features invertible, pairwise commuting
elements Y1, . . . , Yk (weight lattice part).
The Weyl group W of type C (the group of signed permutations)
acts on C[Y ±11 , . . . , Y ±1k ] by permuting the subscripts, with
Y−i = Y −1i . Then the center of Hk is symmetric Laurent
polynomials

Z(Hk) = C[Y ±11 , . . . , Y ±1k ]W .

Yj =

j

j

We can encode central characters as maps

γ : {Y ±11 , . . . , Y ±1k } → C×

with equivalence under W action; i.e. representative k-tuples

γ = (γ1, . . . , γk) with γ(Y ±1i ) = (γi)
±1

c = (c1, . . . , ck) with γ(Y ±1i ) = t±ci

(when c is real, favorite representatives satisfy 0 ≤ c1 ≤ · · · ≤ ck.)



Central characters

The Hecke algebra Hk features invertible, pairwise commuting
elements Y1, . . . , Yk (weight lattice part).
The Weyl group W of type C (the group of signed permutations)
acts on C[Y ±11 , . . . , Y ±1k ] by permuting the subscripts, with
Y−i = Y −1i . Then the center of Hk is symmetric Laurent
polynomials

Z(Hk) = C[Y ±11 , . . . , Y ±1k ]W .

We can encode central characters as maps

γ : {Y ±11 , . . . , Y ±1k } → C×

with equivalence under W action;

i.e. representative k-tuples

γ = (γ1, . . . , γk) with γ(Y ±1i ) = (γi)
±1

c = (c1, . . . , ck) with γ(Y ±1i ) = t±ci

(when c is real, favorite representatives satisfy 0 ≤ c1 ≤ · · · ≤ ck.)



Central characters

The Hecke algebra Hk features invertible, pairwise commuting
elements Y1, . . . , Yk (weight lattice part).
The Weyl group W of type C (the group of signed permutations)
acts on C[Y ±11 , . . . , Y ±1k ] by permuting the subscripts, with
Y−i = Y −1i . Then the center of Hk is symmetric Laurent
polynomials

Z(Hk) = C[Y ±11 , . . . , Y ±1k ]W .

We can encode central characters as maps

γ : {Y ±11 , . . . , Y ±1k } → C×

with equivalence under W action; i.e. representative k-tuples

γ = (γ1, . . . , γk) with γ(Y ±1i ) = (γi)
±1

c = (c1, . . . , ck) with γ(Y ±1i ) = t±ci

(when c is real, favorite representatives satisfy 0 ≤ c1 ≤ · · · ≤ ck.)



Central characters

The Hecke algebra Hk features invertible, pairwise commuting
elements Y1, . . . , Yk (weight lattice part).
The Weyl group W of type C (the group of signed permutations)
acts on C[Y ±11 , . . . , Y ±1k ] by permuting the subscripts, with
Y−i = Y −1i . Then the center of Hk is symmetric Laurent
polynomials

Z(Hk) = C[Y ±11 , . . . , Y ±1k ]W .

We can encode central characters as maps

γ : {Y ±11 , . . . , Y ±1k } → C×

with equivalence under W action; i.e. representative k-tuples

γ = (γ1, . . . , γk) with γ(Y ±1i ) = (γi)
±1

c = (c1, . . . , ck) with γ(Y ±1i ) = t±ci

(when c is real, favorite representatives satisfy 0 ≤ c1 ≤ · · · ≤ ck.)



Central characters as points Restrict to real points.

Fav equivalence class reps: 0 ≤ c1 ≤ · · · ≤ ck.
When k = 2:

c1 = c2

(c1, c2)

hα2

hα2+2α1

hα1+α2 hα1

c2 = c1 + 1 c2 = −c1 + 1

c2 = −c1 + 1c2 = c1 − 1

c2 = c1 + 1 c2 = −c1 + 1

c2 = −c1 − 1c2 = c1 − 1

c2 = r1

c2 = r2

c1 = r1 c1 = r2

c2 = −r1

c2 = −r2

c1 = −r1c1 = −r2

The ris depend on Hk’s parameters t0 and tk: r1 = logt(t0/tk), r2 = logt(t0tk)
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Thm. (D.-Ram)
(1) Calibrated representations of Hk are indexed by skew local
regions at regular (interior red) points.
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