Central elements as parameters for centralizer algebras

Zajj Daugherty
(Joint with Arun Ram and Rahbar Virk)

September 3, 2014

The BMW algebra

Fix $z, q \in \mathbb{C}^{*}$.
The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands:

with multiplication given by stacking diagrams, subject to the relations

$$
\begin{aligned}
& \zeta_{i}^{\prime}=11 \\
& \therefore=\left\{\begin{array}{r}
\prime \\
A
\end{array}\right. \\
& \bigcirc=\frac{z-z^{-1}}{q-q^{-1}}+1 \\
& \grave{\jmath}=z \\
& \grave{\prime} \text { Y }=\left(q-q^{-1}\right)()(-\frown)
\end{aligned}
$$

The BMW algebra

Fix $z, q \in \mathbb{C}^{*}$.
The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands:

with multiplication given by stacking diagrams, subject to the relations

$$
\begin{aligned}
& S_{i}^{\prime}=11 \\
& \therefore=\{ \\
& \bigcirc=\frac{z-z^{-1}}{q-q^{-1}}+1 \\
& \curlywedge=z 1 \\
& \Lambda-Y=\left(q-q^{-1}\right)()(-\underset{\sim}{\sim})
\end{aligned}
$$

The BMW algebra

The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands, with multiplication given by stacking diagrams, subject to the relations

$$
=\frac{z-z^{-1}}{q-q^{-1}}+1=Z_{0}
$$

The BMW algebra

The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands, with multiplication given by stacking diagrams, subject to the relations

$$
\cdots=\frac{z-z^{-1}}{q-q^{-1}}+1=Z_{0}
$$

Multiplication:

The BMW algebra

The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands, with multiplication given by stacking diagrams, subject to the relations

$$
\cdots \bigcirc=\frac{z-z^{-1}}{q-q^{-1}}+1=Z_{0}
$$

Multiplication:

The BMW algebra

The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands, with multiplication given by stacking diagrams, subject to the relations

$$
\cdots \quad \frac{z-z^{-1}}{q-q^{-1}}+1=Z_{0}
$$

Multiplication:

The BMW algebra

The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands, with multiplication given by stacking diagrams, subject to the relations

$$
\cdots \bigcirc=\frac{z-z^{-1}}{q-q^{-1}}+1=Z_{0}
$$

Multiplication:

The BMW algebra

Fix $z, q \in \mathbb{C}^{*}$.
The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra of tangles on k strands:

with multiplication given by stacking diagrams, subject to the relations

$$
s_{i}^{\prime}=\mid 1
$$

$$
\mathrm{S}_{\mathrm{\prime}}^{\prime}=\mathrm{S}
$$

$$
=\frac{z-z^{-1}}{q-q^{-1}}+1
$$

$$
\grave{\jmath}=z \mid \quad \grave{\prime}-Y=\left(q-q^{-1}\right)()(-\leftrightharpoons)
$$

Introduced by Birman-Wenzl (1989) and Murakami (1986), giving a diagram algebra approach to the Kauffman polynomial of a link.

The affine BMW algebra

The affine BMW algebra $W_{k}(\cdots)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

The affine BMW algebra

The affine BMW algebra $W_{k}(\cdots)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

(central)

$$
Z_{0}
$$

The affine BMW algebra

The affine BMW algebra $W_{k}(\cdots)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

$$
Z_{0} \quad Z_{1}
$$

(central)

The affine BMW algebra

The affine BMW algebra $W_{k}(\cdots)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

The affine BMW algebra

The affine BMW algebra $W_{k}(\cdots)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

The affine BMW algebra

The affine BMW algebra $W_{k}\left(q, Z_{0}, Z_{ \pm 1}, Z_{ \pm 2}, \ldots\right)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

The affine BMW algebra

The affine BMW algebra $W_{k}\left(q, Z_{0}, Z_{ \pm 1}, Z_{ \pm 2}, \ldots\right)$ is the algebra of tangles on k strands in a space with a puncture (drawn as a pole)

with multiplication given by stacking diagrams, subject to the same relations, plus...

Admissibility conditions: For which choices of $\mathbf{Z}=\left\{Z_{\ell} \mid \ell \in \mathbb{Z}\right\}$ is $W_{k}(q, \mathbf{Z})$ nontrivial? Studied at length by Ariki-Mathas-Rui, Wilcox-Yu, Goodman-Mosley, etc..

The affine braid group B_{k}

The affine braid group B_{k} is the group of braids on k strands in a space with a puncture (drawn as a pole).

The affine braid group B_{k}

The affine braid group B_{k} is the group of braids on k strands in a space with a puncture (drawn as a pole).

Recall, the affine BMW algebra has the relation

$$
\grave{X-Y}=\left(q-q^{-1}\right)()(-\frown)
$$

So $W_{k}(q, \mathbf{Z})$ is the quotient of the group algebra of B_{k}.
(Orellana-Ram)

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules. Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules.
Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

The affine braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k}$:

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules. Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

Theorem (Orellana-Ram)
(1) The affine braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k}$.

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules.
Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

Theorem (Orellana-Ram)
(1) The affine braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k}$.
(2) When $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and $V=\mathbb{C}^{n}$, this action factors through the BMW quotient for the right choices of parameters.

Quantum groups and braids

Fix $q \in \mathbb{C}^{*}$. Let $U=U_{q} \mathfrak{g}$ be the Drinfel'd-Jimbo quantum group associated to a reductive Lie algebra \mathfrak{g}. Let V, M be U-modules. Then $U \otimes U$ has invertible $R=\sum_{R} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$.

Theorem (Orellana-Ram)
(1) The affine braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k}$.
(2) When $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and $V=\mathbb{C}^{n}$, this action factors through the BMW quotient for the right choices of parameters.

Start with B_{k} action; what do the parameters Z_{ℓ} turn out to be?

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\frown}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\mathrm{ev}} \mathbf{1} \xrightarrow{\mathrm{coev}} V \otimes V^{*}
$$ and v is a ribbon element in $U_{q} \mathfrak{g}$.

(don't worry: $V \cong V^{*}$)

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\check{\smile}}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\text { ev }} \mathbf{1} \xrightarrow{\text { coev }} V \otimes V^{*},
$$

and v is a ribbon element in $U_{q} \mathfrak{g}$.
(don't worry: $V \cong V^{*}$)

Wrapping around the pole:

$$
\underbrace{M \otimes V}_{M \otimes V}=\cdot \check{R}_{M V} \check{R}_{V M}
$$

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\check{\smile}}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\text { ev }} \mathbf{1} \xrightarrow{\text { coev }} V \otimes V^{*},
$$

and v is a ribbon element in $U_{q} \mathfrak{g}$.
(don't worry: $V \cong V^{*}$)

Wrapping around the pole:

$$
\underbrace{M \otimes V}_{M \otimes V}=\cdot \check{R}_{M V} \check{R}_{V M}
$$

And so

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\check{\smile}}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\mathrm{ev}} \mathbf{1} \xrightarrow{\mathrm{coev}} V \otimes V^{*},
$$

and v is a ribbon element in $U_{q} \mathfrak{g}$.
(don't worry: $V \cong V^{*}$)

Wrapping around the pole:

$$
\underbrace{M \otimes V}_{M \otimes V}=\cdot \check{R}_{M V} \check{R}_{V M}
$$

And so

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\check{\smile}}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\mathrm{ev}} \mathbf{1} \xrightarrow{\mathrm{coev}} V \otimes V^{*},
$$

and v is a ribbon element in $U_{q} \mathfrak{g}$.
(don't worry: $V \cong V^{*}$)
Wrapping around the pole: $\underbrace{9}_{M \otimes V}=\cdot \check{R}_{M V} \check{R}_{V M}$
And so

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\check{\smile}}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\mathrm{ev}} \mathbf{1} \xrightarrow{\mathrm{coev}} V \otimes V^{*},
$$

and v is a ribbon element in $U_{q} \mathfrak{g}$.
(don't worry: $V \cong V^{*}$)

Wrapping around the pole: $\underbrace{9}_{M \otimes V}=\cdot \check{R}_{M V} \check{R}_{V M}$
And so

(Drinfel'd 1990)

With $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V the natural representation, then the action of the braid group gives

$$
\check{\check{\smile}}=)\left(-\frac{1}{q-q^{-1}}(\nearrow-Y)= \pm E_{V}\right.
$$

where E_{V} is given by

$$
E_{V}: V \otimes V^{*} \xrightarrow{\left(v^{-1} \otimes 1\right) \check{R}_{V V^{*}}} V^{*} \otimes V \xrightarrow{\mathrm{ev}} \mathbf{1} \xrightarrow{\mathrm{coev}} V \otimes V^{*},
$$

and v is a ribbon element in $U_{q} \mathfrak{g}$.
(don't worry: $V \cong V^{*}$)

Wrapping around the pole: $\underbrace{9}_{M \otimes V}=\cdot \check{R}_{M V} \check{R}_{V M}$
And so

(Drinfel'd 1990)

Let

$$
Z_{\ell}= \pm\left(1 \otimes \operatorname{qtr}_{V}\right)\left(\left(z \check{R}_{21} \check{R}\right)^{\ell}\right) \in Z\left(U_{q} \mathfrak{g}\right)
$$

Wonderful things about $\left\{Z_{\ell} \mid \ell \in \mathbb{Z}\right\}$:
(1) These central elements
(a) are higher Casimir elements (defined by Reshetikhin-Takhtajan-Faddeev (1990)),
(b) which correspond to nice symmetric functions via Harish-Chandra.
(2) Admissibility conditions are satisfied by design.
(3) Recursion relations of Beliakova-Blanchet (1998) appear.

Let

$$
Z_{\ell}= \pm\left(1 \otimes \operatorname{qtr}_{V}\right)\left(\left(z \check{R}_{21} \check{R}\right)^{\ell}\right) \in Z\left(U_{q} \mathfrak{g}\right)
$$

Wonderful things about $\left\{Z_{\ell} \mid \ell \in \mathbb{Z}\right\}$:
(1) These central elements
(a) are higher Casimir elements (defined by Reshetikhin-Takhtajan-Faddeev (1990)),
(b) which correspond to nice symmetric functions via Harish-Chandra.
(2) Admissibility conditions are satisfied by design.
(3) Recursion relations of Beliakova-Blanchet (1998) appear.

Let's do it again!

The degenerate affine BMW algebra \mathcal{W}_{k}

Fix $\epsilon= \pm 1$. The degenerate affine BMW algebra $\mathcal{W}_{k}\left(\epsilon, z_{0}, z_{1}, \ldots\right)$ is the algebra with basis given by decorated Brauer diagrams

with multiplication given by stacking and resolving, subject to the relations

$$
\ngtr=\epsilon \quad \chi-X=)(-
$$

$$
\ell\left[\begin{array}{l}
0 \\
\vdots \\
\vdots
\end{array}\right]=z_{\ell}
$$

This algebra was introduced by Nazarov (1996), extending the Brauer algebra by Murphy elements.

The degenerate affine braid algebra \mathcal{B}_{k}

The degenerate affine braid algebra \mathcal{B}_{k} is the algebra of decorated permutations

with multiplication given by stacking and resolving diagrams, subject to relations

$$
\begin{aligned}
& \chi=)(\quad \text { and } \\
& X=X \\
& r=1+X=\dot{Y}(-X \\
& \text { and }
\end{aligned}
$$

The degenerate affine braid algebra \mathcal{B}_{k}

The degenerate affine braid algebra \mathcal{B}_{k} is the algebra of decorated permutations

with multiplication given by stacking and resolving diagrams, subject to relations

$$
\begin{aligned}
& X=1 \quad \text { and } \quad X=X \\
& r=1+X=\dot{Y}(-X \\
& \text { and }
\end{aligned}
$$

Thm. (D.-Ram-Virk) \mathcal{B}_{k} acts on $M \otimes V^{\otimes k}$, for $U \mathfrak{g}$-modules M, V, and commutes with the action of $U \mathfrak{g}$.
Action: Permutations act as expected;
γ acts via the Casimir, analogously to $\check{R}_{M V}$.

Recall, the degenerate affine BMW algebra has the relation

Thm. (D.-Ram-Virk) The algebra \mathcal{W}_{k} is a quotient of \mathcal{B}_{k}.
Further, when $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$, and $V=\mathbb{C}^{n}$ the action of \mathcal{B}_{k} gives an action of \mathcal{W}_{k} for good choices of parameters.

Recall, the degenerate affine BMW algebra has the relation

Thm. (D.-Ram-Virk) The algebra \mathcal{W}_{k} is a quotient of \mathcal{B}_{k}.
Further, when $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$, and $V=\mathbb{C}^{n}$ the action of \mathcal{B}_{k} gives an action of \mathcal{W}_{k} for good choices of parameters.

Again, starting with the action of the braid algebra and using Drinfel'd, we get

$$
z_{\ell}=\epsilon\left(1 \otimes \operatorname{tr}_{V}\right)\left((\gamma+\cdot)^{\ell}\right)
$$

a well-behaved central element of $U \mathfrak{g}$.

Recall, the degenerate affine BMW algebra has the relation

$$
\chi-\gg=)(-
$$

Thm. (D.-Ram-Virk) The algebra \mathcal{W}_{k} is a quotient of \mathcal{B}_{k}.
Further, when $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$, and $V=\mathbb{C}^{n}$ the action of \mathcal{B}_{k} gives an action of \mathcal{W}_{k} for good choices of parameters.

Again, starting with the action of the braid algebra and using Drinfel'd, we get

$$
z_{\ell}=\epsilon\left(1 \otimes \operatorname{tr}_{V}\right)\left((\gamma+\cdot)^{\ell}\right)
$$

a well-behaved central element of $U \mathfrak{g}$. Namely:
(1) These central elements
(a) are higher Casimir elements (defined by Perelomov-Popov (1967)),
(b) which correspond to nice symmetric functions via Harish-Chandra.
(2) Admissibility conditions are satisfied by design.
(3) Recursion relations of Nazarov (1996) appear.

