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Finite-dimensional permutation modules
Classical Schur-Weyl duality established an amazing duality between the representations the general linear
group GLn(C) and the symmetric group Sk via their commuting actions on

V ⊗k = V ⊗ · · · ⊗ V, where V = Cn.
In short, the action of CGLn produces the entire centralizer of the action of CSk in End(V ⊗k), and vice
versa. This double-centralizer relationship produces a multiplicity-free decomposition

V ⊗k =
⊕
λ`k

Gλ ⊗ Sλ, where Gλ are distinct simple GLn-modules, and
Sλ are distinct simple Sk-modules,

as a (GLn, Sk)-bimodule, which gives the duality{
isomorphism classes of

simple GLn modules in V ⊗k
}
←→

{
isomorphism classes of

simple Sk modules in V ⊗k
}
.

This is now only one of many examples of this phenomena, our favorite of which arises from restricting to
the permutation matrices inside of GLn; then the analog to Sk is the partition algebra, defined as follows.

The partition algebra.
Fix k ∈ Z>0, and denote [k] = {1, . . . , k} and [k′] = {1′, . . . , k′}, To each set partition of

[k] ∪ [k′] = {1, . . . , k, 1′, . . . , k′},
we associate a diagram, which is the equivalence class of graphs on vertices [k] ∪ [k′] whose connected
components determine the parts. For example, as diagrams,
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= {{1, 2, 1′}, {3}, {4, 2′, 3′, 4′}}.

Let Dk be the set of k-diagrams.
Fix an indeterminate x. There is a multiplication on diagrams given by stacking them, gluing the middle
vertices, and resolving the resulting connections; resolve any floating components by replacing each with
a factor of x. For example, if d1 and d2 are the first two diagrams in Table 1, then
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The partition algebra Pk(x) is spanned over C[x] by the diagrams in Dk, with this multiplication.

Duality between Sn and Pk(n).
Symmetric group action. The action of Sn on permutation module V = C{v1, . . . , vn} is given by
permuting subscripts; this action extends diagonally to the k-fold tensor product V ⊗k:

σ · vi1 ⊗ · · · ⊗ vik = vσ(i1) ⊗ · · · ⊗ vσ(ik). (1)

Partition algebra action. For each k-diagram d and each pair of k-tuples (i1, . . . , ik), (i1′, . . . , ik′) ∈ [n]k,
we define

d
(i1,...,ik)
(i1′,...,ik′)

=

{
1 if i` = im whenever vertices `,m ∈ [k] ∪ [k′] are connected in d,
0 otherwise.

Then d ∈ Dk acts on vi = vi1 ⊗ · · · ⊗ vik by d · vi =
∑

j∈[n]k
d

j
ivj.

Pictorially, each diagram encodes an (upward moving) map on a simple tensor:

d1

vi1 ⊗ vi2 ⊗ vi3 ⊗ vi4

v` ⊗ v` ⊗ vi4 ⊗ vi4δi1,i2

n∑
`=1 and d2

vi1 ⊗ vi2 ⊗ vi3 ⊗ vi4

v` ⊗ vi1 ⊗ vm ⊗ vi2δi2,i3,i4

n∑
`,m=1 (2)

Duality theorem (V. Jones, 1994). The actions of Sn and Pk(n) on V ⊗k commute with each other.
Further, all maps in End(V ⊗k) that commute with the action of Sn come from the action of Pk(n), and
vice versa.

Table 1: Examples of diagrams with relevant properties

d1 : Partition algebra diagram
with no restrictions

d2 : Bottom-propagating
diagram

d3 : Top-propagating diagram
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d4 : (non-uniform) Block
permutation

d5 : Uniform block permutation d6 : Permutation diagram
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Motivations for moving to S∞, and the resulting issues

Representation-theoretic stability.
Representation theorists are interested in the stability of the representation theory of of chains of groups,
most salient being the chain of finite symmetric groups

S1 ↪→ S2 ↪→ S3 ↪→ · · ·
n→∞−−−−→ S∞. (3)

In [Bowman et al., 2014], the authors use the duality between Sn and Pk(n) to study stability
in decomposition numbers of representations of symmetric groups (the Kronecker product). Both
[Church et al., 2012] and and [Sam and Snowden, 2013] use category-theoretic methods; the latter addi-
tionally make the connection to Schur-Weyl duality.
One way to think about all three papers is using the fact that, for all but a few values of n,

the representation theory of the partition algebra Pk(n) is independent of n.

So since all the representation theory of Sn can be passed via Schur-Weyl duality to Pk(n) for some k, it
must also be stable. However, depending on what you’re hoping to do with S∞ itself, the ‘right’ analog
to Pk(n) varies.

Symmetric functions.

The tensor space V ⊗k studied to the left is isomorphic as a vector space to the homogeneous degree-k
polynomial functions in n non-commuting variables x1, . . . , xn, with

vi1 ⊗ vi2 ⊗ · · · ⊗ vik 7→ xi1xi2 · · · xik.
The symmetric functions within this space are exactly the vectors fixed by the Sn-action, and so form a
natural Pk(n)-module.

d1

xi1 · xi2 · xi3 · xi4

x2
` · x2

i4δi1,i2

n∑
`=1 and

d2

xi1 · xi2 · xi3 · xi4

x` · xi1 · xm · xi2δi2,i3,i4

n∑
`,m=1

However, in the limit as the number of variables goes to infinity, so again does the parameter for Pk(n),
which is intractable. Further, V ⊗k itself approaches the countable-dimensional vector space, which has
no non-trivial symmetric elements (i.e. does not contain NCSym).
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Infinite-dimensional permutation modules

Let S∞ be the limit of the chain of finite symmetric groups in (3). To set up the study of analogs to the
partition algebra, we explored three main examples of the following goal.

Choose
(1) a vector space V containing a countable linearly independent subset {vi}i∈N, and
(2) an algebra of endomorphisms of V that are determined by their images on {vi}i∈N,
such that with the action of S∞ on the subscripts of {vi}i∈N, the algebra of endomor-
phisms in (2) contains the action of CS∞.

Countable-dimensional vector spaces
Let V be a countable-dimensional vector space with basis {vi}i∈N, so that

V ⊗k = C{vi}i∈Nn =

∑
i∈N

aivi

∣∣∣∣ ai = 0 for all but finitely many i

 ,

with vi = vi1⊗· · ·⊗vik. As observed in [Sam and Snowden, 2013], the centralizer of the diagonal action
of S∞ on V ⊗k is a subalgebra of partition algebra. However, the diagrams with isolated blocks on the
top (like d1 and d2 in Table 1) no longer have images in V ⊗k (as shown in (2)). Instead, the centralizer
of the action of S∞ in this case is the top-propagating partition algebra, spanned over C by diagrams
with no blocks containing only top vertices. For example, d1 and d2 in Table 1 are not top-propagating,
but the rest are top-propagating. Notice that the product of two top-propagating diagrams will never
have an isolated component, so no parameter x (or n) is needed.

p-power summable sequences
A Banach space is a normed vector space where every Cauchy sequence converges. A Schauder basis
for a Banach space V is a linearly independent set {v1, v2, . . . } such that every element v ∈ V can be
written uniquely as series v = a1v1 + a2v2 + · · · , with ai ∈ C.
Let V = Lp(N, µp) be the space of bounded sequences with weighted counting measure µp satisfying∑
i

µ
p
i <∞ (so that vector v1 + v2 + · · · is in V ). Then the analog to the k-fold tensor product is

V ⊗k = Lp(Nk, (µp)×k) =

{
v =

∑
i∈Nk

aivi ∈ CNk
∣∣∣∣ ‖v‖p =

∑
i∈Nk
|ai|pµ

p
i <∞

}
,

where vi = vi1 ⊗ · · · ⊗ vik and µi = µi1 · · ·µik = ‖vi‖. Then the set of endomorphisms which are
determined by their images on the Shauder basis {vi | i ∈ Nk} are the bounded operators B(V ⊗k) .
Note that the permutation action of S∞ are, indeed, bounded.
Then the centralizer of the action of CS∞ inside of B(V ⊗k) is the algebra of uniform block permutations.

Bounded sequences
Let V = `∞ be the Banach space of bounded sequences; then the analog to the k-fold tensor product is

`∞(Nk) =
{
v = (ai)i∈Nk ∈ CNk

∣∣∣∣ ‖v‖∞ = sup
i∈Nk
|ai| <∞

}
where vi = vi1⊗· · ·⊗vik = (δij)j∈Nk. Unfortunately, `

∞(Nk) has no countable Schauder bases. However,
we can restrict our consideration to operators that are determined by their actions on {vi | i ∈ Nk}.To
this end, let

BMat(`
∞(Nk)) =

{
A = (Aj

i)i,j∈Nk ∈ CNk×Nk
∣∣∣∣ ‖A‖Mat = sup

j∈Nk

{∑
i∈Nk
|Aj

i|
}
<∞

}
.

Again, this contains the action of CS∞ as desired.
Then the centralizer of the action of CS∞ inside of BMat(`

∞(Nk)) is the bottom-propagating partition
algebra.


