Centralizers of the infinite symmetric group

Zajj Daugherty and Peter Herbrich
Finite-dimensional permutation modules

Classical Schur-Weyl duality established an amazing duality between the representations the general linear group $G L_{n}(\mathbb{C})$ and the symmetric group S_{k} via their commuting actions on

$$
V^{\otimes k}=V \otimes \cdots \otimes V, \quad \text { where } V=\mathbb{C}^{n} .
$$

In short, the action of $\mathbb{C G L}_{n}$ produces the entire centralizer of the action of $\mathbb{C} S_{k}$ in $\operatorname{End}\left(V^{\otimes k}\right)$, and vice versa. This double-centralizer relationship produces a multiplicity-free decomposition

$$
V^{\otimes k}=\bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda}, \quad \text { where } \quad \begin{aligned}
& G^{\lambda} \text { are distinct simple } G L_{n} \text {-modules, and } \\
& S^{\lambda} \text { are distinct simple } S_{k} \text {-modules, }
\end{aligned}
$$

as a $\left(\mathrm{GL}_{n}, S_{k}\right)$-bimodule, which gives the duality

$$
\left.\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { simple GLL } \\
n
\end{array} \text { modules in } V^{\otimes k}\right\}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { isomorphism classes of } \\
\text { simple } S_{k} \text { modules in } V^{\otimes k}
\end{array}\right\}
$$

This is now only one of many examples of this phenomena, our favorite of which arises from restricting to the permutation matrices inside of GL_{n}; then the analog to S_{k} is the partition algebra, defined as follows.

The partition algebra.
Fix $k \in \mathbb{Z}_{>0}$, and denote $[k]=\{1, \ldots, k\}$ and $\left[k^{\prime}\right]=\left\{1^{\prime}, \ldots, k^{\prime}\right\}$, To each set partition of

$$
[k] \cup\left[k^{\prime}\right]=\left\{1, \ldots, k, 1^{\prime}, \ldots, k^{\prime}\right\},
$$

we associate a diagram, which is the equivalence class of graphs on vertices $[k] \cup\left[k^{\prime}\right]$ whose connected components determine the parts. For example, as diagrams,
$=\left\{\left\{1,2,1^{\prime}\right\},\{3\},\left\{4,2^{\prime}, 3^{\prime}, 4^{\prime}\right\}\right\}$
Let D_{k} be the set of k-diagrams.
Fix an indeterminate x. There is a multiplication on diagrams given by stacking them, gluing the middle vertices, and resolving the resulting connections; resolve any floating components by replacing each wit a factor of x. For example, if d_{1} and d_{2} are the first two diagrams in Table 1 , the

The partition algebra $P_{k}(x)$ is spanned over $\mathbb{C}[x]$ by the diagrams in D_{k}, with this multiplication
Duality between S_{n} and $P_{k}(n)$.
Symmetric group action. The action of S_{n} on permutation module $V=\mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}$ is given by permuting subscripts; this action extends diagonally to the k-fold tensor product V^{\otimes}

Partition algebra action. For each k-diagram d and each pair of k-tuples $\left(i_{1}, \ldots, i_{k}\right),\left(i_{1^{\prime}}, \ldots, i_{k^{\prime}}\right) \in[n]^{k}$, we define

$$
d_{\left(i_{1}, \ldots, \ldots, i_{k^{\prime}}\right)}^{\left(i_{1}, \ldots, i_{k}\right)}= \begin{cases}1 & \text { if } i_{\ell}=i_{m} \text { whenever vertices } \ell, m \in[k] \cup\left[k^{\prime}\right] \text { are connected in } d, \\ 0 & \text { otherwise. }\end{cases}
$$

Then $d \in D_{k}$ acts on $v_{\mathbf{i}}=v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ by $d \cdot v_{\mathbf{i}}=\sum_{\mathbf{j} \in[n]^{n}} d_{\mathbf{i}}^{\mathbf{j}} v_{\mathbf{j}}$.
Pictorially, each diagram encodes an (upward moving) map on a simple tensor:

$$
\begin{equation*}
\underset{v_{i_{1}} \otimes \dot{v_{i_{2}}} \otimes v_{i_{3}} \otimes v_{i_{4}}}{\delta_{i_{1}, i_{2}} \sum_{\ell=1}^{n} v_{\ell} \otimes v_{\ell} \otimes v_{i_{4}} \otimes v_{i_{4}}} d_{v_{1}} \text { and }{ }_{v_{i_{1}} \otimes, i_{3}, i_{4}}^{\delta_{4}} \sum_{\ell, m=1}^{n} v_{\ell} \otimes v_{i_{1}} \otimes v_{m} \otimes v_{m} \otimes v_{i_{3}} \tag{2}
\end{equation*}
$$

Duality theorem (V. Jones, 1994). The actions of S_{n} and $P_{k}(n)$ on $V^{\otimes k}$ commute with each other Further, all maps in $\operatorname{End}\left(V^{\otimes k}\right)$ that commute with the action of S_{n} come from the action of $P_{k}(n)$, and vice versa.

Table 1: Examples of diagrams with relevant properties

d_{1} : Partition algebra diagram with no restrictions	d_{2} : Bottom-propagating diagram	d_{3} : Top-propagating diagram
d_{4} : (non-uniform) Block permutation	d_{5} : Uniform block permutation	d_{6} : Permutation diagram

Motivations for moving to S_{∞}, and the resulting issues
Representation-theoretic stability.
Representation theorists are interested in the stability of the representation theory of of chains of groups, most salient being the chain of finite symmetric groups

$$
\begin{equation*}
S_{1} \hookrightarrow S_{2} \hookrightarrow S_{3} \hookrightarrow \cdots \xrightarrow{n \rightarrow \infty} S_{\infty} . \tag{3}
\end{equation*}
$$

In [Bowman et al., 2014], the authors use the duality between S_{n} and $P_{k}(n)$ to study stability [Church et al., 2012] and and [Sam and Snowden, 2013] use category-theoretic methods; the latter additionally make the connection to Schur-Weyl duality
One way to think about all three papers is using the fact that, for all but a few values of n,
the representation theory of the partition algebra $P_{k}(n)$ is independent of n. So since all the representation theory of S_{n} can be passed via Schur-Weyl duality to $P_{k}(n)$ for some k, it must also be stable. However, depending on what you're hoping to do with S_{∞} itself, the 'right' analog
to $P_{k}(n)$ varies.

Symmetric functions.

The tensor space $V^{\otimes k}$ studied to the left is isomorphic as a vector space to the homogeneous degree- k polynomial functions in n non-commuting variables x_{1}, \ldots, x_{n}, with

$$
v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}} \mapsto x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
$$

The symmetric functions within this space are exactly the vectors fixed by the S_{n}-action, and so form a natural $P_{k}(n)$-module.

However, in the limit as the number of variables goes to infinity, so again does the parameter for $P_{k}(n)$, which is intractable. Further, $V^{\otimes k}$ itself approaches the countable-dimensional vector space, which has no non-trivial symmetric elements (i.e. does not contain NCSym)
References
(Bowman et al., 2014] Bowman, C., de Visscher, M., and Orellana, R. (2014)
The partition algebra and the kronecker coefficients.
Bowman et al., 2014 Bowman, C.. de Visscher, M., and
The partition algebra and the kroneckerc coefficients.
Trans Amer and
[Church et al., 2012] Church, T., Elenberg, J. S., and Farb, B. (2012)
Fi-modules: a new approach to stability for S_{n}-representations.
[Sam and Snowden, 2013] Sam, S. V. and Snowden, A. (2013).
Stability patterms in representation theory

Infinite-dimensional permutation modules
Let S_{∞} be the limit of the chain of finite symmetric groups in (3). To set up the study of analogs to the partition algebra, we explored three main examples of the following goal.
Choose
(1) a vector space V containing a countable linearly independent subset $\left\{v_{i}\right\}_{i \in \mathbb{N}}$, and (2) an algebra of endomorphisms of V that are determined by their images on $\left\{v_{i}\right\}_{i \in \mathbb{N}}$ such that with the action of S_{∞} on the subscripts of $\left\{v_{i}\right\}_{i \in \mathbb{N}}$, the algebra of endomorphisms in (2) contains the action of $\mathbb{C} S_{\infty}$.

Countable-dimensional vector spaces
Let V be a countable-dimensional vector space with basis $\left\{v_{i}\right\}_{i \in \mathbb{N}}$, so that

$$
V^{\otimes k}=\mathbb{C}\left\{v_{i}\right\}_{i \in \mathbb{N}^{n}}=\left\{\sum_{i \in \mathbb{N}} a_{i} v_{\mathbf{i}} \mid a_{i}=0 \text { for all but finitely many } i\right\}
$$

with $v_{\mathrm{i}}=v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$. As observed in [Sam and Snowden, 2013], the centralizer of the diagonal action of S_{∞} on $V^{\otimes k}$ is a subalgebra of partition algebra. However, the diagrams with isolated blocks on the top (like d_{1} and d_{2} in Table 1) no longer have images in $V^{\otimes k '}$ (as shown in (2)). Instead, the centralizer of the action of S_{∞} in this case is the top-propagating partition algebra, spanned over \mathbb{C} by diagrams with no blocks containing only top vertices. For example, d_{1} and d_{2} in Table 1 are not top-propagating,
but the rest are top-propagating. Notice that the product of two top-propagating diagrams will never but the rest are top-propagating. Notice that the product of two top-propagating diagrams will neve
p-power summable sequences
A Banach space is a normed vector space where every Cauchy sequence converges. A Schauder basis for a Banach space V is a linearly independent set $\left\{v_{1}, v_{2}, \ldots\right\}$ such that every element $v \in V$ can be written uniquely as series v
Let $V=L^{p}\left(\mathbb{N}, \mu^{p}\right)$ be the space of bounded sequences with weighted counting measure μ^{p} satisfying $\sum \mu_{i}^{p}<\infty$ (so that vector $v_{1}+v_{2}+\cdots$ is in V). Then the analog to the k-fold tensor product is

$$
\overline{V^{\otimes k}}=L^{p}\left(\mathbb{N}^{k},\left(\mu^{p}\right)^{\times k}\right)=\left\{v=\left.\sum_{\mathbf{i} \in \mathbb{N}^{k}} a_{i} v_{\mathbf{i}} \in \mathbb{C}^{\mathbb{N}^{k}}\left|\|v\|^{p}=\sum_{\mathbf{i} \in \mathbb{N}^{k}}\right| a_{\mathbf{i}}\right|^{p} \mu_{\mathbf{i}}^{p}<\infty\right\},
$$

where $v_{\mathrm{i}}=v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ and $\mu_{\mathrm{i}}=\mu_{i_{1}} \cdots \mu_{i_{k}}=\left\|v_{\mathrm{i}}\right\|$. Then the set of endomorphisms which are determined by their images on the Shauder basis $\left\{v_{\mathbf{i}} \mid \mathbf{i} \in \mathbb{N}^{k}\right\}$ are the bounded operators $\mathcal{B}\left(\overline{V^{\otimes k}}\right)$ Note that the permutation action of S_{∞} are, indeed, bounded.
Then the centralizer of the action of $\mathbb{C} S_{\infty}$ inside of $\mathcal{B}\left(V^{\otimes k}\right)$ is the algebra of uniform block permutations.
Bounded sequences
Let $V=\ell^{\infty}$ be the Banach space of bounded sequences; then the analog to the k-fold tensor product is

$$
\ell^{\infty}\left(\mathbb{N}^{k}\right)=\left\{v=\left(a_{\mathbf{i}}\right)_{i \in \mathbb{N}^{k}} \in \mathbb{C}^{\mathbb{N}^{k}}\left|\|v\|_{\infty}=\sup _{\mathbf{i} \in \mathbb{N}^{k}}\right| a_{\mathbf{i}} \mid<\infty\right\}
$$

where $v_{\mathbf{i}}=v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}=\left(\delta_{\mathrm{ij}}\right)_{\mathbf{j} \in \mathbb{N}^{k}}$. Unfortunately, $\ell^{\infty}\left(\mathbb{N}^{k}\right)$ has no countable Schauder bases. However we can restrict our consideration to operators that are determined by their actions on $\left\{v_{\mathbf{i}} \mid \mathbf{i} \in \mathbb{N}^{k}\right\}$. To
this end, let this end, let

$$
\mathcal{B}_{\text {Mat }}\left(\ell^{\infty}\left(\mathbb{N}^{k}\right)\right)=\left\{A=\left(A_{\mathbf{i}}^{\mathbf{j}}\right)_{\mathrm{i}, \mathbf{j} \in \mathbb{N}^{k}} \in \mathbb{C}^{\mathbb{N}^{k} \times \mathbb{N}^{k}} \mid\|A\|_{\mathrm{Mat}}=\sup _{\mathbf{j} \in \mathbb{N}^{k} k}\left\{\sum_{\mathbf{i} \in \mathbb{N}^{k}}\left|A_{\mathbf{i}}^{\mathbf{j}}\right|\right\}<\infty\right\} .
$$

Again, this contains the action of $\mathbb{C} S_{\infty}$ as desired.
Then the centralizer of the action of $\mathbb{C} S_{\infty}$ inside of $\mathcal{B}_{\text {Mat }}\left(\ell^{\infty}\left(\mathbb{N}^{k}\right)\right)$ is the bottom-propagating partition algebra.

