Tensor spaces, braid groups, and some remarkable quotients.

Zajj Daugherty

February 10, 2014

The **symmetric group** S_k (permutations) as diagrams:

The **symmetric group** S_k (permutations) as diagrams:

(with multiplication given by concatenation)

The **symmetric group** S_k (permutations) as diagrams:

(with multiplication given by concatenation)

The **symmetric group** S_k (permutations) as diagrams:

(with multiplication given by concatenation)

 $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

 $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

 S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

 $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

 S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

These actions commute!

 $gv_2 \otimes gv_4 \otimes gv_1 \otimes gv_5 \otimes gv_3$ VS.

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$

 $\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{\text{(img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left((\mathbb{C}^n)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{\text{(img of }\operatorname{GL}_n}.$

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{\text{(img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left((\mathbb{C}^n)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{\text{(img of }\operatorname{GL}_n}.$$

Why this is exciting:

The double-centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda \quad \text{ as a GL_n-S_k bimodule,}$$

where G^{λ} are distinct irreducible GL_n -modules S^{λ} are distinct irreducible S_k -modules

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better.

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left(\left(\mathbb{C}^n\right)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{\text{(img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left(\left(\mathbb{C}^n\right)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{\text{(img of }\operatorname{GL}_n)}.$$

Why this is exciting:

The double-centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k}\cong igoplus_{\lambda\vdash k} G^\lambda\otimes S^\lambda$$
 as a $\mathrm{GL}_n ext{-}S_k$ bimodule,

where G^{λ} are distinct irreducible GL_n -modules S^{λ} are distinct irreducible S_k -modules

For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n = \left(G^{\square \square} \otimes S^{\square \square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right)$$

Brauer (1937)

Orthogonal and symplectic groups acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**:

Brauer (1937)

Orthogonal and symplectic groups acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**:

Temperley-Lieb (1971) GL_2 and SL_2 acting on $(\mathbb{C}^2)^{\otimes k}$ diagonally centralize the **Temperley-Lieb algebra**:

Brauer (1937)

Orthogonal and symplectic groups (and Lie algebras) acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**:

Temperley-Lieb (1971) GL_2 and SL_2 (and \mathfrak{gl}_2 and \mathfrak{sl}_2) acting on $(\mathbb{C}^2)^{\otimes k}$ diagonally centralize the **Temperley-Lieb algebra**:

Brauer (1937)

Orthogonal and symplectic groups (and Lie algebras) acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**:

Temperley-Lieb (1971) GL_2 and SL_2 (and \mathfrak{gl}_2 and \mathfrak{sl}_2) acting on $(\mathbb{C}^2)^{\otimes k}$ diagonally centralize the **Temperley-Lieb algebra**:

Either way:

Diagrams encoding maps $V^{\otimes k} \to V^{\otimes k}$ that commute with the action of some classical algebra.

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$.

One deformation of $\mathfrak g$ is the Drinfel'd-Jimbo quantum group $\mathcal U=\mathcal U_a\mathfrak g$.

Let $\mathfrak g$ be a Lie algebra, and fix $q\in\mathbb C.$

One deformation of $\mathfrak g$ is the Drinfel'd-Jimbo quantum group $\mathcal U=\mathcal U_q\mathfrak g$. $\mathcal U\otimes\mathcal U$ has an invertible element $\mathcal R=\sum_{\mathcal R}R_1\otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW}\colon V\otimes W\longrightarrow W\otimes V$$

- that (1) satisfies braid relations, and
- (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -module V.

Let $\mathfrak g$ be a Lie algebra, and fix $q\in\mathbb C.$

One deformation of $\mathfrak g$ is the Drinfel'd-Jimbo quantum group $\mathcal U=\mathcal U_q\mathfrak g$. $\mathcal U\otimes\mathcal U$ has an invertible element $\mathcal R=\sum_{\mathcal R}R_1\otimes R_2$ that yields a map

 $V \otimes W$

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

- that (1) satisfies braid relations, and
- (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -module V.

The braid group shares a commuting action with \mathcal{U} on $V^{\otimes k}$:

Let $\mathfrak g$ be a Lie algebra, and fix $q\in\mathbb C.$

One deformation of $\mathfrak g$ is the Drinfel'd-Jimbo quantum group $\mathcal U=\mathcal U_q\mathfrak g$. $\mathcal U\otimes\mathcal U$ has an invertible element $\mathcal R=\sum_{\mathcal R}R_1\otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

$$V \otimes W$$

- that (1) satisfies braid relations, and
- (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -module V.

The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k}$:

Let $\mathfrak g$ be a Lie algebra, and fix $q\in\mathbb C.$

One deformation of $\mathfrak g$ is the Drinfel'd-Jimbo quantum group $\mathcal U=\mathcal U_q\mathfrak g$. $\mathcal U\otimes\mathcal U$ has an invertible element $\mathcal R=\sum_{\mathcal R}R_1\otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

$$V \otimes W$$

- that (1) satisfies braid relations, and
- (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -module V.

The two-pole braid group shares a commuting action with $\mathcal U$ on $M\otimes V^{\otimes k}\otimes N$:

Universal

Type B, C, D

Type A (gen. & sp. linear)

Small Type A

 $V = \square$

 $(GL_2 \& SL_2)$

(orthog. & sympl.)

Universal

Type B, C, D

(orthog. & sympl.)

Type A

(gen. & sp. linear)

Small Type A

(GL₂ & SL₂)

 $V = \square$

 $M \otimes (V^{\otimes k})$

 $M \otimes (V^{\otimes k}) \otimes N$

Affine Hecke of type C (+twists)

Type A

Small Type A

Type B, C, D

Universal

Lie grp/alg

Quantum groups

Nazarov (95): Introduced the degenerate affine BMW algebras

$$eoxed{D}=z_\ell\in\mathbb{C}$$

Implicitly showed an action on $M \otimes V^{\otimes k}$ commuting with the action of the Lie algebras of types B, C, D.

Nazarov (95): Introduced the degenerate affine BMW algebras

Implicitly showed an action on $M\otimes V^{\otimes k}$ commuting with the action of the Lie algebras of types B, C, D.

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

Nazarov (95): Introduced the degenerate affine BMW algebras

Implicitly showed an action on $M\otimes V^{\otimes k}$ commuting with the action of the Lie algebras of types B, C, D.

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Some results:

- (a) The center of each algebra.
- (b) Difficult "admissibility conditions" handled.
- (c) Powerful "intertwiner" operators.

(More to come)

Type A

Small Type A

Type B, C, D

Universal

Universal

Type B, C, D

(orthog. & sympl.)

Type A

(gen. & sp. linear)

Small Type A

 $(GL_2 \& SL_2)$

 $V = \square$

 $M \otimes (V^{\otimes k})$

 $M \otimes (V^{\otimes k}) \otimes N$

Affine Hecke of type A (+twists)

Two-pole braids

Affine Hecke of type C (+twists)

Type B, C, D

(orthog. & sympl.)

Type A

(gen. & sp. linear)

Small Type A

Two boundary algebras:

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

Universal

Type B, C, D

Type A

(gen. & sp. linear)

Small Type A

(GL₂ & SL₂)

Two boundary algebras:

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

Universal

Type B, C, D

Type A

(gen. & sp. linear)

Small Type A

(GL2 & SL2)

Two boundary algebras:

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

D. (2010): The centralizer of \mathfrak{gl}_n acting on tensor space $M \otimes V^{\otimes k} \otimes N$ displays type C combinatorics for good choices of M, N, and V.

Type C Weyl group and affine Hecke algebra

$$m_{i,j} = \begin{cases} 2 & \text{if} & \stackrel{i}{O} & \stackrel{j}{O} \\ 3 & \text{if} & \stackrel{i}{O} & \stackrel{j}{O} \end{cases}$$

Type C Weyl group and affine Hecke algebra

The **Weyl group of type C** is generated by s_0, \ldots, s_{k-1} with relations $s_i^2 = 1$ and

$$\underbrace{s_i s_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{s_j s_i \dots}_{m_{i,j} \text{ factors}} \qquad \text{where} \qquad \underbrace{m_{i,j}}_{j} = \underbrace{s_j s_i \dots}_{j} \\ \underbrace{s_i s_j \dots}_{j} = \underbrace{s_j s_i \dots}_{j} \\ \underbrace{s_j s_j \dots}_{j} = \underbrace{s_j s_j \dots}_{j} \\ \underbrace{s_j n_j \dots}_{j} = \underbrace{s_j s_j \dots}_{j} \\ \underbrace{s_j s_j \dots}_{j} = \underbrace{s_j s_j \dots}_{j} \\ \underbrace{s_j n_j \dots}_{j} \\ \underbrace{s_j n_j \dots}_{j} = \underbrace{s_j n_j \dots}_{j} \\ \underbrace{s_j n_j \dots}_{j} = \underbrace{s_j n_j \dots}_{j} \\ \underbrace{s_j n_j \dots}_{j} = \underbrace{s_j n_j \dots}_{j} \\ \underbrace{s_$$

Type C Weyl group and affine Hecke algebra

The **Weyl group of type C** is generated by s_0, \ldots, s_{k-1} with relations $s_i^2 = 1$ and

$$\underbrace{s_i s_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{s_j s_i \dots}_{m_{i,j} \text{ factors}} \qquad \text{where} \qquad \underbrace{m_{i,j} = \underbrace{s_j s_i \dots}_{j}}_{2 \text{ if } 0 \text{ o}} \underbrace{s_j s_j \dots}_{j} \underbrace{s_j s_j \dots}_{j}$$

Fix constants a_0, a_k , and $a_1 = \cdots = a_{k-1}$. The **affine Hecke** algebra of type C, H_k , is generated by T_0, T_1, \ldots, T_k with relations

$$T_i^2 = (a_i - a_i^{-1})T_i + 1, \qquad \underbrace{T_i T_j \dots}_{m_{i,j} \text{ factors}} = \underbrace{T_j T_i \dots}_{m_{i,j} \text{ factors}}.$$

$$T_k = \cdots$$
 and $T_i = \bigcup_{i=i+1}^{i} \cdots$ for $1 \leq i \leq k-1$.

$$T_i T_{i+1} T_i =$$

$$= T_{i+1} T_i T_{i+1}$$

The two-boundary (two-pole) braid group
$$B_k$$
 is generated by
$$T_k = \cdots$$
 and
$$T_i = \bigvee_{i=i+1}^{i} for \ 1 \leq i \leq k-1.$$

$$T_i T_{i+1} T_i = \bigvee_{i=i+1}^{i} T_{i+1} T_{i+1}$$

(similar picture for
$$T_k T_{k-1} T_k T_{k-1} = T_{k-1} T_k T_{k-1} T_k$$
)

Theorem (D.-Ram, degenerate version in [Da10])

- ① Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules. The two-boundary braid group B_k acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- 2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for appropriate choices of M, N, and V), the affine Hecke algebra of type C, H_k , acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.

Theorem (D.-Ram, degenerate version in [Da10])

- ① Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules. The two-boundary braid group B_k acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- ② If $\mathfrak{g} = \mathfrak{gl}_n$, then (for appropriate choices of M, N, and V), the affine Hecke algebra of type C, H_k , acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.

Some results:

- (a) A combinatorial classification and construction of irreducible representations of H_k (type C with distinct parameters).
- (b) A diagrammatic intuition behind otherwise unwieldy calculations in TL_k and H_k .
- (c) A classification of the representations of TL_k in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.

Thanks!

[Da10] Degenerate two-boundary centralizer algebras, Pacific J. Math., 258-1 (2012) 91–142.

[DRV14] Affine and degenerate affine BMW algebras: the center, with Arun Ram and Rahbar Virk, to appear in to appear in Osaka J. Math., 51-1 (2014).

[DRV13] Affine and degenerate affine BMW algebras: actions on tensor space, with Arun Ram and Rahbar Virk, Selecta Math., 19-2 (2013) 611–653.

[DR] Two boundary Hecke Algebras and the combinatorics of type (C_n^{\vee},C) Hecke algebras, with Arun Ram (in progress).

Type A

Type B, C, D

Universal

Small Type A