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GL,(C) actson C" @ C" ® - -- @ C* = (C™)®" diagonally.
g (W@ Qu) =gu @U@ guy.
S} also acts on ((C")®k by place permutation.

V2 ® U4 @V ® V5 ® U3

V1 ® V2 Y V3 ® V4 ® Us

These actions commute!
gu2 @ gus ¥ gu1 & gUs @ gUs3 gu2 @ gus ¥ gu1 & gus K gus
VS.

gu1 @ gug @ gus @ guy @ gus v ® vy @ vy ® vy ® vy
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Schur (1901): Sy and GL,, have commuting actions on (C")®"
Even better,

Endegr, ((@n)®k): 7(CSy) and Endg, ((cn)®k) p(CGL,).
——

——
(all linear maps that (img of S, (img of GLj,,
commute with GL,,) action) action)

Why this is exciting:
The double-centralizer relationship produces

(c") Bk GBG)‘ ® S* asa GL,-S) bimodule,
Ak

where G* are distinct irreducible  GL,,-modules
SA  are distinct irreducible  S;-modules

For example,

C"@C@C" = (GID@S ) (GE}H@SE}H)@(G@@S@)
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More centralizer algebras

Brauer (1937) Temperley-Lieb (1971)
Orthogonal and symplectic groups GL5 and SLy (and gly, and sls) act-
(and Lie algebras) acting on ing on (C?)®* diagonally centralize
(C™)®k diagonally centralize the Temperley-Lieb algebra:
the Brauer algebra:
n 2
51},(: ZU} R Vi Vg R Vg K Vg 5(:.(1 ZU“ R V; ® Vi Q Vp X Ve
= B = |
Va Q@ Vb ® Ve ® Vd ® Ve Vg @ Vb Q Ve ® Vd R Ve

with T D =n with C O =2

Either way:
Diagrams encoding maps V& — V®* that commute with the
action of some classical algebra.
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Quantum groups and braids

Let g be a Lie algebra, and fix ¢ € C.
One deformation of g is the Drinfel'd-Jimbo quantum group U = U,g.
U @ U has an invertible element R = 3", R1 ® R that yields a map

WeV
Ryw:VOW —WaeV C

Vew

that (1) satisfies braid relations, and
(2) commutes with the action on V&F
for any U-module V.

The two-pole braid group shares a commuting action
with U on M @ VE* @ N

MV @ V.o V.o V & VI

[RERSSS Y

MV @ V@ V. V @ VeN
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Nazarov (95): Introduced the degenerate affine
BMW algebras

e Bt

Implicitly showed an action on M @ V®* com-
muting with the action of the Lie algebras of
types B, C, D.

Haring-Oldenburg (98) and Orellana-Ram
(04): Introduced the affine BMW algebras.
[OR04] gave the action on M @ V¥ commuting
with the action of the quantum groups of types
B, C, D.

D.-Ram-Virk: Used these centralizer relation-
ships to study these two algebras simultaneously.
Some results:

(a) The center of each algebra.

(b) Difficult “admissibility conditions” handled.
(c) Powerful “intertwiner” operators.

(More to come)
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Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model
with additional integrable boundary terms, introduced the two-boundary
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de Gier, Nichols (2008): Explored representation theory of T'Lj, using
diagrams and established a connection to the affine Hecke algebras of
type A and C.
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Two boundary algebras:

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model
with additional integrable boundary terms, introduced the two-boundary
Temperley-Lieb algebra T'Ly:

non-crossing diagrams

" «_-o
5
3k
5
3
-

I |
I 1

k dots

de Gier, Nichols (2008): Explored representation theory of T'Lj, using
diagrams and established a connection to the affine Hecke algebras of
type A and C.

D. (2010): The centralizer of gl,, acting on tensor space M ® V&% @ N
displays type C combinatorics for good choices of M, N, and V.

N (ypa)@m
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Type C Weyl group and affine Hecke algebra

The Weyl group of type C is generated by sq, ..., sp_1 with
relations s? = 1 and

_ i J

2 if O O

S§iS5 ... = 8§58 ... where miy; = 3 if Oi Cj
SN—— SN——

m;,j factors  m; ; factors i j

4 if O=0O

Fix constants ag, ag, and a1 = --- = ai_1. The affine Hecke
algebra of type C, Hy, is generated by Ty, 11, ..., T, with
relations
T? = (a; — a; )Ti + 1, TTy... = T/T;... .
N—— ——

m; ; factors m; ; factors



Why the two-boundary braid group is type C

The two-boundary (two-pole) braid group By is generated by
i 1+l

f > B ,
Tk:---:/\“ Tozﬂ\.--- and Ti:% for1 <i<k-—1.

i 1+l
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Why the two-boundary braid group is type C
The two-boundary (two-pole) braid group By is generated by

i i+l
Tk:---ﬁ TO:K.“ and Ti:X for1 <i<k-—1.
i i+l

o—0—0C0—"70C—"70O  O——C=—0

B s
TT T, = (K‘\) - & = T TiT
SH S
TOT1TOT1 = = - = TITOTITO
T | ¢

(similar picture for TpTyp—1TxTe—1 = Tp—1TkTk—1T%)




Theorem (D.-Ram, degenerate version in [Dal0])

@ Let U = U,g for any complex reductive Lie algebras g.
Let M, N, and V be finite-dimensional modules.

The two-boundary braid group By, acts on M @ (V)®* @ N and this
action commutes with the action of U.

@ If g = gl,,, then (for appropriate choices of M, N, and V),
the affine Hecke algebra of type C, Hy, acts on M @ (V)®* @ N
and this action commutes with the action of U.
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@ Let U = U,g for any complex reductive Lie algebras g.
Let M, N, and V be finite-dimensional modules.

The two-boundary braid group By, acts on M @ (V)®* @ N and this
action commutes with the action of U.

@ If g = gl,,, then (for appropriate choices of M, N, and V),
the affine Hecke algebra of type C, Hy, acts on M @ (V)®* @ N
and this action commutes with the action of U.

Some results:

(a) A combinatorial classification and construction of irreducible
representations of Hy (type C with distinct parameters).

(b) A diagrammatic intuition behind otherwise unwieldy calculations in
TL]c and Hk.

(c) A classification of the representations of T'Ly, in [dGNO08] via central
characters, including answers to open questions and conjectures
regarding their irreducibility and isomorphism classes.



Thanks!
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