Centralizers of the infinite symmetric group

Zajj Daugherty
Joint with Peter Herbrich
Dartmouth College

November 26, 2013

Schur-Weyl duality - a warm-up

Start with the symmetric group S_{k} : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Schur-Weyl duality - a warm-up

Start with the symmetric group S_{k} : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.

Schur-Weyl duality - a warm-up

Start with the symmetric group S_{k} : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.

Schur-Weyl duality - a warm-up

Start with the symmetric group S_{k} : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.

Schur-Weyl duality - a warm-up

Centralizer algebras: (Schur 1901)

Schur-Weyl duality - a warm-up

Centralizer algebras: (Schur 1901)

1. $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

Schur-Weyl duality - a warm-up

Centralizer algebras: (Schur 1901)

1. $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

2. S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

Schur-Weyl duality - a warm-up

Centralizer algebras: (Schur 1901)

1. $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

2. S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

3. These actions commute!

$$
g v_{3} \otimes g v_{1} \otimes g v_{5} \otimes g v_{2} \otimes g v_{4}
$$

vs.

Schur-Weyl duality - a warm-up

Schur-Weyl duality: S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and their images fully centralize each in End $\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)$.

Schur-Weyl duality - a warm-up

Schur-Weyl duality: S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and their images fully centralize each in End $\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)$.

Why this is exciting: Huge transfer of information!
Centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule }
$$

where $\begin{array}{cll}G^{\lambda} & \text { are distinct irreducible } & \mathrm{GL}_{n} \text {-modules } \\ S^{\lambda} & \text { are distinct irreducible } & S_{k} \text {-modules }\end{array}$

Schur-Weyl duality - a warm-up

Schur-Weyl duality: S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and their images fully centralize each in End $\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)$.

Why this is exciting: Huge transfer of information!
Centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where G^{λ} are distinct irreducible GL_{n}-modules
For example,
$\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n} \cong\left(G^{\square \square} \otimes S^{\square \square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right)$

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

What commutes?

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

What commutes?
Permutation of the factors again.

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

What commutes?
Permutation of the factors again.

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

What commutes?
Permutation of the factors again.

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

What commutes?
Permutation of the factors again.

Switching roles: the partition algebra

Let V be the permutation representation of S_{n} :

$$
n \times n \text { matrices with } 1 \text { 's and } 0 \text { 's } \quad \text { i.e. } \quad \sigma \cdot v_{i}=v_{\sigma(i)}
$$

Now let S_{n} act diagonally on $V^{\otimes k}$:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)}
$$

What commutes?
Permutation of the factors again.

Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$
[k]=\{1, \ldots, k\} \quad \text { and } \quad\left[k^{\prime}\right]=\left\{1^{\prime}, \ldots, k^{\prime}\right\} .
$$

Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$
[k]=\{1, \ldots, k\} \quad \text { and } \quad\left[k^{\prime}\right]=\left\{1^{\prime}, \ldots, k^{\prime}\right\} .
$$

We're interested in set partitions of $[k] \cup\left[k^{\prime}\right]$.

Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$
[k]=\{1, \ldots, k\} \quad \text { and } \quad\left[k^{\prime}\right]=\left\{1^{\prime}, \ldots, k^{\prime}\right\} .
$$

We're interested in set partitions of $[k] \cup\left[k^{\prime}\right]$. Either as sets of sets

$$
d=\left\{\left\{1,2,1^{\prime}\right\},\{3\},\left\{2^{\prime}, 3^{\prime}, 4^{\prime}, 4\right\}\right\}
$$

or as diagrams (considering connected components)

Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$
[k]=\{1, \ldots, k\} \quad \text { and } \quad\left[k^{\prime}\right]=\left\{1^{\prime}, \ldots, k^{\prime}\right\} .
$$

We're interested in set partitions of $[k] \cup\left[k^{\prime}\right]$. Either as sets of sets

$$
d=\left\{\left\{1,2,1^{\prime}\right\},\{3\},\left\{2^{\prime}, 3^{\prime}, 4^{\prime}, 4\right\}\right\}
$$

or as diagrams (considering connected components)

(Both encode the map $\left.v_{a} \otimes v_{b} \otimes v_{c} \otimes v_{d} \mapsto \delta_{b=c=d}\left(v_{a} \otimes v_{a}\right) \otimes \sum_{i=1}^{n} v_{i} \otimes v_{b}\right)$

The partition algebra

Multiplying diagrams:

The partition algebra $P_{k}(n)$ is the \mathbb{C}-span of the partition diagrams with this product.

The partition algebra

Multiplying diagrams:

The partition algebra $P_{k}(n)$ is the \mathbb{C}-span of the partition diagrams with this product.

Nice facts:
(*) Associative algebra with identity $1=\left\{\left\{1,1^{\prime}\right\}, \ldots,\left\{k, k^{\prime}\right\}\right\}$.
$(*) \operatorname{dim}\left(P_{k}(n)\right)=$ the Bell number $B(2 k)$.
$(*) S_{n}$ and $P_{k}(n)$ centralize each other in $\operatorname{End}\left(V^{\otimes k}\right)$.

A connection to symmetric functions

As a consequence of the commuting relationship, the S_{n}-invariants in $V^{\otimes k}$ form a natural $P_{k}(n)$-module.

A connection to symmetric functions

As a consequence of the commuting relationship, the S_{n}-invariants in $V^{\otimes k}$ form a natural $P_{k}(n)$-module. In fact, a basis for the S_{n}-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:

A connection to symmetric functions

As a consequence of the commuting relationship, the S_{n}-invariants in $V^{\otimes k}$ form a natural $P_{k}(n)$-module. In fact, a basis for the S_{n}-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:
-• $\longleftrightarrow m_{\{\{1\},\{2\},\{3\}\}}=\sum_{1 \leq a, b, c \leq n} v_{a} \otimes v_{b} \otimes v_{c}$

A connection to symmetric functions

As a consequence of the commuting relationship, the S_{n}-invariants in $V^{\otimes k}$ form a natural $P_{k}(n)$-module. In fact, a basis for the S_{n}-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:

And the action is still by concatenation:

A connection to symmetric functions

As a consequence of the commuting relationship, the S_{n}-invariants in $V^{\otimes k}$ form a natural $P_{k}(n)$-module. In fact, a basis for the S_{n}-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:

And the action is still by concatenation:

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:

$$
v_{a} \otimes v_{b} \otimes v_{a} \quad \longleftrightarrow \quad x_{a} x_{b} x_{a} \quad \text { and } \quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}
$$

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:

$$
v_{a} \otimes v_{b} \otimes v_{a} \quad \longleftrightarrow \quad x_{a} x_{b} x_{a} \quad \text { and } \quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}
$$

So $P_{k}(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_{n}}$.

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:
$v_{a} \otimes v_{b} \otimes v_{a} \quad \longleftrightarrow \quad x_{a} x_{b} x_{a} \quad$ and $\quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}$.
So $P_{k}(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_{n}}$. Hopf algebras and symmetric functions:

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:
$v_{a} \otimes v_{b} \otimes v_{a} \longleftrightarrow x_{a} x_{b} x_{a} \quad$ and $\quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}$.
So $P_{k}(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_{n}}$. Hopf algebras and symmetric functions:
(*) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions.

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:
$v_{a} \otimes v_{b} \otimes v_{a} \longleftrightarrow x_{a} x_{b} x_{a} \quad$ and $\quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}$.
So $P_{k}(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_{n}}$.

Hopf algebras and symmetric functions:

(*) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions.
(*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_{k} \mathbb{C} S_{k}$ to other classes of symmetric functions.

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of
$\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:
$v_{a} \otimes v_{b} \otimes v_{a} \quad \longleftrightarrow \quad x_{a} x_{b} x_{a} \quad$ and $\quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}$.
So $P_{k}(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_{n}}$.

Hopf algebras and symmetric functions:

(*) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions.
(*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_{k} \mathbb{C} S_{k}$ to other classes of symmetric functions.
(*) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of uniform block permutations) and symmetric functions in non-commuting variables.

A connection to symmetric functions

Identify $V^{\otimes k}$ with the homogeneous degree- k elements of
$\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with non-commuting variables, via $v_{a} \leftrightarrow x_{a}$:
$v_{a} \otimes v_{b} \otimes v_{a} \quad \longleftrightarrow \quad x_{a} x_{b} x_{a} \quad$ and $\quad v_{a} \otimes v_{b} \otimes v_{b} \quad \longleftrightarrow \quad x_{a} x_{b}^{2}$.
So $P_{k}(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_{n}}$.

Hopf algebras and symmetric functions:

$(*)$ Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions.
(*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_{k} \mathbb{C} S_{k}$ to other classes of symmetric functions.
(*) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of uniform block permutations) and symmetric functions in non-commuting variables.

Issue: finitely many versus countably many variables!

Moving to the infinite symmetric group

Natural inclusion: $S_{n} \subset S_{n+1}$ as permutations fixing $n+1$.
Consider the limit

$$
S_{1} \hookrightarrow S_{2} \hookrightarrow S_{3} \hookrightarrow \cdots \rightarrow S_{\infty},
$$

so that S_{∞} is the group of bijections on \mathbb{N} which fix all but finitely many elements.

Moving to the infinite symmetric group

Natural inclusion: $S_{n} \subset S_{n+1}$ as permutations fixing $n+1$.
Consider the limit

$$
S_{1} \hookrightarrow S_{2} \hookrightarrow S_{3} \hookrightarrow \cdots \rightarrow S_{\infty}
$$

so that S_{∞} is the group of bijections on \mathbb{N} which fix all but finitely many elements.
Let S_{∞} act on the set $\left\{v_{i}\right\}_{i \in \mathbb{N}}$ by $\sigma \cdot v_{i}=v_{\sigma(i)}$.

Moving to the infinite symmetric group

Natural inclusion: $S_{n} \subset S_{n+1}$ as permutations fixing $n+1$.
Consider the limit

$$
S_{1} \hookrightarrow S_{2} \hookrightarrow S_{3} \hookrightarrow \cdots \rightarrow S_{\infty}
$$

so that S_{∞} is the group of bijections on \mathbb{N} which fix all but finitely many elements.
Let S_{∞} act on the set $\left\{v_{i}\right\}_{i \in \mathbb{N}}$ by $\sigma \cdot v_{i}=v_{\sigma(i)}$.

Want:

(1) A vector space V containing a countable linearly independent subset $\left\{v_{i}\right\}_{i \in \mathbb{N}}$;
(2) an appropriate notion of $V^{\otimes k}$; and
(3) an algebra of endomorphisms on $V^{\otimes k}$
i. whose elements are determined by their image on v_{i} 's, and
ii. which contains S_{∞} via the above action.

Three examples explored:

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}=\mathbb{C}\left\{v_{1}, v_{2}, \ldots\right\}$.
2. Banach space of p-power summable sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{p}<\infty\right\}
$$

3. Banach space of ℓ^{∞} bounded sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{\infty}<\infty\right\}
$$

Three examples explored:

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}=\mathbb{C}\left\{v_{1}, v_{2}, \ldots\right\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $\left.k=1, \sum_{i} v_{i} \notin V\right)$ (Sam-Snowden 2013: representation theoretic stability)
2. Banach space of p-power summable sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{p}<\infty\right\}
$$

3. Banach space of ℓ^{∞} bounded sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{\infty}<\infty\right\}
$$

Three examples explored:

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}=\mathbb{C}\left\{v_{1}, v_{2}, \ldots\right\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $\left.k=1, \sum_{i} v_{i} \notin V\right)$ (Sam-Snowden 2013: representation theoretic stability)
2. Banach space of p-power summable sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{p}<\infty\right\}
$$

Good: Can get all the necessary S_{∞} invariants in each degree. Bad: Must restrict to bounded maps, yielding restrictive results.
3. Banach space of ℓ^{∞} bounded sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{\infty}<\infty\right\}
$$

Three examples explored:

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}=\mathbb{C}\left\{v_{1}, v_{2}, \ldots\right\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $\left.k=1, \sum_{i} v_{i} \notin V\right)$ (Sam-Snowden 2013: representation theoretic stability)
2. Banach space of p-power summable sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{p}<\infty\right\}
$$

Good: Can get all the necessary S_{∞} invariants in each degree. Bad: Must restrict to bounded maps, yielding restrictive results.
3. Banach space of ℓ^{∞} bounded sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{\infty}<\infty\right\}
$$

Good: Has all the S_{∞} invariants, and admits a larger set of maps. Bad: Even bounded maps aren't well-behaved for our purposes.

Three examples explored:

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}=\mathbb{C}\left\{v_{1}, v_{2}, \ldots\right\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $\left.k=1, \sum_{i} v_{i} \notin V\right)$ (Sam-Snowden 2013: representation theoretic stability)
2. Banach space of p-power summable sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{p}<\infty\right\}
$$

Good: Can get all the necessary S_{∞} invariants in each degree. Bad: Must restrict to bounded maps, yielding restrictive results.
3. Banach space of ℓ^{∞} bounded sequences

$$
V=\left\{v=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}} \mid\|v\|_{\infty}<\infty\right\}
$$

Good: Has all the S_{∞} invariants, and admits a larger set of maps. Bad: Even bounded maps aren't well-behaved for our purposes.

Good/Bad?

2 and 3 yield non-unitary and non-semisimple representations!

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \operatorname{End}\left(V^{\otimes k}\right)$ commutes with the action of S_{∞}, it acts like a linear combination of partition algebra diagrams.
Additionally, to be in $\operatorname{End}\left(V^{\otimes k}\right)$, its image must be a finite linear combination of v_{i} 's.

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \operatorname{End}\left(V^{\otimes k}\right)$ commutes with the action of S_{∞}, it acts like a linear combination of partition algebra diagrams.
Additionally, to be in $\operatorname{End}\left(V^{\otimes k}\right)$, its image must be a finite linear combination of v_{i} 's.

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \operatorname{End}\left(V^{\otimes k}\right)$ commutes with the action of S_{∞}, it acts like a linear combination of partition algebra diagrams.
Additionally, to be in $\operatorname{End}\left(V^{\otimes k}\right)$, its image must be a finite linear combination of v_{i} 's.

$$
\delta_{a, b}\left(v_{a} \otimes\left(\sum_{i} v_{i}\right)\right)
$$

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \operatorname{End}\left(V^{\otimes k}\right)$ commutes with the action of S_{∞}, it acts like a linear combination of partition algebra diagrams.
Additionally, to be in $\operatorname{End}\left(V^{\otimes k}\right)$, its image must be a finite linear combination of v_{i} 's.

Yes!

No!

1. Countable dimensional vector space $V=\mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \operatorname{End}\left(V^{\otimes k}\right)$ commutes with the action of S_{∞}, it acts like a linear combination of partition algebra diagrams.
Additionally, to be in $\operatorname{End}\left(V^{\otimes k}\right)$, its image must be a finite linear combination of v_{i} 's.

Result: The top-propagating partition algebra, generated by diagrams with no block isolated to the top.
(Sam-Snowden: the upward partition category glues all k together)

2. Banach space of p-power summable sequences

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that

$$
\left\|\sum_{i} v_{i}\right\|_{p}=\|(1,1,1, \ldots)\|_{p}=\sum_{i} \mu_{i}^{p}<\infty
$$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.)

2. Banach space of p-power summable sequences

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that

$$
\left\|\sum_{i} v_{i}\right\|_{p}=\|(1,1,1, \ldots)\|_{p}=\sum_{i} \mu_{i}^{p}<\infty .
$$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.) We restrict to continuous/bounded endomorphisms $\mathcal{B}\left(\overline{V^{\otimes k}}\right)$.

2. Banach space of p-power summable sequences

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that

$$
\left\|\sum_{i} v_{i}\right\|_{p}=\|(1,1,1, \ldots)\|_{p}=\sum_{i} \mu_{i}^{p}<\infty .
$$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.)
We restrict to continuous/bounded endomorphisms $\mathcal{B}\left(V^{\otimes k}\right)$.
Again, if the $\varphi \in \mathcal{B}\left(\overline{V^{\otimes k}}\right)$ commutes with S_{∞}, it acts like a linear combination of partition algebra diagrams.

2. Banach space of p-power summable sequences

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that

$$
\left\|\sum_{i} v_{i}\right\|_{p}=\|(1,1,1, \ldots)\|_{p}=\sum_{i} \mu_{i}^{p}<\infty .
$$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.) We restrict to continuous/bounded endomorphisms $\mathcal{B}\left(\overline{V^{\otimes k}}\right)$.

Again, if the $\varphi \in \mathcal{B}\left(\overline{V^{\otimes k}}\right)$ commutes with S_{∞}, it acts like a linear combination of partition algebra diagrams. However, boundedness then additionally restricts to maps whose image on simple tensors is a permutation of factors.
(All other partition diagrams have unbounded images).

2. Banach space of p-power summable sequences

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that

$$
\left\|\sum_{i} v_{i}\right\|_{p}=\|(1,1,1, \ldots)\|_{p}=\sum_{i} \mu_{i}^{p}<\infty .
$$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.)
We restrict to continuous/bounded endomorphisms $\mathcal{B}\left(\overline{V^{\otimes k}}\right)$.
Again, if the $\varphi \in \mathcal{B}\left(\overline{V^{\otimes k}}\right)$ commutes with S_{∞}, it acts like a linear combination of partition algebra diagrams. However, boundedness then additionally restricts to maps whose image on simple tensors is a permutation of factors.
(All other partition diagrams have unbounded images).
Result: The algebra of uniform block permutations, generated by diagrams whose blocks have the same size on top as on bottom.

Yes:

No:

(Same algebra as in Aguiar-Orellana!)

3. Banach space of ℓ^{∞}-bounded sequences

Sequences $\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}}$ whose entries are bounded.
Issue: Even ℓ^{∞}-bounded endomorphisms are not determined by their images on $\left\{v_{i}\right\}_{i \in \mathbb{N}}$.

3. Banach space of ℓ^{∞}-bounded sequences

Sequences $\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}}$ whose entries are bounded.
Issue: Even ℓ^{∞}-bounded endomorphisms are not determined by their images on $\left\{v_{i}\right\}_{i \in \mathbb{N}}$. So let $\mathcal{B}_{\text {Mat }}\left(\overline{V^{\otimes k}}\right)$ be the algebra of ℓ^{∞}-bounded maps which can be written as matrices.
(The sums across rows are ℓ_{∞} bounded.)

3. Banach space of ℓ^{∞}-bounded sequences

Sequences $\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}}$ whose entries are bounded.
Issue: Even ℓ^{∞}-bounded endomorphisms are not determined by their images on $\left\{v_{i}\right\}_{i \in \mathbb{N}}$. So let $\mathcal{B}_{\text {Mat }}\left(\overline{V^{\otimes k}}\right)$ be the algebra of ℓ^{∞}-bounded maps which can be written as matrices.
(The sums across rows are ℓ_{∞} bounded.)
Result: The bottom-propagating partition algebra, generated by diagrams with no block isolated to the bottom. (Isomorphic to case 1)

No:

Putting it back into context

Remark 1: Orellana et al. (in progress) show that if a diagram Hopf algebra (as in [MR95] or [AO08]) is built from partition diagrams, those diagrams can have no blocks isolated to the top or bottom rows.
Case 1: no application to symmetric functions.
Case 2: tied to symmetric functions in [AO08]. Question: Is there a fix for case 3?

Putting it back into context

Remark 1: Orellana et al. (in progress) show that if a diagram Hopf algebra (as in [MR95] or [AO08]) is built from partition diagrams, those diagrams can have no blocks isolated to the top or bottom rows.
Case 1: no application to symmetric functions.
Case 2: tied to symmetric functions in [AO08].
Question: Is there a fix for case 3?
Remark 2: For all three cases, even for $k=1$, the centralizer algebra is spanned by \bullet, so is isomorphic to \mathbb{C}. However, in cases 2 and 3, we expected more since V has an invariant subspace. This discrepancy comes from the fact that the action of S_{∞} is not semisimple.
Question: Can we use this framework to study certain non-unitary representations of S_{∞} ?

