
Centralizers of the infinite symmetric group

Zajj Daugherty

Joint with Peter Herbrich

Dartmouth College

November 26, 2013



Schur-Weyl duality – a warm-up

Start with the symmetric group Sk: permutations of 1, . . . , k.
Depict using permutation diagrams:
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Multiplication computed by concatenation.
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Schur-Weyl duality – a warm-up
Centralizer algebras: (Schur 1901)

1. GLn(C) acts on Cn ⊗ Cn ⊗ · · · ⊗ Cn = (Cn)⊗k diagonally.

g · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

2. Sk also acts on (Cn)⊗k by place permutation.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗v3 v1 v5 v2 v4

3. These actions commute!

gv1 gv2 gv3 gv4 gv5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4

vs.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4
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Schur-Weyl duality – a warm-up

Schur-Weyl duality: Sk and GLn have commuting actions on

(Cn)⊗k, and their images fully centralize each in End
(
(Cn)⊗k

)
.

Why this is exciting: Huge transfer of information!

Centralizer relationship produces

(Cn)⊗k ∼=
⊕
λ`k

Gλ ⊗ Sλ as a GLn-Sk bimodule,

where
Gλ are distinct irreducible GLn-modules
Sλ are distinct irreducible Sk-modules

For example,

Cn ⊗ Cn ⊗ Cn ∼=
(
G ⊗ S

)
⊕
(
G ⊗ S

)
⊕

G ⊗ S
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Switching roles: the partition algebra

Let V be the permutation representation of Sn:

n× n matrices with 1’s and 0’s i.e. σ · vi = vσ(i)

Now let Sn act diagonally on V ⊗k:

σ · (vi1 ⊗ · · · ⊗ vik) = vσ(i1) ⊗ · · · ⊗ vσ(ik)

What commutes?
Permutation of the factors again. But lots more!

ϕ

⊗ ⊗ ⊗va vb vc vd

δa=b=c (va ⊗ va)⊗
(∑n

i=1 vi ⊗ vi
)
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Set partitions

Fix k ∈ Z>0, and let

[k] = {1, . . . , k} and [k′] = {1′, . . . , k′}.

We’re interested in set partitions of [k] ∪ [k′]. Either as sets of sets

d = {{1, 2, 1′}, {3}, {2′, 3′, 4′, 4}}

or as diagrams (considering connected components)

1

1’

2

2’

3

3’

4

4’

=

1

1’

2

2’

3

3’

4

4’

(Both encode the map va⊗ vb⊗ vc⊗ vd 7→ δb=c=d(va⊗ va)⊗
n∑

i=1

vi⊗ vb)
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The partition algebra

Multiplying diagrams:

1

1’

2

2’

3

3’

4

4’

1” 2” 3” 4”

= n1

1’

1

2’

2

3’

3

4’

4

The partition algebra Pk(n) is the C-span of the partition
diagrams with this product.

Nice facts:
(∗) Associative algebra with identity 1 = {{1, 1′}, . . . , {k, k′}}.
(∗) dim(Pk(n)) = the Bell number B(2k).
(∗) Sn and Pk(n) centralize each other in End(V ⊗k).
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A connection to symmetric functions

As a consequence of the commuting relationship, the Sn-invariants
in V ⊗k form a natural Pk(n)-module.

In fact, a basis for the
Sn-invariants is indexed by set partitions of [k], i.e. half diagrams:

←→ m{{1},{2},{3}} =
∑

1≤a,b,c≤n

va ⊗ vb ⊗ vc

←→ m{{1,3},{2}} =
∑

1≤a,b≤n

va ⊗ vb ⊗ va

And the action is still by concatenation:

d :

m{{1},{2},{3,4}}

= n2
m{{1,2},{3},{4}}
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A connection to symmetric functions

Identify V ⊗k with the homogeneous degree-k elements of
C[x1, . . . , xn] with non-commuting variables, via va ↔ xa:

va⊗ vb⊗ va ←→ xaxbxa and va⊗ vb⊗ vb ←→ xax
2
b .

So Pk(n) acts on the degree k homogeneous elements of C[x]Sn .

Hopf algebras and symmetric functions:
(∗) Gessel (1984): duality between the Solomon descent algebra
and the Hopf algebra of the quasi-symmetric functions.
(∗) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to
connect the graded Hopf algebra

⊕
k CSk to other classes of

symmetric functions.
(∗) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger
diagram Hopf algebra (of uniform block permutations) and
symmetric functions in non-commuting variables.

Issue: finitely many versus countably many variables!
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and the Hopf algebra of the quasi-symmetric functions.
(∗) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to
connect the graded Hopf algebra

⊕
k CSk to other classes of

symmetric functions.

(∗) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger
diagram Hopf algebra (of uniform block permutations) and
symmetric functions in non-commuting variables.

Issue: finitely many versus countably many variables!
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Moving to the infinite symmetric group

Natural inclusion: Sn ⊂ Sn+1 as permutations fixing n+ 1.
Consider the limit

S1 ↪→ S2 ↪→ S3 ↪→ · · · → S∞,

so that S∞ is the group of bijections on N which fix all but finitely
many elements.

Let S∞ act on the set {vi}i∈N by σ · vi = vσ(i).

Want:

(1) A vector space V containing a countable linearly independent
subset {vi}i∈N;

(2) an appropriate notion of V ⊗k; and

(3) an algebra of endomorphisms on V ⊗k

i. whose elements are determined by their image on vi’s, and
ii. which contains S∞ via the above action.
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Three examples explored:

1. Countable dimensional vector space V = C(N) = C{v1, v2, ...}.

Good: Well-behaved vector space.
Bad: No non-trivial S∞ invariants! e.g. if k = 1,

∑
i vi /∈ V )

(Sam-Snowden 2013: representation theoretic stability)

2. Banach space of p-power summable sequences

V = {v = (a1, a2, . . . ) ∈ CN | ||v||p <∞}.

Good: Can get all the necessary S∞ invariants in each degree.

Bad: Must restrict to bounded maps, yielding restrictive results.

3. Banach space of `∞ bounded sequences

V = {v = (a1, a2, . . . ) ∈ CN | ||v||∞ <∞}.

Good: Has all the S∞ invariants, and admits a larger set of maps.

Bad: Even bounded maps aren’t well-behaved for our purposes.

Good/Bad?

2 and 3 yield non-unitary and non-semisimple representations!
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1. Countable dimensional vector space V = C(N)

If the ϕ ∈ End(V ⊗k) commutes with the action of S∞, it acts like
a linear combination of partition algebra diagrams.

Additionally, to be in End(V ⊗k), its image must be a finite linear
combination of vi’s.

ϕ

⊗va vb

va ⊗ va

Yes!

ϕ

⊗va vb

δa,b

(
va ⊗

(∑
i vi
))

No!

Result: The top-propagating partition algebra, generated by
diagrams with no block isolated to the top.
(Sam-Snowden: the upward partition category glues all k together)
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2. Banach space of p-power summable sequences

Place a metric µ on CN so that∣∣∣∣∑
i vi
∣∣∣∣
p
= ||(1, 1, 1, . . . )||p =

∑
i µ

p
i <∞.

(Enough to get all expected invariants in the closure of V ⊗k for each k.)

We restrict to continuous/bounded endomorphisms B(V ⊗k).

Again, if the ϕ ∈ B(V ⊗k) commutes with S∞, it acts like a linear
combination of partition algebra diagrams.
However, boundedness then additionally restricts to maps whose
image on simple tensors is a permutation of factors.
(All other partition diagrams have unbounded images).

Result: The algebra of uniform block permutations, generated by
diagrams whose blocks have the same size on top as on bottom.

Yes: No:

(Same algebra as in Aguiar-Orellana!)
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3. Banach space of `∞-bounded sequences

Sequences (a1, a2, . . . ) ∈ CN whose entries are bounded.

Issue: Even `∞-bounded endomorphisms are not determined by
their images on {vi}i∈N.

So let BMat(V ⊗k) be the algebra of
`∞-bounded maps which can be written as matrices.

(The sums across rows are `∞ bounded.)

Result: The bottom-propagating partition algebra, generated by
diagrams with no block isolated to the bottom. (Isomorphic to case 1)

Yes: No:



3. Banach space of `∞-bounded sequences

Sequences (a1, a2, . . . ) ∈ CN whose entries are bounded.

Issue: Even `∞-bounded endomorphisms are not determined by
their images on {vi}i∈N. So let BMat(V ⊗k) be the algebra of
`∞-bounded maps which can be written as matrices.

(The sums across rows are `∞ bounded.)

Result: The bottom-propagating partition algebra, generated by
diagrams with no block isolated to the bottom. (Isomorphic to case 1)

Yes: No:



3. Banach space of `∞-bounded sequences

Sequences (a1, a2, . . . ) ∈ CN whose entries are bounded.

Issue: Even `∞-bounded endomorphisms are not determined by
their images on {vi}i∈N. So let BMat(V ⊗k) be the algebra of
`∞-bounded maps which can be written as matrices.

(The sums across rows are `∞ bounded.)

Result: The bottom-propagating partition algebra, generated by
diagrams with no block isolated to the bottom. (Isomorphic to case 1)

Yes: No:



Putting it back into context

Remark 1: Orellana et al. (in progress) show that if a diagram
Hopf algebra (as in [MR95] or [AO08]) is built from partition
diagrams, those diagrams can have no blocks isolated to the top or
bottom rows.

Case 1: no application to symmetric functions.
Case 2: tied to symmetric functions in [AO08].
Question: Is there a fix for case 3?

Remark 2: For all three cases, even for k = 1, the centralizer
algebra is spanned by , so is isomorphic to C.
However, in cases 2 and 3, we expected more since V has an
invariant subspace. This discrepancy comes from the fact that the
action of S∞ is not semisimple.

Question: Can we use this framework to study certain non-unitary
representations of S∞?
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