Centralizers of the infinite symmetric group

Zajj Daugherty

Joint with Peter Herbrich

Dartmouth College

November 26, 2013

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.

Centralizer algebras: (Schur 1901)

Centralizer algebras: (Schur 1901)

1. $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

 $g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$

Centralizer algebras: (Schur 1901)

1. $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

 $g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

Centralizer algebras: (Schur 1901)

1. $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

 $g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

3. These actions commute!

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\operatorname{End}\left((\mathbb{C}^n)^{\otimes k}\right)$.

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\operatorname{End}\left((\mathbb{C}^n)^{\otimes k}\right)$.

Why this is exciting: Huge transfer of information! Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$
 as a GL_n - S_k bimodule,

where $egin{array}{cc} G^\lambda & \mbox{are distinct irreducible} & {\rm GL}_n\mbox{-modules} \\ S^\lambda & \mbox{are distinct irreducible} & S_k\mbox{-modules} \end{array}$

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\operatorname{End}\left((\mathbb{C}^n)^{\otimes k}\right)$.

Why this is exciting: Huge transfer of information! Centralizer relationship produces

 $(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda \quad \text{ as a } \operatorname{GL}_n\text{-}S_k \text{ bimodule,}$

where $\begin{array}{c} G^{\lambda} & \mbox{are distinct irreducible} & \mbox{GL}_n\mbox{-modules} \\ S^{\lambda} & \mbox{are distinct irreducible} & S_k\mbox{-modules} \end{array}$ For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n \cong \left(G^{\square\square} \otimes S^{\square\square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right)$$

 \square

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n :

 $n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

Fix $k \in \mathbb{Z}_{>0}$, and let $[k] = \{1, \dots, k\}$ and $[k'] = \{1', \dots, k'\}.$

We're interested in set partitions of $[k] \cup [k']$.

Fix $k \in \mathbb{Z}_{>0}$, and let $[k] = \{1, \dots, k\}$ and $[k'] = \{1', \dots, k'\}$. We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets $d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$

or as diagrams (considering connected components)

Fix $k \in \mathbb{Z}_{>0}$, and let $[k] = \{1, \dots, k\}$ and $[k'] = \{1', \dots, k'\}$. We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets $d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$

or as diagrams (considering connected components)

(Both encode the map $v_a \otimes v_b \otimes v_c \otimes v_d \mapsto \delta_{b=c=d}(v_a \otimes v_a) \otimes \sum_{i=1}^n v_i \otimes v_b$)

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

- (*) Associative algebra with identity $1 = \{\{1, 1'\}, \dots, \{k, k'\}\}$.
- (*) $\dim(P_k(n)) =$ the Bell number B(2k).
- (*) S_n and $P_k(n)$ centralize each other in $End(V^{\otimes k})$.

As a consequence of the commuting relationship, the S_n -invariants in $V^{\otimes k}$ form a natural $P_k(n)$ -module.

As a consequence of the commuting relationship, the S_n -invariants in $V^{\otimes k}$ form a natural $P_k(n)$ -module. In fact, a basis for the S_n -invariants is indexed by set partitions of [k], i.e. half diagrams:

As a consequence of the commuting relationship, the S_n -invariants in $V^{\otimes k}$ form a natural $P_k(n)$ -module. In fact, a basis for the S_n -invariants is indexed by set partitions of [k], i.e. half diagrams:

As a consequence of the commuting relationship, the S_n -invariants in $V^{\otimes k}$ form a natural $P_k(n)$ -module. In fact, a basis for the S_n -invariants is indexed by set partitions of [k], i.e. half diagrams:

And the action is still by concatenation:

As a consequence of the commuting relationship, the S_n -invariants in $V^{\otimes k}$ form a natural $P_k(n)$ -module. In fact, a basis for the S_n -invariants is indexed by set partitions of [k], i.e. half diagrams:

And the action is still by concatenation:

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \quad \longleftrightarrow \quad x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \quad \longleftrightarrow \quad x_a x_b^2.$

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \quad \longleftrightarrow \quad x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \quad \longleftrightarrow \quad x_a x_b^2.$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_n}$.

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \iff x_a x_b x_a$ and $v_a \otimes v_b \otimes v_b \iff x_a x_b^2$. So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_n}$.

Hopf algebras and symmetric functions:

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \quad \longleftrightarrow \quad x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \quad \longleftrightarrow \quad x_a x_b^2.$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_n}$.

Hopf algebras and symmetric functions:

 (\ast) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions.

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \quad \longleftrightarrow \quad x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \quad \longleftrightarrow \quad x_a x_b^2.$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_n}$.

Hopf algebras and symmetric functions:

(*) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions. (*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_k \mathbb{C}S_k$ to other classes of symmetric functions.

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \quad \longleftrightarrow \quad x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \quad \longleftrightarrow \quad x_a x_b^2.$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_n}$.

Hopf algebras and symmetric functions:

(*) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions. (*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_k \mathbb{C}S_k$ to other classes of symmetric functions.

(*) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of *uniform block permutations*) and symmetric functions in non-commuting variables.

Identify $V^{\otimes k}$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

 $v_a \otimes v_b \otimes v_a \quad \longleftrightarrow \quad x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \quad \longleftrightarrow \quad x_a x_b^2.$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^{S_n}$.

Hopf algebras and symmetric functions:

(*) Gessel (1984): duality between the Solomon descent algebra and the Hopf algebra of the quasi-symmetric functions. (*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_k \mathbb{C}S_k$ to other classes of symmetric functions.

(*) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of *uniform block permutations*) and symmetric functions in non-commuting variables.

Issue: finitely many versus countably many variables!

Moving to the infinite symmetric group

Natural inclusion: $S_n \subset S_{n+1}$ as permutations fixing n+1. Consider the limit

$$S_1 \hookrightarrow S_2 \hookrightarrow S_3 \hookrightarrow \cdots \to S_\infty,$$

so that S_∞ is the group of bijections on $\mathbb N$ which fix all but finitely many elements.

Moving to the infinite symmetric group

Natural inclusion: $S_n \subset S_{n+1}$ as permutations fixing n+1. Consider the limit

$$S_1 \hookrightarrow S_2 \hookrightarrow S_3 \hookrightarrow \cdots \to S_\infty,$$

so that S_∞ is the group of bijections on $\mathbb N$ which fix all but finitely many elements.

Let S_{∞} act on the set $\{v_i\}_{i\in\mathbb{N}}$ by $\sigma \cdot v_i = v_{\sigma(i)}$.

Moving to the infinite symmetric group

Natural inclusion: $S_n \subset S_{n+1}$ as permutations fixing n+1. Consider the limit

$$S_1 \hookrightarrow S_2 \hookrightarrow S_3 \hookrightarrow \cdots \to S_\infty,$$

so that S_∞ is the group of bijections on $\mathbb N$ which fix all but finitely many elements.

Let S_{∞} act on the set $\{v_i\}_{i\in\mathbb{N}}$ by $\sigma \cdot v_i = v_{\sigma(i)}$.

Want:

- A vector space V containing a countable linearly independent subset {v_i}_{i∈N};
- (2) an appropriate notion of $V^{\otimes k}$; and
- (3) an algebra of endomorphisms on $V^{\otimes k}$
 - i. whose elements are determined by their image on v_i 's, and
 - ii. which contains S_{∞} via the above action.

1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, ...\}$.

2. Banach space of *p*-power summable sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_p < \infty \}.$$

3. Banach space of ℓ^{∞} bounded sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_{\infty} < \infty \}.$$

- 1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, ...\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! (Sam-Snowden 2013: representation theoretic stability)
- 2. Banach space of *p*-power summable sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_p < \infty \}.$$

3. Banach space of ℓ^{∞} bounded sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_{\infty} < \infty \}.$$

- 1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, ...\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $k = 1, \sum_i v_i \notin V$) (Sam-Snowden 2013: representation theoretic stability)
- 2. Banach space of *p*-power summable sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_p < \infty \}.$$

Good: Can get all the necessary S_{∞} invariants in each degree. Bad: Must restrict to bounded maps, yielding restrictive results.

3. Banach space of ℓ^{∞} bounded sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_{\infty} < \infty \}.$$

- 1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, ...\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $k = 1, \sum_i v_i \notin V$) (Sam-Snowden 2013: representation theoretic stability)
- 2. Banach space of *p*-power summable sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_p < \infty \}.$$

Good: Can get all the necessary S_{∞} invariants in each degree. Bad: Must restrict to bounded maps, yielding restrictive results.

3. Banach space of ℓ^{∞} bounded sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_{\infty} < \infty \}.$$

Good: Has all the S_{∞} invariants, and admits a larger set of maps. Bad: Even bounded maps aren't well-behaved for our purposes.

- 1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, ...\}$. Good: Well-behaved vector space. Bad: No non-trivial S_{∞} invariants! e.g. if $k = 1, \sum_i v_i \notin V$) (Sam-Snowden 2013: representation theoretic stability)
- 2. Banach space of *p*-power summable sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_p < \infty \}.$$

Good: Can get all the necessary S_{∞} invariants in each degree. Bad: Must restrict to bounded maps, yielding restrictive results.

3. Banach space of ℓ^{∞} bounded sequences

$$V = \{ v = (a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}} \mid ||v||_{\infty} < \infty \}.$$

Good: Has all the S_∞ invariants, and admits a larger set of maps. Bad: Even bounded maps aren't well-behaved for our purposes. Good/Bad?

2 and 3 yield non-unitary and non-semisimple representations!

If the $\varphi \in \operatorname{End}(V^{\otimes k})$ commutes with the action of S_{∞} , it acts like a linear combination of partition algebra diagrams.

Additionally, to be in ${\rm End}(V^{\otimes k}),$ its image must be a finite linear combination of v_i 's.

If the $\varphi \in \operatorname{End}(V^{\otimes k})$ commutes with the action of S_{∞} , it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\operatorname{End}(V^{\otimes k})$, its image must be a finite linear combination of v_i 's.

If the $\varphi \in \operatorname{End}(V^{\otimes k})$ commutes with the action of S_{∞} , it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\operatorname{End}(V^{\otimes k})$, its image must be a finite linear combination of v_i 's.

If the $\varphi \in \operatorname{End}(V^{\otimes k})$ commutes with the action of S_{∞} , it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\operatorname{End}(V^{\otimes k})$, its image must be a finite linear combination of v_i 's.

If the $\varphi \in \operatorname{End}(V^{\otimes k})$ commutes with the action of S_{∞} , it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\operatorname{End}(V^{\otimes k})$, its image must be a finite linear combination of v_i 's.

Result: The *top-propagating partition algebra*, generated by diagrams with no block isolated to the top. (Sam-Snowden: the *upward partition category* glues all k together)

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that $\left|\left|\sum_{i} v_{i}\right|\right|_{p} = \left|\left|(1, 1, 1, \dots)\right|\right|_{p} = \sum_{i} \mu_{i}^{p} < \infty.$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.)

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that $\left|\left|\sum_{i} v_{i}\right|\right|_{p} = \left|\left|(1, 1, 1, \dots)\right|\right|_{p} = \sum_{i} \mu_{i}^{p} < \infty.$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.) We restrict to continuous/bounded endomorphisms $\mathcal{B}(\overline{V^{\otimes k}})$.

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that $\left|\left|\sum_{i} v_{i}\right|\right|_{p} = \left|\left|(1, 1, 1, \dots)\right|\right|_{p} = \sum_{i} \mu_{i}^{p} < \infty.$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.) We restrict to continuous/bounded endomorphisms $\mathcal{B}(\overline{V^{\otimes k}})$.

Again, if the $\varphi \in \mathcal{B}(\overline{V^{\otimes k}})$ commutes with S_{∞} , it acts like a linear combination of partition algebra diagrams.

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that $\left|\left|\sum_{i} v_{i}\right|\right|_{p} = \left|\left|(1, 1, 1, \dots)\right|\right|_{p} = \sum_{i} \mu_{i}^{p} < \infty.$ (Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.)

We restrict to continuous/bounded endomorphisms $\mathcal{B}(\overline{V^{\otimes k}})$.

Again, if the $\varphi \in \mathcal{B}(\overline{V^{\otimes k}})$ commutes with S_{∞} , it acts like a linear combination of partition algebra diagrams.

However, boundedness then additionally restricts to maps whose image on simple tensors is a permutation of factors.

(All other partition diagrams have unbounded images).

Place a metric μ on $\mathbb{C}^{\mathbb{N}}$ so that $||\sum_{i} v_{i}||_{n} = ||(1, 1, 1, \dots)||_{p} = \sum_{i} \mu_{i}^{p} < \infty.$

(Enough to get all expected invariants in the closure of $V^{\otimes k}$ for each k.) We restrict to continuous/bounded endomorphisms $\mathcal{B}(\overline{V^{\otimes k}})$.

Again, if the $\varphi \in \mathcal{B}(\overline{V^{\otimes k}})$ commutes with S_{∞} , it acts like a linear combination of partition algebra diagrams. However, boundedness then additionally restricts to maps whose image on simple tensors is a permutation of factors. (All other partition diagrams have unbounded images).

Result: The algebra of *uniform block permutations*, generated by diagrams whose blocks have the same size on top as on bottom.

(Same algebra as in Aguiar-Orellana!)

3. Banach space of ℓ^{∞} -bounded sequences

Sequences $(a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}}$ whose entries are bounded.

Issue: Even $\ell^\infty\text{-bounded}$ endomorphisms are not determined by their images on $\{v_i\}_{i\in\mathbb{N}}.$

3. Banach space of ℓ^{∞} -bounded sequences

Sequences $(a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}}$ whose entries are bounded.

Issue: Even ℓ^{∞} -bounded endomorphisms are not determined by their images on $\{v_i\}_{i \in \mathbb{N}}$. So let $\mathcal{B}_{Mat}(\overline{V^{\otimes k}})$ be the algebra of ℓ^{∞} -bounded maps which can be written as matrices.

(The sums across rows are ℓ_{∞} bounded.)

3. Banach space of ℓ^{∞} -bounded sequences

Sequences $(a_1, a_2, \dots) \in \mathbb{C}^{\mathbb{N}}$ whose entries are bounded.

Issue: Even ℓ^{∞} -bounded endomorphisms are not determined by their images on $\{v_i\}_{i\in\mathbb{N}}$. So let $\mathcal{B}_{Mat}(\overline{V^{\otimes k}})$ be the algebra of ℓ^{∞} -bounded maps which can be written as matrices. (The sums across rows are ℓ_{∞} bounded.)

Result: The *bottom-propagating partition algebra*, generated by diagrams with no block isolated to the bottom. (Isomorphic to case 1)

Putting it back into context

Remark 1: Orellana et al. (in progress) show that if a diagram Hopf algebra (as in [MR95] or [AO08]) is built from partition diagrams, those diagrams can have no blocks isolated to the top or bottom rows.

Case 1: no application to symmetric functions. Case 2: tied to symmetric functions in [AO08]. Question: Is there a fix for case 3?

Putting it back into context

Remark 1: Orellana et al. (in progress) show that if a diagram Hopf algebra (as in [MR95] or [AO08]) is built from partition diagrams, those diagrams can have no blocks isolated to the top or bottom rows.

Case 1: no application to symmetric functions. Case 2: tied to symmetric functions in [AO08]. Question: Is there a fix for case 3?

Remark 2: For all three cases, even for k = 1, the centralizer algebra is spanned by \downarrow , so is isomorphic to \mathbb{C} . However, in cases 2 and 3, we expected more since V has an invariant subspace. This discrepancy comes from the fact that the action of S_{∞} is not semisimple.

Question: Can we use this framework to study certain non-unitary representations of $S_\infty?$