Combinatorics of affine Hecke algebras of type C.

Zajj Daugherty (joint with Arun Ram)

May 15, 2013

Pictorially, the generators of \mathcal{B}_k are identified with the diagrams

and

for
$$i = 1, ..., k - 1$$
.

,

Pictorially,

Pictorially,

(similar picture for $T_kT_{k-1}T_kT_{k-1} = T_{k-1}T_kT_{k-1}T_k$)

Two (isomorphic) quotients, two perspectives:

Two (isomorphic) quotients, two perspectives: 1. Fix $t, t_0, t_k \in \mathbb{C}^{\times}$. The affine Hecke algebras of type C H_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by

(*)
$$0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

for $i = 1, \dots, k - 1$.

Two (isomorphic) quotients, two perspectives: 1. Fix $t, t_0, t_k \in \mathbb{C}^{\times}$. The affine Hecke algebras of type C H_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by

$$(*) \quad 0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

for i = 1, ..., k - 1. 2. Let A, B, C be finite dim'l $U_q \mathfrak{g}$ -modules. Then $\mathbb{C}\mathcal{B}_k$ acts on

$$B \otimes \underbrace{C \otimes \cdots \otimes C}_{k \text{ factors}} \otimes A$$

Under good (to be defined) conditions, this action factors through the quotient (*).

Two (isomorphic) quotients, two perspectives: 1. Fix $t, t_0, t_k \in \mathbb{C}^{\times}$. The affine Hecke algebras of type C H_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by

$$(*) \quad 0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

for $i = 1, \ldots, k - 1$. 2. Let A, B, C be finite dim'l $U_q \mathfrak{g}$ -modules. Then $\mathbb{C}\mathcal{B}_k$ acts on

$$B \otimes \underbrace{C \otimes \cdots \otimes C}_{k \text{ factors}} \otimes A$$

Under good (to be defined) conditions, this action factors through the quotient (*).

Goal today:

Tell you 3 descriptions of "calibrated" irreducible reps of H_k .

The Hecke algebra H_k features invertible, pairwise commuting elements Y_1, \ldots, Y_k (weight lattice part),

W is a group of signed permutations generated by transpositions $s_0, s_1, \ldots, s_{k-1}$ with relations

for all j and for $i \neq 0$.

W is a group of signed permutations generated by transpositions $s_0, s_1, \ldots, s_{k-1}$ with relations

for all j and for $i \neq 0$. The group W acts on $\{-k, \ldots, -1, 1, \ldots, k\}$ by s_0 swaps $\begin{array}{c}1\\ -1\end{array} \xrightarrow{i} \\ -1\end{array}$ and fixes $i \neq 0$ and s_i swaps $\begin{array}{c}i\\ i+1\end{array} \xrightarrow{i} \\ i+1\end{array}$ and $\begin{array}{c}-i\\ -i-1\end{array} \xrightarrow{-i} \\ -i-1\end{array}$

W is a group of signed permutations generated by transpositions $s_0, s_1, \ldots, s_{k-1}$ with relations

for all j and for $i \neq 0$. The group W acts on $\{-k, \ldots, -1, 1, \ldots, k\}$ by s_0 swaps $\begin{array}{c}1\\ -1\end{array} \xrightarrow{i} \\ s_i \text{ swaps} \end{array} \begin{array}{c}i\\ i+1\end{array} \xrightarrow{i} \\ i+1\end{array}$ and fixes $i \neq 0$ and $s_i \text{ swaps} \begin{array}{c}i\\ -i-1\end{array} \xrightarrow{i} \\ -i-1\end{array}$

W acts on the subscripts of the Y_i 's with $Y_{-i} = Y_i^{-1}$.

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^W$$

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^W$$

We can encode central characters as maps

$$\gamma:\{Y_1^{\pm 1},\ldots,Y_k^{\pm 1}\}\to \mathbb{C}$$

with equivalence under W action;

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^W$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W action; i.e. k-tuples

$$\gamma = (\gamma_1, \dots, \gamma_k)$$
 with $\gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1}$

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^W$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W action; i.e. k-tuples

$$egin{aligned} &\gamma = (\gamma_1, \dots, \gamma_k) & ext{with} & \gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1} \ & \mathbf{c} = (c_1, \dots, c_k) & ext{with} & \gamma(Y_i^{\pm 1}) = t^{\pm c_i} \end{aligned}$$

(when c is real, favorite representatives satisfy $0 \le c_1 \le \cdots \le c_k$.)

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^W$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W action; i.e. k-tuples

$$egin{aligned} &\gamma = (\gamma_1, \dots, \gamma_k) & ext{with} & \gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1} \ & \mathbf{c} = (c_1, \dots, c_k) & ext{with} & \gamma(Y_i^{\pm 1}) = t^{\pm c_i} \end{aligned}$$

(when c is real, favorite representatives satisfy $0 \le c_1 \le \cdots \le c_k$.)

Calibrated means the Y_i 's are all diagonalized.

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^W$$

We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W action; i.e. k-tuples

$$egin{aligned} &\gamma = (\gamma_1, \dots, \gamma_k) & ext{with} & \gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1} \ & \mathbf{c} = (c_1, \dots, c_k) & ext{with} & \gamma(Y_i^{\pm 1}) = t^{\pm c_i} \end{aligned}$$

(when c is real, favorite representatives satisfy $0 \le c_1 \le \cdots \le c_k$.)

Calibrated means the Y_i 's are all diagonalized.

Description 1: Central characters are indexed by points in k dimensions.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. When k = 2:

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. When k = 2:

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. When k = 2:

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points. Basis is indexed by chambers in each region. Description 2: Box arrangements. Start with diagonal lines labeled by \mathbb{Z} .

Description 2: Box arrangements.

Description 2: Box arrangements.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Description 2: Box arrangements.

Description 2: Box arrangements.

Description 2: Box arrangements.

Start with diagonal lines labeled by \mathbb{Z} . Restrict to points in $(\mathbb{Z} + \beta)^k$. A central character c gives a list of diagonal placements. For example:

Basis indexed by standard fillings with $\{\pm 1, \ldots, \pm k\}$ with restrictions:

(1) Exactly one of i or -i appears.

(2) If $\mathrm{box}_i < \bullet$, then filling is negative. If $\mathrm{box}_i > \bullet$, filling is positive.

Description 2: Box arrangements.

Start with diagonal lines labeled by \mathbb{Z} . Restrict to points in $(\mathbb{Z} + \beta)^k$. A central character c gives a list of diagonal placements. For example:

Basis indexed by standard fillings with $\{\pm 1, \ldots, \pm k\}$ with restrictions:

(1) Exactly one of i or -i appears.

(2) If $\mathrm{box}_i < \bullet$, then filling is negative. If $\mathrm{box}_i > \bullet$, filling is positive.

Description 2: Marked box arrangements. Basis indexed by good fillings.

Description 2: Marked box arrangements. Basis indexed by good fillings.

Description 3: Partitions.

Representation arise in Schur-Weyl duality with certain $U_q \mathfrak{gl}_n$ reps.

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

The content of a box is its diagonal number.

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

The content of a box is its diagonal number.

The eigenvalues of T_0 and T_k are controlled by the contents of addable boxes to (a^c) and (b^d) .

Theorem (D.-Ram)

1. Let $U = U_q \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_k acts on $B \otimes (C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

Theorem (D.-Ram)

1. Let $U = U_q \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_k acts on $B \otimes (C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

Theorem (D.-Ram)

1. Let $U = U_q \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_k acts on $B \otimes (C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

 $\begin{array}{c} R\text{-matrices: } U \text{ has an associated invertible element} \\ R = \sum_{\mathcal{R}} R_1 \otimes R_2 \text{ of } U \otimes U \text{ that gives us a map} \\ \\ \check{R}_{MN} \colon M \otimes N \longrightarrow N \otimes M \end{array} \xrightarrow[N \otimes M]{} \overset{M \otimes N}{\underset{N \otimes M}{\overset{} \longrightarrow}} \\ \end{array}$

This map acts on a component $L(\lambda)$ of $L(\mu) \otimes L(\Box)$ by $q^{2c(\lambda/\mu)}$.

Theorem (D.-Ram)

2. If
$$\mathfrak{g} = \mathfrak{gl}_n$$
, $A = L((a^c))$, $B = L((b^d))$, and $C = L(\Box)$, then
the action in 1. factors through the quotient by
 $0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$
where $t = q^2$, $t_0 = t^{\frac{1}{2}(b+d)}$, and $t_k = t^{\frac{1}{2}(a+c)}$.

Theorem (D.-Ram)

2. If
$$\mathfrak{g} = \mathfrak{gl}_n$$
, $A = L((a^c))$, $B = L((b^d))$, and $C = L(\Box)$, then
the action in 1. factors through the quotient by
 $0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$
where $t = q^2$, $t_0 = t^{\frac{1}{2}(b+d)}$, and $t_k = t^{\frac{1}{2}(a+c)}$.
 $T_0 : \bigcup_{B \otimes C} \qquad T_k : \cdots \bigvee_{C \otimes A} \qquad T_i : \bigvee_{C \otimes C} \qquad C \otimes C$
 $d \bigoplus_{B \otimes C} \qquad c \bigoplus_{C \otimes A} \qquad C \otimes C$

Move the right pole to the left:

Move the right pole to the left:

New favorite generators:

Products of rectangles:

$$L((a^c))\otimes L((b^d))= \bigoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))= igoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))= \bigoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))= \bigoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))=\bigoplus_{\lambda\in\Lambda}L(\lambda)\qquad \text{(multiplicity one!)}$$

where Λ is the following set of partitions. . .

$L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

(*) H_k representations in tensor space are labeled by certain partitions λ .

$L\left(\square\right) \otimes L\left(\square\right) \otimes L$

(*) H_k representations in tensor space are labeled by certain partitions λ .

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ .

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ .

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated

$L\left(\square\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated: Y_i acts by t to the shifted content of box_i .

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2},$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

 \blacksquare = boxes that must appear in the partition at level 0.

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

versus

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4^{-1}) = t^{2.5}, \ \gamma(Y_5^{-1}) = t^{r_2}.$$

Thanks!

