Combinatorics of affine Hecke algebras of type C.

Zajj Daugherty
(joint with Arun Ram)

May 15, 2013

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Pictorially, the generators of \mathcal{B}_{k} are identified with the diagrams

and

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

$$
\begin{array}{ccccc}
T_{0} & T_{1} & T_{2} & T_{k-2} & T_{k-1}
\end{array} T_{k}
$$

Pictorially,

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Pictorially,

(similar picture for $T_{k} T_{k-1} T_{k} T_{k-1}=T_{k-1} T_{k} T_{k-1} T_{k}$)

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Two (isomorphic) quotients, two perspectives:

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Two (isomorphic) quotients, two perspectives:

1. Fix $t, t_{0}, t_{k} \in \mathbb{C}^{\times}$. The affine Hecke algebras of type $\mathrm{C} H_{k}$ is the quotient of $\mathbb{C B}_{k}$ by
(*) $0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)$
for $i=1, \ldots, k-1$.

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Two (isomorphic) quotients, two perspectives:

1. Fix $t, t_{0}, t_{k} \in \mathbb{C}^{\times}$. The affine Hecke algebras of type $C H_{k}$ is the quotient of $\mathbb{C B}_{k}$ by
(*) $0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)$
for $i=1, \ldots, k-1$.
2. Let A, B, C be finite dim'l $U_{q} \mathfrak{g}$-modules. Then $\mathbb{C} \mathcal{B}_{k}$ acts on

$$
B \otimes \underbrace{C \otimes \cdots \otimes C}_{k \text { factors }} \otimes A
$$

Under good (to be defined) conditions, this action factors through the quotient $(*)$.

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Two (isomorphic) quotients, two perspectives:

1. Fix $t, t_{0}, t_{k} \in \mathbb{C}^{\times}$. The affine Hecke algebras of type $\mathrm{C} H_{k}$ is the quotient of $\mathbb{C B}_{k}$ by
(*) $0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)$
for $i=1, \ldots, k-1$.
2. Let A, B, C be finite dim'l $U_{q} \mathfrak{g}$-modules. Then $\mathbb{C} \mathcal{B}_{k}$ acts on

$$
B \otimes \underbrace{C \otimes \cdots \otimes C}_{k \text { factors }} \otimes A
$$

Under good (to be defined) conditions, this action factors through the quotient $(*)$.
Goal today:
Tell you 3 descriptions of "calibrated" irreducible reps of H_{k}.

The Hecke algebra H_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part),

The Hecke algebra H_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part), and $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ carries an action by the Weyl group W of type C:

The Hecke algebra H_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part), and $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ carries an action by the Weyl group W of type C:
W is a group of signed permutations generated by transpositions $s_{0}, s_{1}, \ldots, s_{k-1}$ with relations

$$
\begin{aligned}
& s_{0} \quad s_{1} \quad s_{2} \quad s_{k-2} s_{k-1} \\
& \text { ○=0———-----0—— } \\
& s_{j}^{2}=1, \quad s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0} \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
\end{aligned}
$$

for all j and for $i \neq 0$.

The Hecke algebra H_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part), and $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ carries an action by the Weyl group W of type C:
W is a group of signed permutations generated by transpositions $s_{0}, s_{1}, \ldots, s_{k-1}$ with relations

$$
\begin{aligned}
& s_{0} \quad s_{1} \quad s_{2} \quad s_{k-2} s_{k-1} \\
& \text { ○=0———-----0—— } \\
& s_{j}^{2}=1, \quad s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0} \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
\end{aligned}
$$

for all j and for $i \neq 0$.
The group W acts on $\{-k, \ldots,-1,1, \ldots, k\}$ by

The Hecke algebra H_{k} features invertible, pairwise commuting elements Y_{1}, \ldots, Y_{k} (weight lattice part), and $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ carries an action by the Weyl group W of type C:
W is a group of signed permutations generated by transpositions $s_{0}, s_{1}, \ldots, s_{k-1}$ with relations

$$
\begin{aligned}
& s_{0} \quad s_{1} \quad s_{2} \quad s_{k-2} s_{k-1} \\
& \text { ○=0———-----0—— } \\
& s_{j}^{2}=1, \quad s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0} \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
\end{aligned}
$$

for all j and for $i \neq 0$.
The group W acts on $\{-k, \ldots,-1,1, \ldots, k\}$ by

W acts on the subscripts of the Y_{i}^{\prime} 's with $Y_{-i}=Y_{i}^{-1}$.

Central characters

The center of H_{k} is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W}
$$

Central characters

The center of H_{k} is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under W action;

Central characters

The center of H_{k} is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under W action; i.e. k-tuples

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1}
$$

Central characters

The center of H_{k} is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under W action; i.e. k-tuples

$$
\begin{gathered}
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1} \\
\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=t^{ \pm c_{i}}
\end{gathered}
$$

(when \mathbf{c} is real, favorite representatives satisfy $0 \leq c_{1} \leq \cdots \leq c_{k}$.)

Central characters

The center of H_{k} is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under W action; i.e. k-tuples

$$
\begin{gathered}
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1} \\
\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=t^{ \pm c_{i}}
\end{gathered}
$$

(when \mathbf{c} is real, favorite representatives satisfy $0 \leq c_{1} \leq \cdots \leq c_{k}$.)
Calibrated means the Y_{i} 's are all diagonalized.

Central characters

The center of H_{k} is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W}
$$

We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under W action; i.e. k-tuples

$$
\begin{aligned}
& \gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1} \\
& \mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=t^{ \pm c_{i}}
\end{aligned}
$$

(when \mathbf{c} is real, favorite representatives satisfy $0 \leq c_{1} \leq \cdots \leq c_{k}$.)
Calibrated means the Y_{i} 's are all diagonalized.
Description 1: Central characters are indexed by points in k dimensions.

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

$$
c_{1}=c_{2}
$$

Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

Central characters as points

Restrict to real points.

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$.
When $k=2$:

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points

Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. When $k=2$:

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Central characters as points;

Calibrated reps as "skew local regions"

The r_{i} s depend on H_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points. Basis is indexed by chambers in each region.

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points. Basis is indexed by chambers in each region. Description 2: Box arrangements.

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points. Basis is indexed by chambers in each region. Description 2: Box arrangements. Start with diagonal lines labeled by \mathbb{Z}.

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region. Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region. Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region. Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

$$
1>2,2>3,2<4,3,4<5
$$

$5<$ •

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

$$
1<2,2>3,3<5,4>5
$$

$$
1>2,2>3,2<4,3,4<5
$$

$5<\bullet$
$5>$ •
Basis indexed by standard fillings with $\{ \pm 1, \ldots, \pm k\}$ with restrictions:
(1) Exactly one of i or $-i$ appears.
(2) If box $_{i}<\bullet$, then filling is negative. If box $_{i}>\bullet$, filling is positive.

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points.
Basis is indexed by chambers in each region.
Description 2: Box arrangements.
Start with diagonal lines labeled by \mathbb{Z}. Restrict to points in $(\mathbb{Z}+\beta)^{k}$. A central character \mathbf{c} gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Basis indexed by standard fillings with $\{ \pm 1, \ldots, \pm k\}$ with restrictions:
(1) Exactly one of i or $-i$ appears.
(2) If box $_{i}<\bullet$, then filling is negative. If box $_{i}>\bullet$, filling is positive.

Points versus box arrangements

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points. Basis is indexed by chambers in each region.

Description 2: Marked box arrangements.
Basis indexed by good fillings.

Description 1: Central characters are indexed by points. Irreps are indexed by skew local regions around points. Basis is indexed by chambers in each region.

Description 2: Marked box arrangements.
Basis indexed by good fillings.
Description 3: Partitions.
Representation arise in Schur-Weyl duality with certain $U_{q} \mathfrak{g l}_{n}$ reps.

Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)

Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \begin{array}{|l|l|l}
a \\
\hline & & \\
\hline & & \\
\hline
\end{array}
$$

Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

The content of a box is its diagonal number.

Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)
In particular, rectangular partitions:

The content of a box is its diagonal number. The eigenvalues of T_{0} and T_{k} are controlled by the contents of addable boxes to $\left(a^{c}\right)$ and $\left(b^{d}\right)$.

Centralizer properties

Theorem (D.-Ram)

1. Let $U=U_{q} \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_{k} acts on $B \otimes(C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

Centralizer properties

Theorem (D.-Ram)

1. Let $U=U_{q} \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_{k} acts on $B \otimes(C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

Centralizer properties

Theorem (D.-Ram)

1. Let $U=U_{q} \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_{k} acts on $B \otimes(C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

R-matrices: U has an associated invertible element $R=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ of $U \otimes U$ that gives us a map

$$
\check{R}_{M N}: M \otimes N \longrightarrow N \otimes M
$$

This map acts on a component $L(\lambda)$ of $L(\mu) \otimes L(\square)$ by $q^{2 c(\lambda / \mu)}$.

Centralizer properties

Theorem (D.-Ram)
2. If $\mathfrak{g}=\mathfrak{g l}_{n}, A=L\left(\left(a^{c}\right)\right), B=L\left(\left(b^{d}\right)\right)$, and $C=L(\square)$, then the action in 1. factors through the quotient by
$0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)$ where $t=q^{2}, t_{0}=t^{\frac{1}{2}(b+d)}$, and $t_{k}=t^{\frac{1}{2}(a+c)}$.

Centralizer properties

Theorem (D.-Ram)
2. If $\mathfrak{g}=\mathfrak{g l}_{n}, A=L\left(\left(a^{c}\right)\right), B=L\left(\left(b^{d}\right)\right)$, and $C=L(\square)$, then the action in 1. factors through the quotient by
$0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)$ where $t=q^{2}, t_{0}=t^{\frac{1}{2}(b+d)}$, and $t_{k}=t^{\frac{1}{2}(a+c)}$.

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Move the right pole to the left:

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Move the right pole to the left:

$$
\begin{aligned}
& B \otimes C \otimes C \otimes C \otimes C \otimes C \otimes A \quad A \otimes B \otimes C \otimes C \otimes C \otimes C \otimes C \\
& \prod_{B \otimes C \otimes C \otimes C} \int_{0}
\end{aligned}
$$

New favorite generators:

$$
\begin{aligned}
& \text { Let } Y_{2}=T_{1} Y_{1} T_{1}=\frac{\|-\|-\boldsymbol{\square}}{U U} \text {. }
\end{aligned}
$$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions...

$$
\begin{array}{r}
\overline{\left(a^{c}\right)} \otimes \boxminus=\square \boxplus \oplus \square \square \\
\oplus \square \square \square
\end{array}
$$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

$$
\stackrel{a}{c}
$$

$$
k=0
$$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

${ }^{L}(\# \#) \otimes L(\#)$

${ }^{L}(\# \#) \otimes L(\boxplus) \otimes L(())$

${ }^{L}(\# \#) \otimes L(\boxplus) \otimes L(\square) \otimes L(\square)$

$L^{L}(\#) \otimes L(\boxplus) \otimes L(()) \otimes L(\square) \otimes L(\square)$

$$
L(\# \#) \otimes L(\mathbb{H}) \otimes L(\mathbb{(}) \otimes L(\mathbb{(}) \otimes L(\mathbb{(}) \otimes L(\mathbb{(})
$$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$(*)$ Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$(*)$ Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}(a-c+b-d)$

$$
\begin{aligned}
& Y_{1} \mapsto t^{5.5} \\
& Y_{2} \mapsto t^{3.5} \\
& Y_{3} \mapsto t^{-4.5} \\
& Y_{4} \mapsto t^{-5.5} \\
& Y_{5} \mapsto t^{-2.5}
\end{aligned}
$$

$Y_{1} \mapsto t^{-5.5}$
$Y_{2} \mapsto t^{2.5}$
$Y_{3} \mapsto t^{4.5}$
$Y_{4} \mapsto t^{3.5}$
$Y_{5} \mapsto t^{5.5}$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto
\end{aligned} t^{3.5}=\left(\begin{array}{c}
\\
Y_{3}
\end{array} \mapsto t^{-4.5}\right.
$$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto
\end{aligned} t^{3.5}=\left(t^{-4.5}\right)
$$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated: Y_{i} acts by t to the shifted content of box $_{i}$.

From \{partitions in tensor space\} to \{box arrangements\}

From \{partitions in tensor space\} to \{box arrangements\}

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

From \{partitions in tensor space\} to \{box arrangements\}

$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

versus

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}^{-1}\right)=t^{2.5}, \gamma\left(Y_{5}^{-1}\right)=t^{r_{2}} .
$$

Thanks!

