The quasi-partition algebra

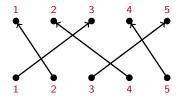
Zajj Daugherty

Joint with Rosa Orellana

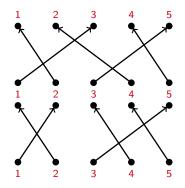
Dartmouth College and ICERM

April 20, 2013

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:

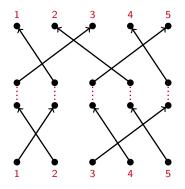


Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:



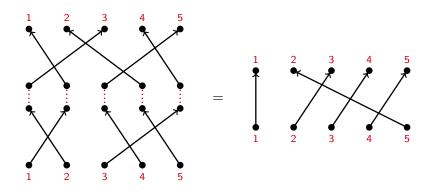
Multiplication computed by concatenation.

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:



Multiplication computed by concatenation.

Start with the symmetric group S_k : permutations of $1, \ldots, k$. Depict using permutation diagrams:



Multiplication computed by concatenation.

The representation theory is also combinatorial: Simple S_k -modules are in bijection with partitions, $\lambda \vdash k$

$$\lambda = \begin{array}{c|c} & 4 \\ & +3 \\ & +1 \end{array}$$

(a collection of boxes piled up and to the left)

The representation theory is also combinatorial: Simple S_k -modules are in bijection with partitions, $\lambda \vdash k$

$$\lambda = \begin{array}{c|c} & 4 \\ & +3 \\ & +1 \end{array}$$

(a collection of boxes piled up and to the left)

So, for example,

are the simple S_3 -modules (up to isomorphism).

Combinatorial representation theory — a warm-up Schur-Weyl duality and centralizer algebras: (Schur 1901)

Schur-Weyl duality and centralizer algebras: (Schur 1901)

1. $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

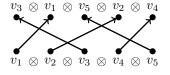
$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

Schur-Weyl duality and centralizer algebras: (Schur 1901)

1. $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

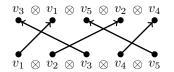


Schur-Weyl duality and centralizer algebras: (Schur 1901)

1. $GL_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

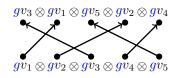
$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.



VS.

3. These actions commute!



 $gv_3 \otimes gv_1 \otimes gv_5 \otimes gv_2 \otimes gv_4$ $v_1 \otimes v_2 \otimes v_3 \otimes v_4 \otimes v_5$

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\operatorname{End}\left((\mathbb{C}^n)^{\otimes k}\right)$.

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\operatorname{End}\left((\mathbb{C}^n)^{\otimes k}\right)$.

Why this is exciting:

Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} L(\lambda) \otimes S^\lambda \quad \text{ as a } \mathrm{GL}_n\text{-}S_k \text{ bimodule,}$$

where $egin{array}{ccc} L(\lambda) & {
m are\ distinct\ irreducible} & {
m GL}_n\mbox{-modules} \\ S^{\lambda} & {
m are\ distinct\ irreducible} & S_k\mbox{-modules} \\ \end{array}$

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\operatorname{End}\left((\mathbb{C}^n)^{\otimes k}\right)$.

Why this is exciting:

Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} L(\lambda) \otimes S^\lambda \quad \text{ as a } \mathrm{GL}_n\text{-}S_k \text{ bimodule,}$$

where $egin{array}{ccc} L(\lambda) & {
m are\ distinct\ irreducible} & {
m GL}_n\mbox{-modules} \\ S^{\lambda} & {
m are\ distinct\ irreducible} & S_k\mbox{-modules} \\ \end{array}$

For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n = \left(L(\square) \otimes S^{\square} \right) \oplus \left(L(\square) \otimes S^{\square} \right) \oplus \left(L(\square) \otimes S^{\square} \right)$$

Let V be the permutation representation of S_n .

$$n imes n$$
 matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

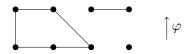
i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.



Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

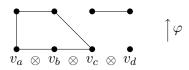
i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.



Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

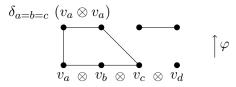
i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.



Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

$$\delta_{a=b=c} \ (v_a \otimes v_a) \otimes \left(\sum_{i=1}^n v_i \otimes v_i \right)$$

$$v_a \otimes v_b \otimes v_c \otimes v_d$$

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

We're interested in set partitions of $[k] \cup [k']$.

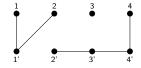
Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k]=\{1,\ldots,k\} \qquad \text{ and } \qquad [k']=\{1',\ldots,k'\}.$$

We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets

$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

or as diagrams (considering connected components)



Fix $k \in \mathbb{Z}_{>0}$, and let

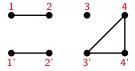
$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

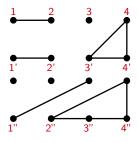
We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets

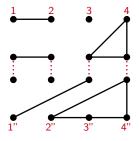
$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

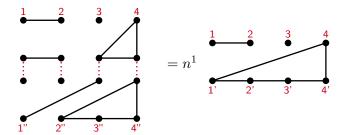
or as diagrams (considering connected components)

(Both encode the map $v_a \otimes v_b \otimes v_c \otimes v_d \mapsto \delta_{b=c=d}(v_a \otimes v_a) \otimes \sum_{i=1}^n v_i \otimes v_b$)

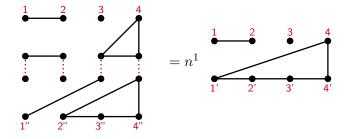






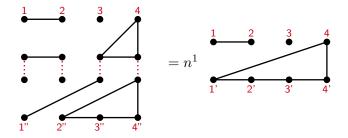


Multiplying diagrams:



The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Multiplying diagrams:



The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

- (*) Associative algebra with identity $1 = \{\{1, 1'\}, \dots, \{k, k'\}\}.$
- (*) $\dim(P_k(n)) = \text{the Bell number } B(2k).$
- (*) S_n and $P_k(n)$ centralize each other in $\operatorname{End}(V^{\otimes k})$.

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \qquad \text{where } v=v_1+\cdots+v_n.$$

Then
$$V=W\oplus T$$
 and so $V^{\otimes k}\cong W^{\otimes k}\oplus \left(\bigoplus_{i=1}^k \binom{k}{i}T^{\otimes i}\otimes W^{\otimes (k-i)}\right)$.

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \text{where } v=v_1+\cdots+v_n.$$

Then
$$V = W \oplus T$$
 and so $V^{\otimes k} \cong W^{\otimes k} \oplus \left(\bigoplus_{i=1}^k \binom{k}{i} T^{\otimes i} \otimes W^{\otimes (k-i)}\right)$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \text{where } v=v_1+\cdots+v_n.$$

Then
$$V=W\oplus T$$
 and so $V^{\otimes k}\cong W^{\otimes k}\oplus \left(\bigoplus_{i=1}^k \binom{k}{i}T^{\otimes i}\otimes W^{\otimes (k-i)}\right)$.

The question: What is
$$\operatorname{End}_{S_n}(W^{\otimes k})$$
?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \qquad \text{where } v=v_1+\cdots+v_n.$$

Then
$$V = W \oplus T$$
 and so $V^{\otimes k} \cong W^{\otimes k} \oplus \left(\bigoplus_{i=1}^k \binom{k}{i} T^{\otimes i} \otimes W^{\otimes (k-i)} \right)$.

The question: What is
$$\operatorname{End}_{S_n}(W^{\otimes k})$$
?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

A first hint:

If p = 0, then $p \cdot v_i = v$. So $p = n\pi_T$ projects onto T.

Notice: V is not irreducible!

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \text{where } v=v_1+\cdots+v_n.$$

Then
$$V = W \oplus T$$
 and so $V^{\otimes k} \cong W^{\otimes k} \oplus \left(\bigoplus_{i=1}^k \binom{k}{i} T^{\otimes i} \otimes W^{\otimes (k-i)}\right)$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

A first hint:

If
$$p = 0$$
, then $p \cdot v_i = v$. So $p = n\pi_T$ projects onto T .

Let
$$p_i = \cline{blue} \cdots \cline{blue} \cline{blue} i \cline{blue} \cline{blue} \cdots \cline{blue} \cline{blue} i \cline{blue} \cline{blue} \cline{blue} \cdots \cline{blue} \cline{blue} i \cline{blue} \cline{blue} \cline{blue} \cdots \cline{blue} \clin$$

Notice: V is not irreducible!

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \text{where } v=v_1+\cdots+v_n.$$

Then
$$V=W\oplus T$$
 and so $V^{\otimes k}\cong W^{\otimes k}\oplus \left(\bigoplus_{i=1}^k \binom{k}{i}T^{\otimes i}\otimes W^{\otimes (k-i)}\right)$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

A first hint:

If
$$p = 0$$
, then $p \cdot v_i = v$. So $p = n\pi_T$ projects onto T .

Let
$$p_i = \center{black} \cdots \center{black} \center{black} i \center{black} \center{black} ... \center{black} Then $p_i : V^{\otimes k} \to V^{\otimes (i-1)} \otimes T \otimes V^{\otimes (k-i)}.$$$

Any diagram d an isolated vertex satisfies $d = p_i d'$ or $d = d' p_i$.

Two maps in $\operatorname{End}(W^{\otimes k})$:

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

 $\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

Good: Commutes with S_n Bad: What are they, and how do we multiply?

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

Good: Commutes with S_n Bad: What are they, and how do we multiply?

2. Let $f: \{v_1, \dots, v_{n-1}\} \to \{w_2, \dots, w_n\}$ $v_i \mapsto w_{i+1}$.

Put $d \in P_k(n-1)$, and consider

$$[d]: W^{\otimes k} \xrightarrow{f^{-1}} V_{n-1}^{\otimes k} \xrightarrow{d} V_{n-1}^{\otimes k} \xrightarrow{f} W^{\otimes k}$$

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

Good: Commutes with S_n Bad: What are they, and how do we multiply?

2. Let $f:\{v_1,\ldots,v_{n-1}\}\to\{w_2,\ldots,w_n\}$ $v_i\mapsto w_{i+1}.$ Put $d\in P_k(n-1)$, and consider

$$[d]: W^{\otimes k} \xrightarrow{f^{-1}} V_{n-1}^{\otimes k} \xrightarrow{d} V_{n-1}^{\otimes k} \xrightarrow{f} W^{\otimes k}$$

Good: We know what they are and how to multiply them. Bad: They don't commute with S_n .

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

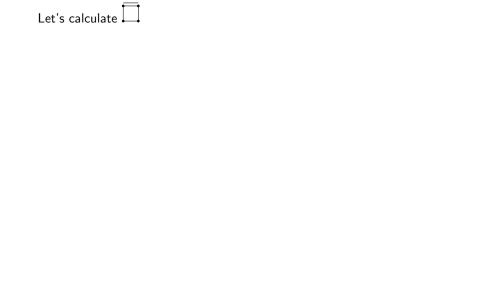
Good: Commutes with S_n Bad: What are they, and how do we multiply?

2. Let $f:\{v_1,\ldots,v_{n-1}\}\to\{w_2,\ldots,w_n\}$ $v_i\mapsto w_{i+1}.$ Put $d\in P_k(n-1)$, and consider

$$[d]: W^{\otimes k} \xrightarrow{f^{-1}} V_{n-1}^{\otimes k} \xrightarrow{d} V_{n-1}^{\otimes k} \xrightarrow{f} W^{\otimes k}$$

Good: We know what they are and how to multiply them. Bad: They don't commute with S_n .

Goal: Express \bar{d} in terms of [d']'s.



Let's calculate $\begin{tabular}{l} \label{table} \end{tabular}$ Start with a basis element of $W\otimes W$:

$$w_a \otimes w_b = (v_a - v_1) \otimes (v_b - v_1)$$

= $(v_a \otimes v_b) - (v_a \otimes v_1) - (v_1 \otimes v_b) + (v_1 \otimes v_1)$
$$a, b \neq 1$$

Start with a basis element of $W \otimes W$:

$$w_a \otimes w_b = (v_a - v_1) \otimes (v_b - v_1)$$

$$= (v_a \otimes v_b) - (v_a \otimes v_1) - (v_1 \otimes v_b) + (v_1 \otimes v_1)$$

$$= (v_a \otimes v_b) - (v_a \otimes v_b) + (v_b \otimes v_b$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$\delta_{ab}(v_a \otimes v_a) - 0 - 0 + (v_1 \otimes v_1)$$

Start with a basis element of $W \otimes W$:

$$w_a \otimes w_b = (v_a - v_1) \otimes (v_b - v_1)$$

$$= (v_a \otimes v_b) - (v_a \otimes v_1) - (v_1 \otimes v_b) + (v_1 \otimes v_1)$$

$$a, b \neq 1$$

$$\delta_{ab}(v_a \otimes v_a) - 0 - 0 + (v_1 \otimes v_1)$$

$$\downarrow$$
 project back to $W \otimes W$

$$\delta_{ab}\left(w_a - \frac{1}{n}w\right) \otimes \left(w_a - \frac{1}{n}w\right) + \left(\frac{1}{n}w\right) \otimes \left(\frac{1}{n}w\right) \qquad \text{with } w = \sum_{i=1}^{n} w_{\ell}$$

Start with a basis element of $W \otimes W$:

$$w_a \otimes w_b = (v_a - v_1) \otimes (v_b - v_1)$$

$$= (v_a \otimes v_b) - (v_a \otimes v_1) - (v_1 \otimes v_b) + (v_1 \otimes v_1)$$

$$a, b \neq 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\delta_{ab}(v_a \otimes v_a) - 0 - 0 + (v_1 \otimes v_1)$$

$$\downarrow$$
 project back to $W \otimes W$

$$\delta_{ab}\left(w_a - \frac{1}{n}w\right) \otimes \left(w_a - \frac{1}{n}w\right) + \left(\frac{1}{n}w\right) \otimes \left(\frac{1}{n}w\right) \qquad \text{ with } w = \sum_{\ell=2} w_\ell$$

$$= \delta_{ab}(w_a \otimes w_a) - \delta_{ab} \frac{1}{n}(w_a \otimes w) - \delta_{ab} \frac{1}{n}(w \otimes w_a) + \delta_{ab} \frac{1}{n^2}(w \otimes w) + \frac{1}{n^2}(w \otimes w)$$

Start with a basis element of $W \otimes W$:

$$w_a \otimes w_b = (v_a - v_1) \otimes (v_b - v_1)$$

= $(v_a \otimes v_b) - (v_a \otimes v_1) - (v_1 \otimes v_b) + (v_1 \otimes v_1)$
$$a, b \neq 1$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\delta_{ab}(v_a \otimes v_a) - 0 - 0 + (v_1 \otimes v_1)$$

 \downarrow project back to $W \otimes W$

$$\delta_{ab}\left(w_a - \frac{1}{n}w\right) \otimes \left(w_a - \frac{1}{n}w\right) + \left(\frac{1}{n}w\right) \otimes \left(\frac{1}{n}w\right) \qquad \text{with } w = \sum_{\ell=2}^n w_\ell$$

$$= \delta_{ab}(w_a \otimes w_a) - \delta_{ab} \frac{1}{n}(w_a \otimes w) - \delta_{ab} \frac{1}{n}(w \otimes w_a) + \delta_{ab} \frac{1}{n^2}(w \otimes w) + \frac{1}{n^2}(w \otimes w)$$

If X is a set of vertices, the isolation of d (at X) is d_X , the diagram constructed from d by isolating all vertices in X.

For example, if $X = \{1', 4'\}$ and

$$d = \underbrace{ \begin{bmatrix} 1 & 2 & 3 & 4 \\ & & & \\ 1' & 2' & 3' & 4' \end{bmatrix}}_{1' & 2' & 3' & 4'} \qquad \text{then} \qquad d_X = \underbrace{ \begin{bmatrix} 1 & 2 & 3 & 4 \\ & & & \\ 1' & 2' & 3' & 4' \end{bmatrix}}_{1' & 2' & 3' & 4'}$$

We can also place an order on diagrams, where $d' \leq d$ if d' is a refinement of d. In particular, $d_X \leq d$.

Theorem

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subset [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) polynomials in n and 1/n.

Theorem

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subseteq [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) polynomials in n and 1/n.

For example,

$$= \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} - \frac{1}{n} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} - \frac{1}{n} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$$

$$= \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} - \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \dots + \frac{2}{n^2} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} - \frac{2}{n^2} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$$

Theorem

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subset [L] \cup [L']} c_X[d_X],$$

where c_X is a (totally explicit) polynomials in n and 1/n.

Corollary

 $QP_k(n)$ has basis $\{\bar{d} \mid d \in \mathcal{D}\}$, and thus has dimension

$$\sum_{j=1}^{m} (-1)^{j-1} B(2k-j) + 1, \quad \text{where } B(r) \text{ is the Bell number.}$$

Theorem

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subset [h] \cup [hd]} c_X[d_X],$$

where c_X is a (totally explicit) polynomials in n and 1/n.

Corollary

 $QP_k(n)$ has basis $\{\bar{d} \mid d \in \mathcal{D}\}$, and thus has dimension

$$\sum_{j=1}^{2k} (-1)^{j-1} B(2k-j) + 1, \qquad \text{where } B(r) \text{ is the Bell number.}$$

 $d \le d_1 d_2$

Corollary

If $d_1, d_2 \in \mathcal{D}$,

$$\in \mathcal{D}$$
, $ar{d}_1ar{d}_2 = \sum \ c_dar{d}.$

In particular, if $d_1d_2 \notin \mathcal{D}$, then $\bar{d}_1\bar{d}_2 = 0$.

So $QP_k(n)$ is also a subalgebra of $P_k(n-1)$. It's generated by projections of

$$b_i = \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad s_i = \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[$$

So $QP_k(n)$ is also a subalgebra of $P_k(n-1)$. It's generated by projections of

$$b_i = \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad s_i = \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad e_i = \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right] \quad \left[\cdots \right] \quad \left[\begin{array}{c} i \\ \\ \end{array} \right]$$

With relations that look like

in $P_k(n-1)$:	in $QP_k(n)$:
$s_i^2 = 1$	$\bar{s}_i^2 = 1$
$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$	$\bar{s}_i\bar{s}_{i+1}\bar{s}_i = \bar{s}_{i+1}\bar{s}_i\bar{s}_{i+1}$
$e_i^2 = (n-1)e_i$	$\bar{e}_i^2 = (n-1)\bar{e}_i$
$b_i^2 = b_i$	$\bar{b}_i^2 = \frac{n-2}{n}\bar{b}_i + \frac{1}{n^2}\bar{e}_i$

Recall that the centralizer relationship produces:

$$W^{\otimes k} \cong \bigoplus_{\lambda} QP^{\lambda} \otimes S^{\bar{\lambda}} \quad \text{ as a } QP_k\text{-}S_n \text{ bimodule}.$$

$$\dim(QP^{\lambda}) = \mathrm{multiplicity}(S^{\bar{\lambda}}) \quad \text{ and } \quad \mathrm{multiplicity}(QP^{\lambda}) = \dim(S^{\bar{\lambda}})$$

Recall that the centralizer relationship produces:

$$W^{\otimes k} \cong \bigoplus_{\lambda} QP^{\lambda} \otimes S^{\bar{\lambda}} \quad \text{ as a } QP_k\text{-}S_n \text{ bimodule}.$$

 $\dim(QP^\lambda)=\mathrm{multiplicity}(S^{\bar{\lambda}})\quad\text{and}\quad \mathrm{multiplicity}(QP^\lambda)=\dim(S^{\bar{\lambda}})$ Tensoring rule for $W=S^{(n-1,1)}$

$$S^{\lambda} \otimes W = c(\lambda)S^{\lambda} \oplus \bigoplus_{\mu \in \Lambda} S^{\mu}$$

where Λ is the set of partitions gotten from λ by moving any corner box to another place, and $c(\lambda)=\#$ corner boxes -1.

Recall that the centralizer relationship produces:

$$W^{\otimes k} \cong \bigoplus_{\lambda} QP^{\lambda} \otimes S^{\bar{\lambda}}$$
 as a QP_k - S_n bimodule.

 $\dim(QP^\lambda)=\mathrm{multiplicity}(S^{\bar{\lambda}})\quad\text{and}\quad \mathrm{multiplicity}(QP^\lambda)=\dim(S^{\bar{\lambda}})$ Tensoring rule for $W=S^{(n-1,1)}$

$$S^{\lambda} \otimes W = c(\lambda)S^{\lambda} \oplus \bigoplus_{\mu \in \Lambda} S^{\mu}$$

where Λ is the set of partitions gotten from λ by moving any corner box to another place, and $c(\lambda)=\#$ corner boxes -1. Example:

Recall that the centralizer relationship produces:

$$W^{\otimes k} \cong \bigoplus_{\lambda} QP^{\lambda} \otimes S^{\bar{\lambda}}$$
 as a QP_k - S_n bimodule.

 $\dim(QP^{\lambda}) = \mathrm{multiplicity}(S^{\bar{\lambda}}) \quad \text{and} \quad \mathrm{multiplicity}(QP^{\lambda}) = \dim(S^{\bar{\lambda}})$ Tensoring rule for $W = S^{(n-1,1)}$

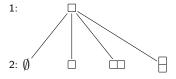
$$S^{\lambda} \otimes W = c(\lambda)S^{\lambda} \oplus \bigoplus_{\mu \in \Lambda} S^{\mu}$$

where Λ is the set of partitions gotten from λ by moving any corner box to another place, and $c(\lambda)=\#$ corner boxes -1. Example:

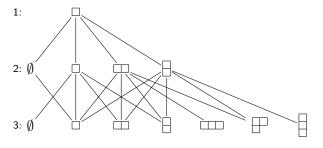
Assume n >> 1. We can forget the top row:

1:

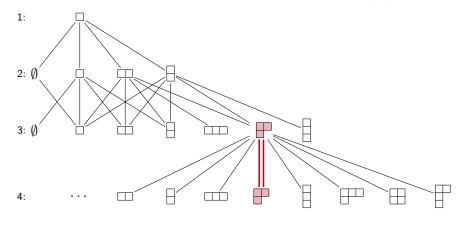
- (*) Modules for $QP_k(n)$ are indexed by partitions at the kth level of the Bratteli diagram.
- (*) Each module QP^{λ} has basis given by paths down to λ .



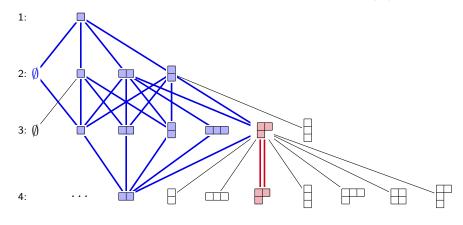
- (*) Modules for $QP_k(n)$ are indexed by partitions at the kth level of the Bratteli diagram.
- (*) Each module QP^{λ} has basis given by paths down to $\lambda.$



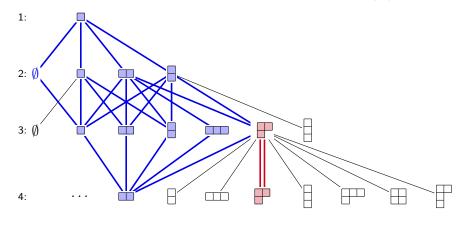
- (*) Modules for $QP_k(n)$ are indexed by partitions at the kth level of the Bratteli diagram.
- (*) Each module $\bar{Q}P^{\lambda}$ has basis given by paths down to $\lambda.$



- (*) Modules for $QP_k(n)$ are indexed by partitions at the kth level of the Bratteli diagram.
- (*) Each module $\bar{Q}P^{\lambda}$ has basis given by paths down to $\lambda.$



- (*) Modules for $QP_k(n)$ are indexed by partitions at the kth level of the Bratteli diagram.
- (*) Each module QP^{λ} has basis given by paths down to λ .



- (*) Modules for $QP_k(n)$ are indexed by partitions at the kth level of the Bratteli diagram.
- (*) Each module QP^{λ} has basis given by paths down to λ .

Thanks!