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The representation theory is also combinatorial:
Simple Sg-modules are in bijection with partitions, A F &

A\ =

|

4
+3
+1

(a collection of boxes piled up and to the left)

So, for example,

S[ED

&

and

4

are the simple Ss-modules (up to isomorphism).
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Schur-Weyl duality and centralizer algebras: (Schur 1901)

1. GL,(C) actson C" @ C" ® - -- ® C" = (C™)®* diagonally.
g (V1 ®V2® - @ uk) =gu1 ®gua @ - -+ ® gup.
2. S, also acts on (C")®* by place permutation.

V3 ® V1 ® Vs Q@ V2 Q V4

V1 ® V2 ® V3 ® Vs Q Vs

3. These actions commute!

gu3 @ gu1 @ gUs ® gu2 @ gu4 gu3 ® gv1 ® gUs @ g2 @ gU4

gu1 ® gu2 @ gU3 ® g4 @ gUs V1 ® V2 Q@ V3 ® V4 ® Us
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Schur-Weyl duality: S, and GL,, have commuting actions on
(C™)®* and their images fully centralize each in End (((C”)®k).

Why this is exciting:

Centralizer relationship produces

(C** =P L) ®S* asa GL,-Sy bimodule,
Ak

L(\) are distinct irreducible  GL,,-modules

where . . .
S*  are distinct irreducible  Si-modules

For example,

CreCreCt = (LoD esT) e (L(EP) ®SEP> o | (H) ®5@
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Switching roles: the partition algebra

Let V' be the permutation representation of S,,.

n X n matrices with 1's and 0's i.e. 0V = Vg (s
Now let S,, act diagonally on V®:
o - (Uil ® e ®vlk) —] UU(il) ® P ®va(ik)

What commutes?
Permutation of the factors again. But lots more!

dg=b=c (Ua & va) ®( Z?:l v; @ Ui)
l 1?

Vo @ Vb ® Ve ® Ud
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Set partitions
Fix k € Z~g, and let
k] ={1,...,k} and K ={1,... K'}.
We're interested in set partitions of [k] U [k/]. Either as sets of sets
d={{1,2,1'},{3},{2/,3,4',4}}
or as diagrams (considering connected components)
o o o o I—E o

(Both encode the map v, ® vy @ Ve @ Vg > Jpec—d (Vg @ Vy) ® Z v; @ vp)
i=1
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The partition algebra

Multiplying diagrams:

1 2 3 4
*—0 [ ]
1 2 3 4
*—a [ ]
— Y =
° ° : ' ® o
1 2’ 3 4
1" 2" 3" 4"

The partition algebra Py(n) is the C-span of the partition
diagrams with this product.

Nice facts:

(*) Associative algebra with identity 1 = {{1,1'},...,{k,k'}}.
(*) dim(Pg(n)) = the Bell number B(2k).

(¥) Sn and Py(n) centralize each other in End(V®*).
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Notice: V is not irreducible!

V =C{vi,...,un}
W =C{ws,...,w,} where w; = v; — v1,
T = Cu, where v = vy + - - + vy,

Then V=W @ T and so V& = /& g (@le M)t W®(k*i)) :

The question: What is Endg, (WW®*)?
Equivalent: Which maps in Py (n) send W®F — W®F?

A first hint:
If p=, thenp-v;=wv. So p = nmp projects onto T'.

1
Letpi:I...I : II Thenpi:V®k—>V®(i71)®T®V®(k*i)_

Any diagram d an isolated vertex satisfies d = p;d’ or d = d'p;.
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Let d be a diagram on 2k vertices.
Two maps in End(W®*):

1. Put d € P(n), and project its image onto W®*:

Rk
d: wek 4, yek Tw, ek

Good: Commutes with S,
Bad: What are they, and how do we multiply?

2. Let f:{vi, .. vn—1} = {wa, ... wy} Vi > Wit
Put d € Py(n — 1), and consider

—1
] - Wk Loy ek b ek T ek

Good: We know what they are and how to multiply them.
Bad: They don't commute with S),.

Goal: Express d in terms of [d']'s.
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Let’s calculate D
Start with a basis element of W @ W:

We @ Wy = (Vg — V1) Q (vp — v71) a,b#1
= (Vg @ Vp) — (Vg ® V1) — (V1 @ vp) + (V1 @ V1)

[

Oab (Ve ®Vg) —0— 04 (v1 ® v1)

} project back to W @ W
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Let’s calculate D
Start with a basis element of W @ W:

We @ Wy = (Vg — V1) Q (vp — v71) a,b#1
= (va Q@ p) — (Vg @ V1) — (V1 ) + (v1 @ v1)

[

Oab (Ve ®Vg) —0— 04 (v1 ® v1)

} project back to W @ W

[

Oab (wa - %w) ® (wa - Ew) + (%w) ® (%w) with w = sz
=2

= G (Wa @Wa) — b £ (W ®W) = Fap 2 (WRWG ) +0ap 72 (WOW) + 5 (WRW)

- TN ]




If X is a set of vertices, the isolation of d (at X) is dx , the
diagram constructed from d by isolating all vertices in X.

For example, if X = {1’,4’} and

1 2 3 4 1 2 3 4
*r—o—0

= I\ then =\
*———0 [ ] [ ] [ ]
1 2/ 3’ 4’ 1’ 2/ 3’ 4’

We can also place an order on diagrams, where d’ < d if d’ is a
refinement of d. In particular, dx < d.
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Theorem

If d € D then

d=[d]+

D

XC[KJU[R]

¢ [dX]7

where cx is a (totally explicit) polynomials in n and 1/n.

For example,
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Define the quasi-partition algebra as QPy(n) = Endg, (W®F).
Let D = { diagrams d without isolated verticies }.

Theorem
If d € D then

d=[d+ Y exldx],

XC[k]U[K]
where cx is a (totally explicit) polynomials in n and 1/n.

Corollary
QPy(n) has basis {d | d € D}, and thus has dimension

2k
Z(—l)j_lB(Qk‘ —j)+1, where B(r) is the Bell number.
j=1
Corollary
Ifdi,d2 € D,
6216{2 = Z cdc{.

d<dyds

In particular, if dids ¢ D, then didy = 0.
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So QPx(n) is also a subalgebra of Py(n —1).

It's generated by projections of

=] ] Tl

With relations that look like
in Pk(n — 1) :

2 _
si=1

S5iSi4+15i = Si+15iSi+1
e2=(n—1)e

b2 = b,

)

e2=(n-1)¢
b = "22hi+ 5
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Representation theory
Recall that the centralizer relationship produces:

W = QP ® S asa QPy-S, bimodule.
A

dim(QP*) = multiplicity(S*) and
Tensoring rule for W = S(—1.1)

S W =c\)S$* s @ s
HEA
where A is the set of partitions gotten from A\ by moving any

corner box to another place, and ¢(\) = # corner boxes —1.
Example:

multiplicity (QP?*) = dim(Sj‘)

[T1] [1]
ey prerrred ) Pl 1T ]
LI &L =[] oL GLLLT @ S

Assume n >> 1. We can forget the top row:

ﬁ@i:ﬁ@i@ﬁ@H@F
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30 O .
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Representation theory: Bratteli diagram for Q) Py(n)
1: O

...\Ej{/%a”:\}aﬂ B

(*) Modules for QP (n) are indexed by partitions at the kth level
of the Bratteli diagram.
(x) Each module QP has basis given by paths down to .

Thanks!



