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(To — to)(To — tg") = 0 = (T — ty) (T — t;; ")
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Instead, our favorite generators are Ty, T, ..., Tr_1 and invertible,
pairwise commuting Y7, ..., Yy (weight lattice part) with
additional relations. . .

Goal today:
Tell you 3 descriptions of calibrated irreducible reps of Hy,
where “calibrated” means C[Y{™!, ..., Y] is simultaneously

diagonalized.
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Restrict to ¢; € Z + (8 for some 8 € C.
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For example:
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Basis indexed by standard fillings with {£1,...,+k} with

restrictions:
(1) Exactly one of ¢ or —i appears.

(2) If box; < e, then filling is negative. If box; > e, filling is positive.
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Description 3: Partitions.
Representation arise in Schur-Weyl duality with certain U,gl,, reps.
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Centralizer properties
Let U = U,gl,, be the quantum group for gl,,(C). We're interested
in certain finite dimensional simple U-modules L(\) indexed by

partitions:
1 2 3

N = O

A=

(drawn as a collection of boxes piled up and to the left)
In particular, rectangular partitions:

Hj, has a commuting action with U on the space
c Ok
L((a%)) ® L((0%)) @ (L(@)) .
The content of a box is its diagonal number.
The eigenvalues of Ty and T}, are controlled by the contents of
addable boxes to (a¢) and (b%).
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Products of rectangles:

L(( ® L bd @ L (multiplicity one!)
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where A is the following set of partitions. . .
(Littlewood-Richardson, Okada)
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(*) Hj, representations in tensor space are labeled by certain partitions \.
() Basis labeled by tableaux from some partition z in (a®) ® (b%) to A.

(%) Calibrated: Y; acts by ¢ to the shifted content of box;.
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From {partitions in tensor space} to {box arrangements}

4.5 _5
2.5 3.5 1 3
C |42

[0 = boxes that must appear in the partition at level 0.
YY) =117, (Vo) = 877, A(Ya) =172, y(Ya) =727, 4(Ys) =t ™.

Versus

F(Y1) =10, y(Ya) =177, y(Ys) =72, (Y1) =177, y(Ys ') =t



Thanks!




