Combinatorics of affine Hecke algebras of type C.

Zajj Daugherty (joint with Arun Ram)

Dartmouth College and ICERM

April 14, 2013

The affine type C Hecke algebra H_k is generated by invertible elements T_0, T_1, \ldots, T_k with relations

The affine type C Hecke algebra H_k is generated by invertible elements T_0, T_1, \ldots, T_k with relations

Instead, our favorite generators are $T_0, T_1, \ldots, T_{k-1}$ and invertible, pairwise commuting Y_1, \ldots, Y_k (weight lattice part) with additional relations...

The affine type C Hecke algebra H_k is generated by invertible elements T_0, T_1, \ldots, T_k with relations

Instead, our favorite generators are $T_0, T_1, \ldots, T_{k-1}$ and invertible, pairwise commuting Y_1, \ldots, Y_k (weight lattice part) with additional relations...

Goal today:

Tell you 3 descriptions of calibrated irreducible reps of H_k , where "calibrated" means $\mathbb{C}[Y_1^{\pm 1}, \ldots, Y_k^{\pm 1}]$ is simultaneously diagonalized.

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{W_0}$$

w.r.t. the Weyl group W_0 of type C.

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{W_0}$$

w.r.t. the Weyl group W_0 of type C. We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W_0 action;

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{W_0}$$

w.r.t. the Weyl group W_0 of type C. We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W_0 action; i.e. k-tuples

$$\gamma = (\gamma_1, \dots, \gamma_k)$$
 with $\gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1}$

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{W_0}$$

w.r.t. the Weyl group W_0 of type C. We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W_0 action; i.e. k-tuples

$$egin{aligned} &\gamma = (\gamma_1, \dots, \gamma_k) & ext{with} & \gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1} \ &\mathbf{c} = (c_1, \dots, c_k) & ext{with} & \gamma(Y_i^{\pm 1}) = t^{\pm c_i} \end{aligned}$$

(where W_0 acts by signed permutations of c)

The center of H_k is symmetric Laurent polynomials

$$Z(H_k) = \mathbb{C}[Y_1^{\pm 1}, \dots, Y_k^{\pm 1}]^{W_0}$$

w.r.t. the Weyl group W_0 of type C. We can encode central characters as maps

$$\gamma: \{Y_1^{\pm 1}, \dots, Y_k^{\pm 1}\} \to \mathbb{C}$$

with equivalence under W_0 action; i.e. k-tuples

$$egin{aligned} &\gamma = (\gamma_1, \dots, \gamma_k) & ext{with} & \gamma(Y_i^{\pm 1}) = (\gamma_i)^{\pm 1} \ &\mathbf{c} = (c_1, \dots, c_k) & ext{with} & \gamma(Y_i^{\pm 1}) = t^{\pm c_i} \end{aligned}$$

(where W_0 acts by signed permutations of c)

Description 1: Central characters are indexed by points \mathbf{c} in \mathbb{C}^k .

Restrict to real points.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. (W_0 acts by signed permutations) When k = 2:

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. (W_0 acts by signed permutations) When k = 2:

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Restrict to real points.

Fav equivalence class reps: $0 \le c_1 \le \cdots \le c_k$. (W_0 acts by signed permutations) When k = 2:

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

The r_i s depend on H_k 's parameters t_0 and t_k : $r_1 = \log_t(t_0/t_k)$, $r_2 = \log_t(t_0t_k)$

Description 2: Box arrangements.

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

A central character c gives a list of diagonal placements.

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

$$\mathbf{c} = (2, 3, 4, 4, 5)$$

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

Description 1: Central characters are indexed by points c in \mathbb{C}^k . Representations of H_k are indexed by skew local regions. Basis indexed by chambers.

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

A central character ${\bf c}$ gives a list of diagonal placements. For example:

Description 1: Central characters are indexed by points c in \mathbb{C}^k . Representations of H_k are indexed by skew local regions. Basis indexed by chambers.

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

A central character ${\bf c}$ gives a list of diagonal placements. For example:

Basis indexed by standard fillings with $\{\pm 1, \ldots, \pm k\}$ with restrictions:

(1) Exactly one of i or -i appears.

(2) If $\mathrm{box}_i < \bullet$, then filling is negative. If $\mathrm{box}_i > \bullet$, filling is positive.

Description 1: Central characters are indexed by points c in \mathbb{C}^k . Representations of H_k are indexed by skew local regions. Basis indexed by chambers.

Description 2: Box arrangements.

Restrict to $c_i \in \mathbb{Z} + \beta$ for some $\beta \in \mathbb{C}$.

A central character ${\bf c}$ gives a list of diagonal placements. For example:

Basis indexed by standard fillings with $\{\pm 1, \ldots, \pm k\}$ with restrictions:

(1) Exactly one of i or -i appears.

(2) If $\mathrm{box}_i < \bullet$, then filling is negative. If $\mathrm{box}_i > \bullet$, filling is positive.

Description 1: Central characters are indexed by points \mathbf{c} in \mathbb{C}^k . Representations of H_k are indexed by skew local regions. Basis indexed by chambers.

Description 2: Marked box arrangements. Basis indexed by good fillings. Description 1: Central characters are indexed by points \mathbf{c} in \mathbb{C}^k . Representations of H_k are indexed by skew local regions. Basis indexed by chambers.

Description 2: Marked box arrangements. Basis indexed by good fillings.

Description 3: Partitions.

Representation arise in Schur-Weyl duality with certain $U_q \mathfrak{gl}_n$ reps.

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

 H_k has a commuting action with U on the space $L((a^c)) \otimes L((b^d)) \otimes (L(\Box))^{\otimes k}$.

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

 H_k has a commuting action with U on the space $L((a^c)) \otimes L((b^d)) \otimes (L(\Box))^{\otimes k}$. The content of a box is its diagonal number.

Let $U = U_q \mathfrak{gl}_n$ be the quantum group for $\mathfrak{gl}_n(\mathbb{C})$. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

 H_k has a commuting action with U on the space $L((a^c)) \otimes L((b^d)) \otimes (L(\Box))^{\otimes k}$. The content of a box is its diagonal number.

The eigenvalues of T_0 and T_k are controlled by the contents of addable boxes to (a^c) and (b^d) .

Products of rectangles:

$$L((a^c))\otimes L((b^d))= igoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!

Products of rectangles:

$$L((a^c))\otimes L((b^d))= igoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))= igoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))= igoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

Products of rectangles:

$$L((a^c))\otimes L((b^d))= igoplus_{\lambda\in\Lambda} L(\lambda)$$
 (multiplicity one!)

where Λ is the following set of partitions. . .

(Littlewood-Richardson, Okada)

 $L\left(\fbox{}\right)\otimes L\left(\fbox{}\right)\otimes L\left(\fbox{}\right)$

 $L\left(\begin{array}{c} \\ \\ \end{array}\right) \otimes L\left(\begin{array}{c} \\ \end{array}\right) \otimes L\left(\begin{array}{c} \\ \end{array}\right) \otimes L\left(\begin{array}{c} \\ \end{array}\right)$

 $L\left(\begin{array}{c} \\ \\ \end{array}\right) \otimes L\left(\begin{array}{c} \\ \end{array}\right)$

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right) \otimes L\left(\square\right)$

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ .

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ .

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ .

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ .

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated

 $L\left(\square\square\right) \otimes L\left(\square\right) \otimes$

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated

(*) H_k representations in tensor space are labeled by certain partitions λ . (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ . (*) Calibrated: Y_i acts by t to the shifted content of box_i .

 \blacksquare = boxes that must appear in the partition at level 0.

 \blacksquare = boxes that must appear in the partition at level 0.

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2},$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

 \blacksquare = boxes that must appear in the partition at level 0.

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4) = t^{-2.5}, \ \gamma(Y_5) = t^{-r_2}.$$

versus

$$\gamma(Y_1) = t^{4.5}, \ \gamma(Y_2) = t^{3.5}, \ \gamma(Y_3) = t^{r_2}, \ \gamma(Y_4^{-1}) = t^{2.5}, \ \gamma(Y_5^{-1}) = t^{r_2}.$$

Thanks!

