# Combinatorics of affine Hecke algebras of type C. 

Zajj Daugherty<br>(joint with Arun Ram)<br>Dartmouth College and ICERM

April 14, 2013

The affine type C Hecke algebra $H_{k}$ is generated by invertible elements $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\begin{array}{ccccc}
T_{0} & T_{1} & T_{2} & T_{k-2} & T_{k-1}
\end{array} T_{k}
$$

$$
\begin{gathered}
\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=0=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right) \\
\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \text { for } 1 \leq i \leq k-1
\end{gathered}
$$

The affine type C Hecke algebra $H_{k}$ is generated by invertible elements $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
\begin{array}{ccccc}
T_{0} & T_{1} & T_{2} & T_{k-2} & T_{k-1}
\end{array} T_{k}
$$

$$
\begin{gathered}
\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=0=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right) \\
\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \text { for } 1 \leq i \leq k-1
\end{gathered}
$$

Instead, our favorite generators are $T_{0}, T_{1}, \ldots, T_{k-1}$ and invertible, pairwise commuting $Y_{1}, \ldots, Y_{k}$ (weight lattice part) with additional relations...

The affine type C Hecke algebra $H_{k}$ is generated by invertible elements $T_{0}, T_{1}, \ldots, T_{k}$ with relations


$$
\begin{aligned}
& \left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=0=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right) \\
& \left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \text { for } 1 \leq i \leq k-1
\end{aligned}
$$

Instead, our favorite generators are $T_{0}, T_{1}, \ldots, T_{k-1}$ and invertible, pairwise commuting $Y_{1}, \ldots, Y_{k}$ (weight lattice part) with additional relations. . .

## Goal today:

Tell you 3 descriptions of calibrated irreducible reps of $H_{k}$, where "calibrated" means $\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ is simultaneously diagonalized.

## Central characters

The center of $H_{k}$ is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W_{0}}
$$

w.r.t. the Weyl group $W_{0}$ of type C.

## Central characters

The center of $H_{k}$ is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W_{0}}
$$

w.r.t. the Weyl group $W_{0}$ of type C. We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under $W_{0}$ action;

## Central characters

The center of $H_{k}$ is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W_{0}}
$$

w.r.t. the Weyl group $W_{0}$ of type C. We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under $W_{0}$ action; i.e. $k$-tuples

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1}
$$

## Central characters

The center of $H_{k}$ is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W_{0}}
$$

w.r.t. the Weyl group $W_{0}$ of type C. We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under $W_{0}$ action; i.e. $k$-tuples

$$
\begin{gathered}
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1} \\
\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=t^{ \pm c_{i}}
\end{gathered}
$$

(where $W_{0}$ acts by signed permutations of $\mathbf{c}$ )

## Central characters

The center of $H_{k}$ is symmetric Laurent polynomials

$$
Z\left(H_{k}\right)=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{W_{0}}
$$

w.r.t. the Weyl group $W_{0}$ of type C. We can encode central characters as maps

$$
\gamma:\left\{Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right\} \rightarrow \mathbb{C}
$$

with equivalence under $W_{0}$ action; i.e. $k$-tuples

$$
\begin{gathered}
\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=\left(\gamma_{i}\right)^{ \pm 1} \\
\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \quad \text { with } \quad \gamma\left(Y_{i}^{ \pm 1}\right)=t^{ \pm c_{i}}
\end{gathered}
$$

(where $W_{0}$ acts by signed permutations of $\mathbf{c}$ )
Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$.

## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :

$$
c_{1}=c_{2}
$$



## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :


## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :


## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :


## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points

Restrict to real points.
Fav equivalence class reps: $0 \leq c_{1} \leq \cdots \leq c_{k}$. ( $W_{0}$ acts by signed permutations) When $k=2$ :


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

## Central characters as points;

Calibrated reps as skew local regions


The $r_{i}$ s depend on $H_{k}$ 's parameters $t_{0}$ and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$



Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$



Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$



Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$



$$
1>2,2>3,2<4,3,4<5
$$



$$
5<\bullet
$$

$5>$ •

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$



$$
1>2,2>3,2<4,3,4<5
$$

$5<\bullet$
$1<2,2>3,3<5,4>5$
$5>\bullet$

Basis indexed by standard fillings with $\{ \pm 1, \ldots, \pm k\}$ with restrictions:
(1) Exactly one of $i$ or $-i$ appears.
(2) If box $_{i}<\bullet$, then filling is negative. If box $_{i}>\bullet$, filling is positive.

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions.
Basis indexed by chambers.
Description 2: Box arrangements.
Restrict to $c_{i} \in \mathbb{Z}+\beta$ for some $\beta \in \mathbb{C}$.
A central character $\mathbf{c}$ gives a list of diagonal placements.
For example:

$$
\mathbf{c}=(2,3,4,4,5)
$$



Basis indexed by standard fillings with $\{ \pm 1, \ldots, \pm k\}$ with restrictions:
(1) Exactly one of $i$ or $-i$ appears.
(2) If box $_{i}<\bullet$, then filling is negative. If box $_{i}>\bullet$, filling is positive.

## Points versus box arrangements



Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions. Basis indexed by chambers.

Description 2: Marked box arrangements.
Basis indexed by good fillings.

Description 1: Central characters are indexed by points $\mathbf{c}$ in $\mathbb{C}^{k}$. Representations of $H_{k}$ are indexed by skew local regions. Basis indexed by chambers.

Description 2: Marked box arrangements.
Basis indexed by good fillings.
Description 3: Partitions.
Representation arise in Schur-Weyl duality with certain $U_{q} \mathfrak{g l}_{n}$ reps.

## Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple $U$-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)

## Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple $U$-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

$$
\left(a^{c}\right)=c
$$

## Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple $U$-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \begin{gathered}
a \\
\hline \\
\hline
\end{gathered}
$$

$H_{k}$ has a commuting action with $U$ on the space

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}
$$

## Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple $U$-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \begin{gathered}
a \\
\hline- \\
\hline
\end{gathered}
$$

$H_{k}$ has a commuting action with $U$ on the space

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}
$$

The content of a box is its diagonal number.

## Centralizer properties

Let $U=U_{q} \mathfrak{g l}_{n}$ be the quantum group for $\mathfrak{g l}_{n}(\mathbb{C})$. We're interested in certain finite dimensional simple $U$-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left) In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \stackrel{a}{-} \left\lvert\, \begin{array}{c}
a \\
\hline- \\
\hline-c! \\
\hline
\end{array}_{\substack{a \\
\hline}}\right.
$$

$H_{k}$ has a commuting action with $U$ on the space

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}
$$

The content of a box is its diagonal number.
The eigenvalues of $T_{0}$ and $T_{k}$ are controlled by the contents of addable boxes to $\left(a^{c}\right)$ and $\left(b^{d}\right)$.

## Exploring $L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)

## Exploring $L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)


## Exploring $L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)


## Exploring $L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)


## Exploring $L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a^{c}\right)\right) \otimes L\left(\left(b^{d}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions...
(Littlewood-Richardson, Okada)

${ }^{L}(\#) \otimes \nu(\boxplus)$

$L^{L}(\#) \otimes L(\boxplus) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
$(*)$ Basis labeled by tableaux from some partition $\mu$ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to $\lambda$.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
$(*)$ Basis labeled by tableaux from some partition $\mu$ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to $\lambda$.
(*) Calibrated
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
$(*)$ Basis labeled by tableaux from some partition $\mu$ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to $\lambda$.
(*) Calibrated
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) $H_{k}$ representations in tensor space are labeled by certain partitions $\lambda$.
(*) Basis labeled by tableaux from some partition $\mu$ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to $\lambda$.
(*) Calibrated: $Y_{i}$ acts by $t$ to the shifted content of box $_{i}$.

## From \{partitions in tensor space\} to \{box arrangements\}



## From \{partitions in tensor space\} to \{box arrangements\}



## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

## From \{partitions in tensor space\} to \{box arrangements\}


$\square=$ boxes that must appear in the partition at level 0 .

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}\right)=t^{-2.5}, \gamma\left(Y_{5}\right)=t^{-r_{2}} .
$$

versus

$$
\gamma\left(Y_{1}\right)=t^{4.5}, \gamma\left(Y_{2}\right)=t^{3.5}, \gamma\left(Y_{3}\right)=t^{r_{2}}, \gamma\left(Y_{4}^{-1}\right)=t^{2.5}, \gamma\left(Y_{5}^{-1}\right)=t^{r_{2}} .
$$

## Thanks!



