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Permutations and the symmetric group

Permutation diagrams:
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Permutations “multiply” by stacking and resolving.

The symmetric group Sn is the group of permutations of 1, . . . , n
with multiplication given by stacking and resolving diagrams.
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Some examples:

S1 :

1

1

S2 :

1

1

2

2

1

1

2

2

S3 :

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3



A representation of a group is a map from the group to a set of
matrices which “preserves structure.”

Example: Permutation representation of the symmetric group.
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v1

v1

v2

v2

v3

v3

=

0 0 1
1 0 0
0 1 0



Pick a basis for R3:

v1 =

1
0
0

 v2 =

0
1
0

 v3 =

0
0
1


Map each permutation to the matrix which permutes the basis
vectors in the same way.

Aside: we actually have a representation of the group ring

RSn =

{∑
σ∈Sn

rσσ | rσ ∈ R

}
, with multiplication like polynomials
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Notice that the permutation representation has an invariant
subspace R{v1 + v2 + v3}, since

M(v1 + v2 + v3) = v1 + v2 + v3

for all permutation matrices M .
Change to basis

w1 = v1 − v2, w2 = v2 − v3, w3 = v1 + v2 + v3
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Start with the permutation representation P with basis {v1, v2, v3}.

Change to basis

w1 = v1 − v2, w2 = v2 − v3, w3 = v1 + v2 + v3

We say P is isomorphic to the sum of two smaller representations:
P ∼= A⊕B

We say A and B are simple because neither has any invariant
subspaces.
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We draw partitions as n boxes piled up and to the left, where the
parts are the number of boxes in a row:
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What other combinatorial data?

The content of a box in a partition is its diagonal number:

λ = (5, 4, 4, 2) =

-1

-2

-3

0 1 2 3 4

0 1 2 3 4

−1 0 1 2

−2−1 0 1

−3−2

Again:
∗ each partition is secretly a representation
∗ each path is secretly a basis vector
Now: entries in matrices for s1, s2, . . . , are given by expressions in
the contents of boxes added.
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sum of matrix rings.

RSn ∼=M1(R)⊕M2(R)⊕M1(R) ∼= ⊕ ⊕
(The matrix ring on an m-dimensional v.s. is m2-dimenstional)
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