A taste of combinatorial representation theory (yum)

Zajj Daugherty
Dartmouth College \& ICERM

March 14, 2013
(Happy π day!)

Permutations and the symmetric group

Permutation diagrams:

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.

Permutations and the symmetric group

Permutation diagrams:

Permutations "multiply" by stacking and resolving.
The symmetric group S_{n} is the group of permutations of $1, \ldots, n$ with multiplication given by stacking and resolving diagrams.

Some examples:

$$
S_{1}: \quad \frac{1}{1}
$$

S_{3} :

A representation of a group is a map from the group to a set of matrices which "preserves structure."

A representation of a group is a map from the group to a set of matrices which "preserves structure."
Example: Permutation representation of the symmetric group.

A representation of a group is a map from the group to a set of matrices which "preserves structure."
Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

A representation of a group is a map from the group to a set of matrices which "preserves structure."
Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Map each permutation to the matrix which permutes the basis vectors in the same way.

A representation of a group is a map from the group to a set of matrices which "preserves structure."
Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Map each permutation to the matrix which permutes the basis vectors in the same way.

A representation of a group is a map from the group to a set of matrices which "preserves structure."
Example: Permutation representation of the symmetric group.

Pick a basis for \mathbb{R}^{3} :

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Map each permutation to the matrix which permutes the basis vectors in the same way.
Aside: we actually have a representation of the group ring
$\mathbb{R} S_{n}=\left\{\sum_{\sigma \in S_{n}} r_{\sigma} \sigma \mid r_{\sigma} \in \mathbb{R}\right\}$, with multiplication like polynomials

$$
\left.\begin{array}{lll}
1 & \longmapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
1 & 2 & 3
\end{array}\right)
$$

$$
\begin{aligned}
& l
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.

$$
\begin{aligned}
& l
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{array}{ll}
l & \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& \underbrace{1}_{1}{\underset{i}{2}}_{2}^{2} \mapsto\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& X_{i}^{1}=\frac{2}{3} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \underbrace{1}_{1} X_{2}^{2} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& X_{i}^{1} \chi_{3}^{2} \mapsto\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& \underbrace{1}_{1}{\underset{i}{2}}_{2}^{2} \mapsto\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& {\underset{i}{2}}_{2}^{2}{\underset{3}{3}}_{3}^{3} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \sim\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \underbrace{2}_{i=1}{\underset{i}{3}}_{3}^{2} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
& {\underset{1}{1}}_{2}^{2} X_{3}^{3} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \underbrace{2}_{i=1} \underbrace{3}_{2} \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& \prod_{1}^{1} \underset{2}{2}{\underset{3}{3}}_{\substack{3 \\
0}}^{3} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underbrace{1}_{i}{\underset{i}{2}}_{2}^{3} \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \sum_{i}^{1} \sum_{2}^{2} 3_{3}^{3} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underbrace{1}_{i} \sim_{3}^{2} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underbrace{1}_{1}{\underset{2}{2}}_{2}^{2} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underset{1}{2}{\underset{i}{2}}_{2}^{2} \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& \prod_{1}^{1}{\underset{2}{2}}_{2}^{2}{\underset{3}{3}}_{3}^{3} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underbrace{1}_{i}{\underset{i}{2}}_{2}^{3} \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \sum_{1}^{1} \sum_{2}^{2}{\underset{3}{3}}_{3}^{1} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underbrace{1}_{i} \sim_{3}^{2} \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& {\underset{1}{1}}_{1}^{2} \sum_{3}^{2} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \underset{1}{2}{\underset{i}{2}}_{2}^{2} \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Notice that the permutation representation has an invariant subspace $\mathbb{R}\left\{v_{1}+v_{2}+v_{3}\right\}$, since

$$
M\left(v_{1}+v_{2}+v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

for all permutation matrices M.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.

$$
\begin{aligned}
& {\underset{i}{2}}_{2}^{2} \mapsto\left[\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\right) \sim\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{1}_{i} \underbrace{2}_{3} \mapsto\left[\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \sim\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right. \\
& {\underset{1}{1}}_{\substack{1 \\
2}}^{2} \mapsto\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\right. \\
& \underbrace{2}_{1}{\underset{2}{2}}_{2}^{2} \mapsto\left[\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \sim\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
\end{aligned}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

$$
\begin{aligned}
& =\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
\end{aligned}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.
Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

We say P is isomorphic to the sum of two smaller representations:

$$
P \cong A \oplus B
$$

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=v_{1}-v_{2}, \quad w_{2}=v_{2}-v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

We say P is isomorphic to the sum of two smaller representations:

$$
P \cong A \oplus B
$$

We say A and B are simple because neither has any invariant subspaces.

Start with the permutation representation P with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Change to basis

$$
w_{1}=\sqrt{3}\left(v_{1}-v_{2}\right), \quad w_{2}=v_{1}+v_{2}-2 v_{3}, \quad w_{3}=v_{1}+v_{2}+v_{3}
$$

We say P is isomorphic to the sum of two smaller representations:

$$
P \cong A \oplus B
$$

We say A and B are simple because neither has any invariant subspaces.

How about some combinatorics?

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which sum to n.

Example: the partitions of 3 are (3), $(2,1)$, and $(1,1,1)$.

How about some combinatorics?

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which sum to n.

Example: the partitions of 3 are (3), $(2,1)$, and $(1,1,1)$.
We draw partitions as n boxes piled up and to the left, where the parts are the number of boxes in a row:

Young's lattice:

Young's lattice:

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.

λ-Tableau: a path from \emptyset down to a partition λ.
Theorem 1: (Up to isomorphism) the simple S_{n}-representations are indexed by partitions of n.

λ-Tableau: a path from \emptyset down to a partition λ.
Theorem 1: (Up to isomorphism) the simple S_{n}-representations are indexed by partitions of n.
Theorem 2: If λ is a partition of n, then the corresponding representation has basis indexed by λ-tableaux, and matrices determined by other combinatorial data about those paths.

λ-Tableau: a path from \emptyset to a partition λ.
Theorem 1: (Up to isomorphism) the simple S_{n}-representations are indexed by partitions of n.
Theorem 2: If λ is a partition of n, then the corresponding representation has basis indexed by λ-tableaux, and matrices determined by other combinatorial data about those paths.

What other combinatorial data?

What other combinatorial data?
The content of a box in a partition is its diagonal number:

What other combinatorial data?
The content of a box in a partition is its diagonal number:

What other combinatorial data?
The content of a box in a partition is its diagonal number:

Again:

* each partition is secretly a representation
* each path is secretly a basis vector

Now: entries in matrices for s_{1}, s_{2}, \ldots, are given by expressions in the contents of boxes added.

The rule for s_{i} :

The rule for s_{i} :
Suppose v goes with the path

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :
Suppose v goes with the path

and u is almost the same, except at the i th step.

The rule for s_{i} :

Suppose v goes with the path

and u is almost the same, except at the i th step.

Let c_{i} be the content of the box added from $i-1$ to i.

The rule for s_{i} :

Suppose v goes with the path

and u is almost the same, except at the i th step.

Let c_{i} be the content of the box added from $i-1$ to i.

The rule for s_{i} :

Suppose v goes with the path

and u is almost the same, except at the i th step.

Let c_{i} be the content of the box added from $i-1$ to i.

The rule for s_{i} :

Suppose v goes with the path

and u is almost the same, except at the i th step.

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
$v: \quad \emptyset \stackrel{0}{\square} \square \stackrel{-1}{\square} \square$
$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square}$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
$v: \quad \emptyset \stackrel{0}{\square} \square \stackrel{-1}{\square} \square \stackrel{1}{\square}$
$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square}$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
$v: \quad \emptyset \xrightarrow{0} \square \stackrel{-1}{-1} \square$

	v	u
v	$1 /(-1-0)$	0
u	0	$1 /(1-0)$

$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square}$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
$v:$

$$
\begin{aligned}
& v: \quad \emptyset \stackrel{0}{\square} \square \stackrel{-1}{-} \square \stackrel{1}{-} \square \\
& u: \quad \emptyset \stackrel{0}{-} \square \stackrel{1}{-} \square \stackrel{-1}{-} \square
\end{aligned}
$$

$$
s_{2}=\int_{1}^{1}{\underset{2}{2}}_{2}^{3}
$$

$$
\begin{array}{c|c|c}
& v & u \\
\hline v & & \\
\hline u & &
\end{array}
$$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
$v: \quad \emptyset \stackrel{0}{-} \square \stackrel{-1}{-} \square \frac{1}{} \square$

	v	u
v	$1 /(1-(-1))$	
u		$1 /(-1-1)$

$u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{\square} \square \stackrel{-1}{\square}$

$$
s_{2}=\int_{1}^{1} \sum_{2}^{2} \sum_{3}^{3}
$$

The rule for s_{i} :
Suppose v goes with the path

Let c_{i} be the content of the box added from $i-1$ to i.

Then the coefficient in $s_{i} \cdot v$
\ldots on v is $1 /\left(c_{i+1}-c_{i}\right)$
\ldots on u is $\sqrt{1-\left(1 /\left(c_{i+1}-c_{i}\right)\right)^{2}}$
\ldots on any other path is 0 .
and u is almost the same, except at the i th step.

Back to S_{3} :
$v:$

$$
\emptyset \stackrel{0}{\square} \square \stackrel{-1}{-} \square \stackrel{1}{-} \square \begin{array}{c|c|c}
& v & u \\
\hline v & 1 /(1-(-1)) & \sqrt{1-1 / 4} \\
\hline u & \sqrt{1-1 / 4} & 1 /(-1-1)
\end{array}
$$

$$
u: \quad \emptyset \stackrel{0}{\square} \square \stackrel{1}{-} \square \stackrel{-1}{\square} \square
$$

"trivial"
"alternating"

Counting tableaux and dimensions

Wedderburn's theorem: "Nice" rings are isomorphic to the direct sum of matrix rings.

Counting tableaux and dimensions

Wedderburn's theorem: "Nice" rings are isomorphic to the direct sum of matrix rings.

$$
\mathbb{R} S_{n} \cong M_{1}(\mathbb{R}) \oplus M_{2}(\mathbb{R}) \oplus M_{1}(\mathbb{R}) \cong \square \oplus \square \oplus \square
$$

(The matrix ring on an m-dimensional v.s. is m^{2}-dimenstional)

