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Permutations “multiply” by stacking and resolving.
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The symmetric group S, is the group of permutations of 1,...,n
with multiplication given by stacking and resolving diagrams.



Some examples:

S

Sy :

S3 :

ne——em

Ne——e N

—e————e



A representation of a group is a map from the group to a set of
matrices which “preserves structure.”
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Pick a basis for R3:

a= () () we(2)
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Pick a basis for R3:
1 0 0
v1 = 1[0 vy = (1 v3 =10
0 0 1
Map each permutation to the matrix which permutes the basis
vectors in the same way.
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A representation of a group is a map from the group to a set of
matrices which “preserves structure.”

Example: Permutation representation of the symmetric group.

(% V2 V3
0 01
=11 0 0
01 0
V1 (%) V3
Pick a basis for R3:
1 0 0
v1 = 1[0 vy = (1 v3 =10
0 0 1

Map each permutation to the matrix which permutes the basis
vectors in the same way.
Aside: we actually have a representation of the group ring

RS, = { Z Te0 | To € R}, with multiplication like polynomials
UGSTL
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Notice that the permutation representation has an invariant
subspace R{v; + vg + v3}, since

M(1}1+’02+U3):Ul+1}2+’03

for all permutation matrices M.



1 2 3 ’100“ 1 2 3 ’001“
IRt NCRE
HEE \001) HEE I \OlO)
1 2 3 ’010“ 1 2 3 ’010“
><I'->100 MHOOl
£33 (001 $iy oo
123 (100) 222 f(oo01)
IXHOOI XHOlO
P4y (010 iy 100y

Notice that the permutation representation has an invariant
subspace R{v; + vg + v3}, since

M(1}1+’02+U3):Ul+1}2+’03

for all permutation matrices M.
Change to basis

w1 = V] — V2, wo = Vg — V3, w3 = v1 + U2 + U3
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Start with the permutation representation P with basis {v1, va, v3}.
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Start with the permutation representation P with basis {v1, va, v3}.

Change to basis

V1 + v2 + U3

w3 =

wg = V2 — U3,

w) = V1 — V2,
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Start with the permutation representation P with basis {1)1,'1)2,1)3}.

Change to basis

V1 + v2 + U3

w3 =

wg = V2 — U3,

w) = V1 — V2,
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

wy = v — V2, W = Vg — Vs, w3 = v1 + V2 + U3
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

wy = v — V2, W = Vg — Vs, w3 = v1 + V2 + U3

We say P is isomorphic to the sum of two smaller representations:
P A®
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

wy = v — V2, W = Vg — Vs, w3 = v1 + V2 + U3

We say P is isomorphic to the sum of two smaller representations:
P2 A®

We say A and B are simple because neither has any invariant

subspaces.
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Start with the permutation representation P with basis {v1, va, v3}.
Change to basis

wy = \/3(211 — v9), wy = v1 + Vg — 203, w3 = v + vy + U3

We say P is isomorphic to the sum of two smaller representations:
PXA®

We say A and B are simple because neither has any invariant

subspaces.
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Let n be a non-negative integer.
A partition A of n is a non-ordered list of positive integers which
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Example: the partitions of 3 are (3), (2,1), and (1,1,1).



How about some combinatorics?

Let n be a non-negative integer.
A partition A of n is a non-ordered list of positive integers which

sum to n.
Example: the partitions of 3 are (3), (2,1), and (1,1,1).

We draw partitions as n boxes piled up and to the left, where the
parts are the number of boxes in a row:

A= (54,4,2) =
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Young's lattice:

A-Tableau: a path from ) down to a partition .
Theorem 1: (Up to isomorphism) the simple S),-representations are
indexed by partitions of n.
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A-Tableau: a path from ) down to a partition .

Theorem 1: (Up to isomorphism) the simple S),-representations are
indexed by partitions of n.

Theorem 2: If A is a partition of n, then the corresponding
representation has basis indexed by A-tableaux, and matrices
determined by other combinatorial data about those paths.
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A-Tableau: a path from () to a partition \.

Theorem 1: (Up to isomorphism) the simple S),-representations are
indexed by partitions of n.

Theorem 2: If A is a partition of n, then the corresponding
representation has basis indexed by A-tableaux, and matrices
determined by other combinatorial data about those paths.
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The content of a box in a partition is its diagonal number:
o1 2 3 4
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The content of a box in a partition is its diagonal number:
1.2 3 4
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What other combinatorial data?

The content of a box in a partition is its diagonal number:
1.2 3 4
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A=(5,4,4,2) =

Again:
x each partition is secretly a representation
x each path is secretly a basis vector

Now: entries in matrices for sy, so, ..., are given by expressions in
the contents of boxes added.
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and v is almost the same,
except at the ith step.
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except at the ith step.

Let ¢; be the content of the box added
from i — 1 to 4.
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...on any other path is 0.




The rule for s;:

Suppose v goes with the
path

o
S
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e,/
/
.’.
and u is almost the same,
except at the ith step.

Back to Sj3:

Let ¢; be the content of the box added
from i — 1 to 4.

Then the coefficient in s; - v
...onvis 1/(62'4_1 — Ci)
...onuis \/1 — (1/(Ci+1 — CZ‘))2

...on any other path is 0.
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The rule for s;:

Suppose v goes with the
path
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and u is almost the same,
except at the ith step.

Back to Sj3:
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Let ¢; be the content of the box added
from i — 1 to 4.

Then the coefficient in s; - v
...onvis 1/(Ci+1 — Ci)
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..on
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Back to Sj3:

Let ¢; be the content of the box added
from i — 1 to 4.
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The rule for s;:

Suppose v goes with the
path
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except at the ith step.

Back to Sj3:

Let ¢; be the content of the box added
from i — 1 to 4.

Then the coefficient in s; - v
...onvis 1/(Ci+1 — Ci)
...onuis \/1 — (1/(Ci+1 — CZ‘))2

...on any other path is 0.
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The rule for s;:

Suppose v goes with the
path
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Back to Sj3:

Let ¢; be the content of the box added
from i — 1 to 4.

Then the coefficient in s; - v
...onvis 1/(Ci+1 — Ci)
...onuis \/1 — (1/(Ci+1 — CZ‘))2

...on any other path is 0.
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Wedderburn's theorem: “Nice” rings are isomorphic to the direct
sum of matrix rings.



Counting tableaux and dimensions

0
|
O 1 12 =[5
/N
M1 H; 1% +12 = |Sy|
/N /N
o1 o, El 12 422 +12 = [Ss]

2 2 2 2 2 _
o 1HE 5 o, @33 El 12432 422 432 412 = |5

Wedderburn's theorem: “Nice” rings are isomorphic to the direct
sum of matrix rings.

RS, = M;(R) ® M2(R) & M;(R) = EEDGBEP@@

(The matrix ring on an m-dimensional v.s. is m?2-dimenstional)



