Centralizer properties of
 the affine Hecke algebra of type C

Zajj Daugherty
(joint with Arun Ram)

Dartmouth College

January 11, 2013

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Pictorially, the generators of \mathcal{B}_{k} are identified with the diagrams

and

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Pictorially,

$$
T_{i} T_{i+1} T_{i}=
$$

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Pictorially,

(similar picture for $T_{k} T_{k-1} T_{k} T_{k-1}=T_{k-1} T_{k} T_{k-1} T_{k}$)

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

$$
\begin{aligned}
& T_{0} \quad T_{1} \quad T_{2} \quad T_{k-2} \quad T_{k-1} \quad T_{k}
\end{aligned}
$$

Two (isomorphic) quotients, two perspectives:

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Two (isomorphic) quotients, two perspectives:

1. Fix $a_{1}, a_{2}, b_{1}, b_{2}, q \in \mathbb{C}^{\times}$. The affine Hecke algebra \mathcal{H}_{k} of type C is the quotient of $\mathbb{C B}_{k}$ by
(*) $\quad\left(T_{0}-a_{1}\right)\left(T_{0}-a_{2}\right)=0, \quad\left(T_{k}-b_{1}\right)\left(T_{k}-b_{2}\right)=0, \quad\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0$.
(various assumptions are made about a_{i}, b_{i} depending on context)

The two-boundary braid group is the group \mathcal{B}_{k} generated by $T_{0}, T_{1}, \ldots, T_{k}$, with relations

Two (isomorphic) quotients, two perspectives:

1. Fix $a_{1}, a_{2}, b_{1}, b_{2}, q \in \mathbb{C}^{\times}$. The affine Hecke algebra \mathcal{H}_{k} of type C is the quotient of $\mathbb{C B}_{k}$ by

$$
\begin{equation*}
\left(T_{0}-a_{1}\right)\left(T_{0}-a_{2}\right)=0, \tag{*}
\end{equation*}
$$

$$
\left(T_{k}-b_{1}\right)\left(T_{k}-b_{2}\right)=0
$$

$$
\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0
$$

(various assumptions are made about a_{i}, b_{i} depending on context)
2. Let A, B, C be finite dim'l $U_{q} \mathfrak{g}$-modules. Then $\mathbb{C} \mathcal{B}_{k}$ acts on

$$
B \otimes \underbrace{C \otimes \cdots \otimes C}_{k \text { factors }} \otimes A
$$

Under good (to be defined) conditions, this action factors through the quotient $(*)$.

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Points correspond to central characters.

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Points correspond to central characters.

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Points correspond to central characters.

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Points correspond to central characters. The γ_{i} s depend on \mathcal{H}_{k} 's parameters.

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Points correspond to central characters. The γ_{i} s depend on \mathcal{H}_{k} 's parameters.

Representation theory of \mathcal{H}_{k}

The representations of \mathcal{H}_{k} are indexed by skew local regions. For example, when $k=2$:

Points correspond to central characters. The γ_{i} s depend on \mathcal{H}_{k} 's parameters.

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Representation theory of \mathcal{H}_{k}

Classically, we index the representations of \mathcal{H}_{k} by skew local regions. For example, when $k=2$:

Centralizer properties

Let $U=U_{q} \mathfrak{g}$ be the quantum group for a finite dim'l reductive Lie algebra. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)

Centralizer properties

Let $U=U_{q} \mathfrak{g}$ be the quantum group for a finite dim'I reductive Lie algebra. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)
In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \begin{gathered}
a \\
\hline \\
\hline
\end{gathered}
$$

Centralizer properties

Let $U=U_{q} \mathfrak{g}$ be the quantum group for a finite dim'I reductive Lie algebra. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

(drawn as a collection of boxes piled up and to the left)
In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \begin{gathered}
a \\
\hline \\
\hline
\end{gathered}
$$

If a box is in column i and row j of a partition λ, then the content of that box is

$$
c(\text { box })=i-j
$$

Centralizer properties

Let $U=U_{q} \mathfrak{g}$ be the quantum group for a finite dim'I reductive Lie algebra. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

$$
\lambda=\begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

(drawn as a collection of boxes piled up and to the left)
In particular, rectangular partitions:

$$
\left(a^{c}\right)=c \begin{gathered}
a \\
\hline \\
\hline
\end{gathered}
$$

If a box is in column i and row j of a partition λ, then the content of that box is

$$
c(\text { box })=i-j
$$

Centralizer properties

Let $U=U_{q} \mathfrak{g}$ be the quantum group for a finite dim'I reductive Lie algebra. We're interested in certain finite dimensional simple U-modules $L(\lambda)$ indexed by partitions:

$$
\lambda=\begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

(drawn as a collection of boxes piled up and to the left)
In particular, rectangular partitions:

If a box is in column i and row j of a partition λ, then the content of that box is

$$
c(\text { box })=i-j
$$

Centralizer properties

Theorem (D.-Ram)

1. Let $U=U_{q} \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_{k} acts on $B \otimes(C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

Centralizer properties

Theorem (D.-Ram)

1. Let $U=U_{q} \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_{k} acts on $B \otimes(C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

Centralizer properties

Theorem (D.-Ram)

1. Let $U=U_{q} \mathfrak{g}$, and let A, B, and C be finite dim'l U-modules. The two-boundary braid group \mathcal{B}_{k} acts on $B \otimes(C)^{\otimes k} \otimes A$ (via R-matrices) and this action commutes with that of U.

R-matrices: U has an associated invertible element $R=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ of $U \otimes U$ that gives us a map
<

This map acts a component $L(\lambda)$ of $L(\mu) \otimes L(\square)$ by $q^{c(\lambda / \mu)}$.

Centralizer properties

Theorem (D.-Ram)
2. If $\mathfrak{g}=\mathfrak{g l}_{n}, A=L\left(\left(a^{c}\right)\right), B=L\left(\left(b^{d}\right)\right)$, and $C=L(\square)$, then the action in 1. factors through the quotient by

$$
\left(T_{0}-q^{2 b}\right)\left(T_{0}-q^{-2 d}\right)=0,\left(T_{k}-q^{2 a}\right)\left(T_{k}-q^{-2 c}\right)=0,\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0
$$

Centralizer properties

Theorem (D.-Ram)
2. If $\mathfrak{g}=\mathfrak{g l}_{n}, A=L\left(\left(a^{c}\right)\right), B=L\left(\left(b^{d}\right)\right)$, and $C=L(\square)$, then the action in 1. factors through the quotient by

$$
\left(T_{0}-q^{2 b}\right)\left(T_{0}-q^{-2 d}\right)=0,\left(T_{k}-q^{2 a}\right)\left(T_{k}-q^{-2 c}\right)=0,\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0
$$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Move the right pole to the left:

$$
\begin{aligned}
& B \otimes C \otimes C \otimes C \otimes C \otimes C \otimes A \quad A \otimes B \otimes C \otimes C \otimes C \otimes C \otimes C
\end{aligned}
$$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Move the right pole to the left:

$$
\begin{aligned}
& B \otimes C \otimes C \otimes C \otimes C \otimes C \otimes A \\
& A \otimes B \otimes C \otimes C \otimes C \otimes C \otimes C
\end{aligned}
$$

New favorite generators:

$$
\begin{aligned}
& \text { Let } Y_{2}=T_{1} Y_{1} T_{1}=\frac{\|-\|-q}{\| \mathrm{U} \cdot} .
\end{aligned}
$$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Let $A=L\left(\left(a^{c}\right)\right)$ and $B=L\left(\left(b^{d}\right)\right)$. Then

$$
A \otimes B=\bigoplus L(\lambda) \quad \text { (muttipicicity onel) }
$$

where Λ is the following set of partitions:
(Littlewood-Richardson, Okada)

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Let $A=L\left(\left(a^{c}\right)\right)$ and $B=L\left(\left(b^{d}\right)\right)$. Then

$$
A \otimes B=\bigoplus L(\lambda) \quad \text { (multiplicity onel) }
$$

where Λ is the following set of partitions:
(Littlewood-Richardson, Okada)

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Let $A=L\left(\left(a^{c}\right)\right)$ and $B=L\left(\left(b^{d}\right)\right)$. Then

$$
A \otimes B=\bigoplus L(\lambda) \quad \text { (multiplicity onel) }
$$

where Λ is the following set of partitions:
(Littlewood-Richardson, Okada)

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Let $A=L\left(\left(a^{c}\right)\right)$ and $B=L\left(\left(b^{d}\right)\right)$. Then

$$
A \otimes B=\bigoplus L(\lambda) \quad \text { (multipicicity onel) }
$$

where Λ is the following set of partitions:
(Littlewood-Richardson, Okada)

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Let $A=L\left(\left(a^{c}\right)\right)$ and $B=L\left(\left(b^{d}\right)\right)$. Then

$$
A \otimes B=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions...
(Littlewood-Richardson, Okada)

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

\square

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

Exploring our new favorite tensor space, $A \otimes B \otimes C^{\otimes k}$

A two-dimensional Hecke module $(k=1)$:

$$
\begin{aligned}
& Y_{1}=\frac{\|-\|_{U} \rho}{\|}=\left(\begin{array}{cc}
q^{2(-c)} & 0 \\
0 & q^{2(a)}
\end{array}\right) \\
& T_{0}=\prod_{U} \sim\left(\begin{array}{cc}
q^{2 *(-2)} & 0 \\
0 & q^{2 *(2)}
\end{array}\right)
\end{aligned}
$$

(formulas for T_{0} given in terms of contents of added boxes)

A two-dimensional Hecke module $(k=1)$:

$$
\begin{aligned}
& Y_{1}=\overbrace{\text { U U }}^{\text {Il }}=\left(\begin{array}{cc}
q^{2\left(-\frac{1}{2}(a+c)\right)} & 0 \\
0 & q^{2\left(\frac{1}{2}(a+c)\right)}
\end{array}\right) \\
& T_{0}=\underbrace{\prod^{2}}_{\text {U }} \sim\left(\begin{array}{cc}
q^{2 *\left(-2-\frac{1}{2}(a-c)\right)} & 0 \\
0 & q^{2 *\left(2-\frac{1}{2}(a-c)\right)}
\end{array}\right)
\end{aligned}
$$

(formulas for T_{0} given in terms of contents of added boxes)

Shift! Shift contents by $-\frac{1}{2}(a-c+b-d)=-\frac{1}{2}(a-c)$

A concrete example of a component of $A \otimes B \otimes C \otimes C$

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(a^{c}\right)=\left(4^{3}\right)=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array} \quad\left(b^{d}\right)=\left(2^{2}\right)=\begin{array}{|l|l|}
\hline & \\
\hline & \\
\hline
\end{array}
$$

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(a^{c}\right)=\left(4^{3}\right)=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array} \quad\left(b^{d}\right)=\left(2^{2}\right)=\begin{array}{|l|l|}
\hline & \\
\hline & \\
\hline
\end{array}
$$

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square \square
$$

$\square=$ boxes that must appear in the partition at level 0 .
So the \mathcal{H}_{k}-module in $A \otimes B \otimes C \otimes C$ indexed by λ is 3 -dimensional.

A concrete example of a component of $A \otimes B \otimes C \otimes C$

$$
\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

Shifting by $\frac{1}{2}(a-c+b-d)=-\frac{1}{2}$
$\square=$ boxes that must appear in the partition at level 0 .
So the \mathcal{H}_{k}-module in $A \otimes B \otimes C \otimes C$ indexed by λ is 3 -dimensional.

Largest Hecke module when $k=2$:

Shift: Label edges by action of $q^{-(a-c+b-d)} Y_{1}$ and $q^{-(a-c+b-d)} Y_{2}$

Largest Hecke module when $k=2$:

Shift: Label edges by action of $q^{-(a-c+b-d)} Y_{1}$ and $q^{-(a-c+b-d)} Y_{2}$

Basis of the 8-dim'l module seen as tableaux

Basis of the 8-dim'l module seen as tableaux

where $\quad \gamma_{1}=\frac{1}{2}(a+c)-\frac{1}{2}(b+d) \quad$ and $\quad \gamma_{2}=\frac{1}{2}(a+c)+\frac{1}{2}(b+d)$, and x and y are entries of 1 or 2 .

Basis of the 8-dim'l module seen as tableaux

where $\quad \gamma_{1}=\frac{1}{2}(a+c)-\frac{1}{2}(b+d) \quad$ and $\quad \gamma_{2}=\frac{1}{2}(a+c)+\frac{1}{2}(b+d)$, and x and y are entries of 1 or 2 .

Back to the skew local regions picture:

Back to the skew local regions picture:

Which appear as submodules of tensor space?

Back to the skew local regions picture:

Which appear as submodules of tensor space?

Back to the skew local regions picture:

Which appear as submodules of tensor space?

Back to the skew local regions picture:

Which appear as submodules of tensor space?

Back to the skew local regions picture:

Which appear as submodules of tensor space?

Back to the skew local regions picture:

Which appear as submodules of tensor space?

Generalizes to a bijection between points and skew shapes, regions and tableaux.

Partitions and tableaux in general

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\square=$ boxes that must appear in the partition at level 0 .

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$\lambda=$

$(k=5)$

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$$
(k=5)
$$

Fill with $\{-k, \ldots,-1,1, \ldots, k\}$ so that

1. adjacent boxes increase down and to the right,
2. rotationally symmetric boxes have opposite values,
3. red boxes are negative and yellow boxes are positive.

The basis for the \mathcal{H}_{k}-module corresponding to λ is indexed by these tableaux.

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

$$
(k=5)
$$

Fill with $\{-k, \ldots,-1,1, \ldots, k\}$ so that

1. adjacent boxes increase down and to the right,
2. rotationally symmetric boxes have opposite values,
3. red boxes are negative and yellow boxes are positive.

The basis for the \mathcal{H}_{k}-module corresponding to λ is indexed by these tableaux.

Partitions and tableaux in general

$$
\left(a^{c}\right)=\left(4^{3}\right)=\square \quad\left(b^{d}\right)=\left(2^{2}\right)=\square
$$

Fill with $\{-k, \ldots,-1,1, \ldots, k\}$ so that

1. adjacent boxes increase down and to the right,
2. rotationally symmetric boxes have opposite values,
3. red boxes are negative and yellow boxes are positive.

The basis for the \mathcal{H}_{k}-module corresponding to λ is indexed by these tableaux.

References

[Dau] Z. Daugherty, Degenerate two-boundary centralizer algebras, Pac. J. Math., 258-1 (2012) 91-142.
[GN] J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009) 1132-1167.
[Ram] A. Ram, Affine Hecke algebras and generalized standard Young tableaux, J. Algebra 260 (2003) 367-415.

In preparation:
[DR] Z. Daugherty, A. Ram, Two boundary Hecke Algebras and the combinatorics of type $\left(C_{n}^{\vee}, C_{n}\right)$ Hecke algebras

