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The two-boundary braid group is the group Bk generated by
T0, T1, . . . , Tk, with relations
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Pictorially, the generators of Bk are identified with the diagrams
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Two (isomorphic) quotients, two perspectives:

1. Fix a1, a2, b1, b2, q ∈ C×. The affine Hecke algebra Hk of type
C is the quotient of CBk by

(∗) (T0−a1)(T0−a2) = 0, (Tk−b1)(Tk−b2) = 0, (Ti−q)(Ti+q−1) = 0.

(various assumptions are made about ai, bi depending on context)

2. Let A,B,C be finite dim’l Uqg-modules. Then CBk acts on

B ⊗ C ⊗ · · · ⊗ C︸ ︷︷ ︸
k factors

⊗A

Under good (to be defined) conditions, this action factors through
the quotient (∗).
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Representation theory of Hk

The representations of Hk are indexed by skew local regions. For
example, when k = 2:

(c1, c2)

hα2

hα2+2α1

hα1+α2 hα1

c2 = c1 + 1 c2 = −c1 + 1

c2 = −c1 + 1c2 = c1 − 1

c2 = c1 + 1 c2 = −c1 + 1

c2 = −c1 − 1c2 = c1 − 1

c2 = γ1

c2 = γ2

c1 = γ1 c1 = γ2

c2 = −γ1

c2 = −γ2

c1 = −γ1c1 = −γ2

Points correspond to central characters.

The γis depend on Hk’s parameters.
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Centralizer properties

Let U = Uqg be the quantum group for a finite dim’l reductive Lie
algebra. We’re interested in certain finite dimensional simple
U -modules L(λ) indexed by partitions:

λ =

0
-1
-2

1
0

2
1

3

(drawn as a collection of boxes piled up and to the left)

In particular, rectangular partitions:

(ac) =

a

-c

c

a

If a box is in column i and row j of a partition λ, then the content
of that box is

c(box) = i− j.
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Centralizer properties

Theorem (D.-Ram)

1. Let U = Uqg, and let A, B, and C be finite dim’l U -modules.
The two-boundary braid group Bk acts on B ⊗ (C)⊗k ⊗A
(via R-matrices) and this action commutes with that of U .

B
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⊗

R-matrices: U has an associated invertible element
R =

∑
RR1 ⊗R2 of U ⊗ U that gives us a map

ŘMN : M ⊗N −→ N ⊗M

M ⊗N

N ⊗M
This map acts a component L(λ) of L(µ)⊗ L( ) by qc(λ/µ).
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Centralizer properties

Theorem (D.-Ram)

2. If g = gln, A = L((ac)), B = L((bd)), and C = L( ), then
the action in 1. factors through the quotient by

(T0−q2b)(T0−q−2d) = 0, (Tk−q2a)(Tk−q−2c) = 0, (Ti−q)(Ti+q−1) = 0.

T0 :

B⊗C

B⊗C

· · · Tk : · · ·

C⊗A

C⊗A

Ti :

C ⊗ C

C ⊗ C

b

-d

d

b
a

-c

c

a
1

-1
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Exploring our new favorite tensor space, A⊗B ⊗ C⊗k

Move the right pole to the left:
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and Y1 = .

Let Y2 = T1Y1T1 = .
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Exploring our new favorite tensor space, A⊗B ⊗ C⊗k

Let A = L((ac)) and B = L((bd)). Then

A⊗B =
⊕
λ∈Λ

L(λ) (multiplicity one!)

where Λ is the following set of partitions:
(Littlewood-Richardson, Okada)
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A two-dimensional Hecke module (k = 1): Generators: Y1 and T0

a
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Y1 = =

(
q2(−c) 0

0 q2(a)

)

T0 = ∼
(
q2∗(−2) 0

0 q2∗(2)

)
(formulas for T0 given in terms of con-

tents of added boxes)

Shift! Shift contents by −1
2(a− c+ b− d) = −1

2(a− c)
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2(a− c)
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= boxes that must appear in the partition at level 0.

So the Hk-module in A⊗B⊗C⊗C indexed by λ is 3-dimensional.
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Largest Hecke module when k = 2:

(ac)

α
β −α β α−β −β −α

β
α

−α −β

Shift: Label edges by action of q−(a−c+b−d)Y1 and q−(a−c+b−d)Y2
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α
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β
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Basis of the 8-dim’l module seen as tableaux
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−γ2 2
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−γ1

−γ2
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0 γ2
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−γ2

x

y

0 γ2

γ1

−γ1

−γ2 x

y

where γ1 = 1
2 (a+ c)− 1

2 (b+d) and γ2 = 1
2 (a+ c) + 1

2 (b+d),

and x and y are entries of 1 or 2.
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Back to the skew local regions picture:

Which appear as submodules of tensor space?

hα2 hα1

hα2+2α1

c2 = c1 + 1

c2 = γ1

c2 = γ2

c1 = γ1 c1 = γ2

(lattice points)
0 γ2

γ1

−γ1

−γ2

2

1
1 21

21 2

(points correspond to central characters)

Generalizes to a bijection between points and skew shapes, regions
and tableaux.
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Partitions and tableaux in general

(ac) = (43) = (bd) = (22) =

λ =

0
-5

1

2

3

-4

-2

-1

5

-3

4

=

0

1

2

3

5

4

(k = 5)

= boxes that must appear in the partition at level 0.Fill with
{−k, . . . ,−1, 1, . . . , k} so that
1. adjacent boxes increase down and to the right,
2. rotationally symmetric boxes have opposite values,
3. red boxes are negative and yellow boxes are positive.
The basis for the Hk-module corresponding to λ is indexed by
these tableaux.
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