# Type C symmetry of two-boundary Hecke algebras 

Zajj Daugherty

Joint with Arun Ram<br>Dartmouth College

March 14, 2012
(Happy $\pi$ day!)

## A quick tour of some diagram algebras

Everyone's favorite diagram algebra:
Group algebra of the symmetric group $S_{k}$


## A quick tour of some diagram algebras

Everyone's favorite diagram algebra:
Group algebra of the symmetric group $S_{k}$

(with multiplication given by concatenation)

## A quick tour of some diagram algebras

Everyone's favorite diagram algebra:
Group algebra of the symmetric group $S_{k}$

(with multiplication given by concatenation)

## A quick tour of some diagram algebras

Everyone's favorite diagram algebra:
Group algebra of the symmetric group $S_{k}$

(with multiplication given by concatenation)

## A quick tour of some diagram algebras

More examples:
Group algebra of the braid group

(with multiplication given by concatenation)

## A quick tour of some diagram algebras

More examples:
Group algebra of the braid group

(with multiplication given by concatenation)

## A quick tour of some diagram algebras



Temperley-Lieb algebras

(with relations on closed loops)

BMW algebras


Affine braid group

(With relations on closed loops and crossings, a la Skein relations)
(Affine) Hecke algebras of type $A$ are quotients of the (affine) braid group by relations on double twists.

## Actions on tensor space

Classical example: (Schur 1901)

## Actions on tensor space

Classical example: (Schur 1901)
(1) $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

## Actions on tensor space

Classical example: (Schur 1901)
(1) $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

(2) $S_{k}$ also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.


## Actions on tensor space

Classical example: (Schur 1901)
(1) $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

(2) $S_{k}$ also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

(3) These actions commute!


## Schur-Weyl duality

Classical example: $S_{k}$ and $\mathrm{GL}_{n}$ have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. Even better, if $k \leq n$,

$$
\operatorname{End}_{\mathbb{C G L}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\mathbb{C} S_{k} \quad \text { and } \quad \operatorname{End}_{\mathbb{C} S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\mathbb{C G L}
$$

## Schur-Weyl duality

Classical example: $S_{k}$ and $\mathrm{GL}_{n}$ have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. Even better, if $k \leq n$,

$$
\operatorname{End}_{\mathbb{C G L}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\mathbb{C} S_{k} \quad \text { and } \quad \operatorname{End}_{\mathbb{C} S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\mathbb{C} L_{n}
$$

## Why this is exciting:

Centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where $\begin{array}{clll}G^{\lambda} & \text { are distinct irreducible } & \mathrm{GL}_{n} \text {-modules } \\ S^{\lambda} & \text { are distinct irreducible } & S_{k} \text {-modules }\end{array}$

## Schur-Weyl duality

Classical example: $S_{k}$ and $\mathrm{GL}_{n}$ have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. Even better, if $k \leq n$,

$$
\operatorname{End}_{\mathbb{C G L}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\mathbb{C} S_{k} \quad \text { and } \quad \operatorname{End}_{\mathbb{C} S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\mathbb{C G L}
$$

## Why this is exciting:

Centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where $G^{\lambda}$ are distinct irreducible $\mathrm{GL}_{n}$-modules $S^{\lambda}$ are distinct irreducible $S_{k}$-modules
Punchline: Knowing a lot about symmetric group modules now produces information about $\mathrm{GL}_{n}$-modules.

## Diagram algebras as centralizer algebras

(1) The Brauer algebras centralize the actions of $\mathrm{O}_{n}$ and $\mathrm{SP}_{n}$ ( $n$ even) on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. (Brauer 1937)

## Diagram algebras as centralizer algebras

(1) The Brauer algebras centralize the actions of $\mathrm{O}_{n}$ and $\mathrm{SP}_{n}$ ( $n$ even) on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. (Brauer 1937)
(2) The group algebra of the braid group commutes with the quantum group $U_{q} \mathfrak{g}$ on $V^{\otimes k}$, and has centralizers as quotients.

## Diagram algebras as centralizer algebras

(1) The Brauer algebras centralize the actions of $\mathrm{O}_{n}$ and $\mathrm{SP}_{n}$ ( $n$ even) on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. (Brauer 1937)
(2) The group algebra of the braid group commutes with the quantum group $U_{q} \mathfrak{g}$ on $V^{\otimes k}$, and has centralizers as quotients. If $V=L$ ( $\square)$

Temperley-Lieb algebras arise if $\mathfrak{g}=\mathfrak{g l}_{2}$ or $\mathfrak{s l}_{2}$
Hecke algebras arise if $\mathfrak{g}=\mathfrak{g l}_{n}$ or $\mathfrak{s l}_{n}$
BMW algebras arise if $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$

## Diagram algebras as centralizer algebras

(1) The Brauer algebras centralize the actions of $\mathrm{O}_{n}$ and $\mathrm{SP}_{n}$ ( $n$ even) on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. (Brauer 1937)
(2) The group algebra of the braid group commutes with the quantum group $U_{q} \mathfrak{g}$ on $V^{\otimes k}$, and has centralizers as quotients. If $V=L(\square)$

Temperley-Lieb algebras arise if $\mathfrak{g}=\mathfrak{g l}_{2}$ or $\mathfrak{S l}_{2}$
Hecke algebras arise if $\mathfrak{g}=\mathfrak{g l}_{n}$ or $\mathfrak{s l}_{n}$
BMW algebras arise if $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$
Idea: the picture encodes a map from $V \otimes \cdots \otimes V$ to itself.


## Diagram algebras as centralizer algebras

(1) The Brauer algebras centralize the actions of $\mathrm{O}_{n}$ and $\mathrm{SP}_{n}$ ( $n$ even) on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. (Brauer 1937)
(2) The group algebra of the (affine) braid group commutes with the quantum group $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k}$, and has centralizers as quotients. If $V=L(\square)$
(See Orellana-Ram 2007)
(affine) Temperley-Lieb algebras arise if $\mathfrak{g}=\mathfrak{g l}_{2}$ or $\mathfrak{S l}_{2}$ (affine) Hecke algebras arise if $\mathfrak{g}=\mathfrak{g l}_{n}$ or $\mathfrak{s l}_{n}$ (affine) BMW algebras arise if $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$

Idea: the picture encodes a map from $M \otimes V \otimes \cdots \otimes V$ to itself.


## Two-boundary algebras

J. de Gier, A. Nicols, et. al. (2009):

Two-boundary Temperley-Lieb algebra $\mathcal{T}_{k}$


## Two-boundary algebras

J. de Gier, A. Nicols, et. al. (2009):

Two-boundary Temperley-Lieb algebra $\mathcal{T}_{k}$

(1) $\mathcal{T}_{k}$ acts on $N \otimes V^{\otimes k} \otimes M$, where $N, M$, and $V=L(\square)$ are $U_{q} \mathfrak{S l}_{2}$-modules (small type A).

## Two-boundary algebras

J. de Gier, A. Nicols, et. al. (2009):

Two-boundary Temperley-Lieb algebra $\mathcal{T}_{k}$

(1) $\mathcal{T}_{k}$ acts on $N \otimes V^{\otimes k} \otimes M$, where $N, M$, and $V=L(\square)$ are $U_{q} \mathfrak{s l}_{2}$-modules (small type A).
(2) $\mathcal{T}_{k}$ is a quotient of the affine Hecke algebra of type C (a new and exciting character in our story).

## Two-boundary algebras

J. de Gier, A. Nicols, et. al. (2009):

Two-boundary Temperley-Lieb algebra $\mathcal{T}_{k}$

(1) $\mathcal{T}_{k}$ acts on $N \otimes V^{\otimes k} \otimes M$, where $N, M$, and $V=L(\square)$ are $U_{q} \mathfrak{s l}_{2}$-modules (small type A).
(2) $\mathcal{T}_{k}$ is a quotient of the affine Hecke algebra of type C (a new and exciting character in our story).
Question: Can we lift the pictures and commutator results up to the Hecke algebra by studying tensor products of $U_{q} \mathfrak{s l}_{n}$-modules?

Type C affine Hecke algebra


$$
m_{i, j}=\begin{array}{cccc}
2 & \text { if } & \begin{array}{c}
i \\
\bigcirc
\end{array} & { }_{\mathrm{O}}^{\circ} \\
3 & \text { if } & \stackrel{i}{\mathrm{O}} & { }_{j}^{j} \\
4 & \text { if } & \stackrel{i}{\mathrm{O}} & j \\
\mathrm{O}
\end{array}
$$

## Type C affine Hecke algebra



The Weyl group of type $\mathbf{C}$ is generated by $s_{0}, \ldots, s_{k-1}$ with relations $s_{i}^{2}=1$ and


## Type C affine Hecke algebra



The Weyl group of type $\mathbf{C}$ is generated by $s_{0}, \ldots, s_{k-1}$ with relations $s_{i}^{2}=1$ and


Fix constants $a_{0}, a_{k}$, and $a_{1}=\cdots=a_{k-1}$. The affine Hecke algebra of type $\mathbf{C}$ is generated by $T_{0}, T_{1}, \ldots, T_{k}$ with relations

$$
T_{i}^{2}=\left(a_{i}-a_{i}^{-1}\right) T_{i}+1, \quad \underbrace{T_{i} T_{j} \ldots}_{m_{i, j} \text { factors }}=\underbrace{T_{j} T_{i} \ldots}_{m_{i, j} \text { factors }} .
$$

Why the two-boundary braid group is type C
The two-boundary (two-pole) braid group is generated by

$$
\begin{aligned}
& T_{k}=\cdots \cdot \prod^{\text {in }} \\
& T_{0}=\int_{\int}^{\int \rightarrow} \cdots \quad \text { and } \\
& \text { for } 1 \leq i \leq k-1 \text {. }
\end{aligned}
$$

## Why the two-boundary braid group is type C

The two-boundary (two-pole) braid group is generated by

Why the two-boundary braid group is type C
The two-boundary (two-pole) braid group is generated by

$$
T_{k}=\cdots \cdot T_{0}=
$$

Why the two-boundary braid group is type C
The two-boundary (two-pole) braid group is generated by

$$
T_{k}=\cdots T_{0}=
$$

(similar picture for $T_{k} T_{k-1} T_{k} T_{k-1}=T_{k-1} T_{k} T_{k-1} T_{k}$ )

## Why the two-boundary braid group is type C

Theorem (D.-Ram, degenerate version in [Da])
Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras $\mathfrak{g}$. Let $N, M$, and $V$ be finite-dimensional modules.
The two-boundary braid group acts on

$$
N \otimes(V)^{\otimes k} \otimes M
$$

and this action commutes with the action of $U$.

How?
Quantum group setting: The action is produced via $R$-matrices.
Lie algebra setting: The action is produced via the Casimir.

Why the representation theory is type A
Let $U=U_{q} \mathfrak{s l}_{n}$.

## Why the representation theory is type A

Let $U=U_{q} \mathfrak{s l}_{n}$.
The finite-dimensional $U$-modules $L(\lambda)$ are indexed by partitions:

(a collection of boxes piled up and to the left)

## Why the representation theory is type $A$

Let $U=U_{q} \mathfrak{s l}_{n}$.
The finite-dimensional $U$-modules $L(\lambda)$ are indexed by partitions:

$$
\lambda=\begin{array}{|c|c|c}
00 & 1 & 2 \\
\hline
\end{array}
$$

(a collection of boxes piled up and to the left)
If a box $B$ is in row $i$ and column $j$, then the content of $B$ is

$$
c(B)=j-i
$$

## Why the representation theory is type $A$

Let $U=U_{q} \mathfrak{s l}_{n}$.
The finite-dimensional $U$-modules $L(\lambda)$ are indexed by partitions:

$$
\lambda=\begin{array}{|c|c|c|c}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 & \\
\hline-2 & & & \\
\hline
\end{array}
$$

(a collection of boxes piled up and to the left)
If a box $B$ is in row $i$ and column $j$, then the content of $B$ is

$$
c(B)=j-i
$$

If $M=L(\mu), N=L(\nu)$, and $V=L(\square)$,
eigenvalues $\left(T_{0}\right) \sim\left\{q^{c(\text { addable boxes of } \nu)}\right\}$ eigenvalues $\left(T_{i}\right) \sim\left\{q, q^{-1}\right\}$ for $1 \leq i \leq k-1$
eigenvalues $\left(T_{k}\right) \sim\left\{q^{c(\text { addable boxes of } \mu)}\right\}$

## Why the representation theory is type A

Let $U=U_{q} \mathfrak{s l}_{n}$.
The finite-dimensional $U$-modules $L(\lambda)$ are indexed by partitions:

$$
\lambda=\begin{array}{|c|c|c|}
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

(a collection of boxes piled up and to the left)
If a box $B$ is in row $i$ and column $j$, then the content of $B$ is

$$
c(B)=j-i .
$$

$$
\begin{aligned}
& \text { If } M=L(\mu), N=L(\nu) \text {, and } V=L(\square) \text {, } \\
& \text { eigenvalues }\left(T_{0}\right) \sim\left\{q^{c(\text { addable boxes of } \nu)}\right\} \\
& \text { eigenvalues }\left(T_{i}\right) \sim\left\{q, q^{-1}\right\} \text { for } 1 \leq i \leq k-1 \\
& \text { eigenvalues }\left(T_{k}\right) \sim\left\{q^{c(\text { addable boxes of } \mu)}\right\}
\end{aligned}
$$

Back to the Hecke algebra: The relations $T_{i}^{2}=\left(a_{i}-a_{i}^{-1}\right) T_{i}+1$ say that $T_{i}$ has two eigenvalues.

## Why the representation theory is type A

Back to the Hecke algebra: The relations $T_{i}^{2}=\left(a_{i}-a_{i}^{-1}\right) T_{i}+1$ say that $T_{i}$ has two eigenvalues.

## Why the representation theory is type A

Back to the Hecke algebra: The relations $T_{i}^{2}=\left(a_{i}-a_{i}^{-1}\right) T_{i}+1$ say that $T_{i}$ has two eigenvalues.
So $\mu$ and $\nu$ must be rectangles!
(Exactly two addable boxes)

$$
\left(a^{c}\right)=c \begin{array}{|l|l|l|l}
a \\
\hline & & & \\
\hline & a \\
\hline-c & & \\
\hline
\end{array}
$$

## Why the representation theory is type A

Back to the Hecke algebra: The relations $T_{i}^{2}=\left(a_{i}-a_{i}^{-1}\right) T_{i}+1$ say that $T_{i}$ has two eigenvalues.
So $\mu$ and $\nu$ must be rectangles!
(Exactly two addable boxes)

$$
\left(a^{c}\right)=c \stackrel{a}{\begin{array}{c}
- \\
\hline-c \\
\hline-c \\
\hline
\end{array}}
$$

Theorem (D.-Ram in progress, degenerate version in [Da])
Let $U=U_{q} \mathfrak{s l}_{n}$ and $a_{1}=\cdots=a_{k-1}=q$.
The Hecke algebra of type $C$ acts on

$$
L\left(\left(b^{d}\right)\right) \otimes(L(\square))^{\otimes k} \otimes L\left(\left(a^{c}\right)\right)
$$

and this action commutes with the action of $U$.

Why the representation theory is type $A$
Move the right pole to the left:

$$
\begin{aligned}
& N \otimes V \otimes V \otimes V \otimes V \otimes V \otimes M \quad M \otimes N \otimes V \otimes V \otimes V \otimes V \otimes V
\end{aligned}
$$

Why the representation theory is type $A$
Move the right pole to the left:

$$
\begin{aligned}
& N \otimes V \otimes V \otimes V \otimes V \otimes V \otimes M \quad M \otimes N \otimes V \otimes V \otimes V \otimes V \otimes V
\end{aligned}
$$

New favorite generators:

$$
\begin{aligned}
& T_{0}=\| \int_{U}^{\|} \quad T_{i}=\underbrace{i+1}_{i+1} \quad \text { and } \quad Y_{1}=\frac{\|-\|-0}{U U} . \\
& \text { Let } Y_{2}=T_{1} Y_{1} T_{1}=\frac{\square-\Pi-\boldsymbol{q}}{\text { U } \bullet} \text {. }
\end{aligned}
$$

## Why the representation theory is type A

Let $M=L\left(\left(a^{c}\right)\right)$ and $N=L\left(\left(b^{d}\right)\right)$. Then

$$
M \otimes N=\bigoplus L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)

## Why the representation theory is type A

Let $M=L\left(\left(a^{c}\right)\right)$ and $N=L\left(\left(b^{d}\right)\right)$. Then

$$
M \otimes N=\bigoplus L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)


## Why the representation theory is type A

Let $M=L\left(\left(a^{c}\right)\right)$ and $N=L\left(\left(b^{d}\right)\right)$. Then

$$
M \otimes N=\bigoplus L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)


## Why the representation theory is type A

Let $M=L\left(\left(a^{c}\right)\right)$ and $N=L\left(\left(b^{d}\right)\right)$. Then

$$
M \otimes N=\bigoplus L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions:
(Littlewood-Richardson, Okada)


## Why the representation theory is type A

Let $M=L\left(\left(a^{c}\right)\right)$ and $N=L\left(\left(b^{d}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where $\Lambda$ is the following set of partitions...
(Littlewood-Richardson, Okada)


Why the representation theory is type $A$
$\stackrel{a}{c}$

Why the representation theory is type $A$
$c$


$\underset{\square}{\square} \quad$ Lev. 0

Why the representation theory is type $A$


Why the representation theory is type $A$


5 5

Why the representation theory is type $A$


## Why the representation theory is type A

A two-dimensional Hecke module $(k=1)$ : $\quad$ Generators: $Y_{1}$ and $T_{0}$


$$
\begin{aligned}
& Y_{1}=\left(\begin{array}{cc}
q^{-c} & 0 \\
0 & q^{a}
\end{array}\right) \\
& T_{0} \sim\left(\begin{array}{cc}
q^{-2} & 0 \\
0 & q^{2}
\end{array}\right)
\end{aligned}
$$

(formulas for $T_{0}$ given in terms of contents of added boxes)

## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


Shift: Label edges by action of $q^{-\frac{1}{2}(a-c+b-d)} Y_{1}$ and $q^{-\frac{1}{2}(a-c+b-d)} Y_{2}$

## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


Using the same representation, we can build operators from $\mathcal{H}_{2}$ :
$s_{0}$ changes level 0
$s_{1}$ changes level 1

## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


Using the same representation, we can build operators from $\mathcal{H}_{2}$ :
$s_{0}$ changes level 0
$s_{1}$ changes level 1

## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


Using the same representation, we can build operators from $\mathcal{H}_{2}$ :
$s_{0}$ changes level 0
$s_{1}$ changes level 1

1
$s_{0} \quad(-A, B)$

## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## Why the representation theory is type A

An eight-dimensional Hecke module $(k=2)$


## References

[Da] Z. Daugherty, Degenerate two-boundary centralizer algebras (to appear in Pac. J. Math., arXiv:1007.3950)
[GN] J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009) 1132-1167.
[OR] R. Orellana and A. Ram, Affine braids, Markov traces and the category $\mathcal{O}$, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces Mumbai 2004, V.B. Mehta ed., Tata Institute of Fundamental Research, Narosa Publishing House, Amer. Math. Soc. (2007) 423-473.

In preparation:
[Da2] Z. Daugherty, Centralizer properties of the graded Hecke algebra of type C
[DR] Z. Daugherty, A. Ram, Two boundary Hecke Algebras and the combinatorics of type $\left(C_{n}^{\vee}, C_{n}\right)$ Hecke algebras

