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A quick tour of some diagram algebras

Everyone’s favorite diagram algebra:
Group algebra of the symmetric group Sk
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A quick tour of some diagram algebras

More examples:
Group algebra of the braid group

1

1

1

=

1

1

2

2

3

3

4

4

5

5

(with multiplication given by concatenation)



A quick tour of some diagram algebras

More examples:
Group algebra of the braid group

1

1

1

=

1

1

2

2

3

3

4

4

5

5

(with multiplication given by concatenation)



A quick tour of some diagram algebras

Brauer algebras Temperley-Lieb algebras

(with relations on closed loops)

BMW algebras Affine braid group

(With relations on closed loops and
crossings, a la Skein relations)

(Affine) Hecke algebras of type A are quotients of the (affine)
braid group by relations on double twists.



Actions on tensor space
Classical example: (Schur 1901)

1 GLn(C) acts on Cn ⊗ Cn ⊗ · · · ⊗ Cn = (Cn)⊗k diagonally.

g · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

2 Sk also acts on (Cn)⊗k by place permutation.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗v3 v1 v5 v2 v4

3 These actions commute!

gv1 gv2 gv3 gv4 gv5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4

vs.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4



Actions on tensor space
Classical example: (Schur 1901)

1 GLn(C) acts on Cn ⊗ Cn ⊗ · · · ⊗ Cn = (Cn)⊗k diagonally.

g · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

2 Sk also acts on (Cn)⊗k by place permutation.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗v3 v1 v5 v2 v4

3 These actions commute!

gv1 gv2 gv3 gv4 gv5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4

vs.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4



Actions on tensor space
Classical example: (Schur 1901)

1 GLn(C) acts on Cn ⊗ Cn ⊗ · · · ⊗ Cn = (Cn)⊗k diagonally.

g · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

2 Sk also acts on (Cn)⊗k by place permutation.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗v3 v1 v5 v2 v4

3 These actions commute!

gv1 gv2 gv3 gv4 gv5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4

vs.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4



Actions on tensor space
Classical example: (Schur 1901)

1 GLn(C) acts on Cn ⊗ Cn ⊗ · · · ⊗ Cn = (Cn)⊗k diagonally.

g · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

2 Sk also acts on (Cn)⊗k by place permutation.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗v3 v1 v5 v2 v4

3 These actions commute!

gv1 gv2 gv3 gv4 gv5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4

vs.

v1 v2 v3 v4 v5⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗gv3 gv1 gv5 gv2 gv4



Schur-Weyl duality

Classical example: Sk and GLn have commuting actions on
(Cn)⊗k. Even better, if k ≤ n,

EndCGLn

(
(Cn)⊗k

)
= CSk and EndCSk

(
(Cn)⊗k

)
= CGLn.

Why this is exciting:

Centralizer relationship produces

(Cn)⊗k ∼=
⊕
λ`k

Gλ ⊗ Sλ as a GLn-Sk bimodule,

where
Gλ are distinct irreducible GLn-modules
Sλ are distinct irreducible Sk-modules

Punchline: Knowing a lot about symmetric group modules now
produces information about GLn-modules.
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Diagram algebras as centralizer algebras

1 The Brauer algebras centralize the actions of On and SPn (n even)
on (Cn)⊗k. (Brauer 1937)

2 The group algebra of the braid group commutes with the quantum
group Uqg on V ⊗k, and has centralizers as quotients.

If V = L( )

(See Orellana-Ram 2007)

(affine)

Temperley-Lieb algebras arise if g = gl2 or sl2

(affine)

Hecke algebras arise if g = gln or sln

(affine)

BMW algebras arise if g = son or sp2n

Idea: the picture encodes a map from V ⊗ · · · ⊗ V to itself.
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Diagram algebras as centralizer algebras

1 The Brauer algebras centralize the actions of On and SPn (n even)
on (Cn)⊗k. (Brauer 1937)

2 The group algebra of the (affine) braid group commutes with the
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If V = L( ) (See Orellana-Ram 2007)

(affine) Temperley-Lieb algebras arise if g = gl2 or sl2
(affine) Hecke algebras arise if g = gln or sln

(affine) BMW algebras arise if g = son or sp2n
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Two-boundary algebras
J. de Gier, A. Nicols, et. al. (2009):
Two-boundary Temperley-Lieb algebra Tk
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1 Tk acts on N ⊗ V ⊗k ⊗M , where N , M , and V = L( ) are
Uqsl2-modules (small type A).

2 Tk is a quotient of the affine Hecke algebra of type C (a new
and exciting character in our story).

Question: Can we lift the pictures and commutator results up to
the Hecke algebra by studying tensor products of Uqsln-modules?
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Type C affine Hecke algebra

k

· · ·
0 1 2 3 k−2 k−1

The Weyl group of type C is generated by s0, . . . , sk−1 with
relations s2

i = 1 and

sisj . . .︸ ︷︷ ︸
mi,j factors

= sjsi . . .︸ ︷︷ ︸
mi,j factors

where

mi,j =

2 if
i j

3 if
i j

4 if
i j

Fix constants a0, ak, and a1 = · · · = ak−1. The affine Hecke
algebra of type C is generated by T0, T1, . . . , Tk with relations

T 2
i = (ai − a−1

i )Ti + 1, TiTj . . .︸ ︷︷ ︸
mi,j factors

= TjTi . . .︸ ︷︷ ︸
mi,j factors

.
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Why the two-boundary braid group is type C
The two-boundary (two-pole) braid group is generated by

Tk = · · · T0 = · · · and Ti =

i

i

i+1

i+1

for 1 ≤ i ≤ k − 1.

· · ·

TiTi+1Ti = = = Ti+1TiTi+1

T0T1T0T1 = = = T1T0T1T0

(similar picture for TkTk−1TkTk−1 = Tk−1TkTk−1Tk)
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Why the two-boundary braid group is type C

Theorem (D.-Ram, degenerate version in [Da])

Let U = Uqg for any complex reductive Lie algebras g. Let N , M , and V

be finite-dimensional modules.

The two-boundary braid group acts on

N ⊗ (V )⊗k ⊗M

and this action commutes with the action of U .

How?

Quantum group setting: The action is produced via R-matrices.

Lie algebra setting: The action is produced via the Casimir.



Why the representation theory is type A

Let U = Uqsln.

The finite-dimensional U -modules L(λ) are indexed by partitions:

λ =

(a collection of boxes piled up and to the left)

If a box B is in row i and column j, then the content of B is
c(B) = j − i.

If M = L(µ), N = L(ν), and V = L( ),
eigenvalues(T0) ∼

{
qc(addable boxes of ν)

}
eigenvalues(Ti) ∼

{
q, q−1

}
for 1 ≤ i ≤ k − 1

eigenvalues(Tk) ∼
{
qc(addable boxes of µ)

}
Back to the Hecke algebra: The relations T 2

i = (ai − a−1
i )Ti + 1

say that Ti has two eigenvalues.
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Why the representation theory is type A

Back to the Hecke algebra: The relations T 2
i = (ai − a−1

i )Ti + 1
say that Ti has two eigenvalues.

So µ and ν must be rectangles!
(Exactly two addable boxes)

(ac) =

-c

a
c

a

Theorem (D.-Ram in progress, degenerate version in [Da])

Let U = Uqsln and a1 = · · · = ak−1 = q.

The Hecke algebra of type C acts on

L((bd))⊗ (L( ))⊗k ⊗ L((ac))

and this action commutes with the action of U .
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Theorem (D.-Ram in progress, degenerate version in [Da])

Let U = Uqsln and a1 = · · · = ak−1 = q.

The Hecke algebra of type C acts on

L((bd))⊗ (L( ))⊗k ⊗ L((ac))

and this action commutes with the action of U .
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Move the right pole to the left:
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Let Y2 = T1Y1T1 = .
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Why the representation theory is type A

Let M = L((ac)) and N = L((bd)). Then

M ⊗N =
⊕
λ∈Λ

L(λ) (multiplicity one!)

where Λ is the following set of partitions:
(Littlewood-Richardson, Okada)
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Why the representation theory is type A

Let M = L((ac)) and N = L((bd)). Then

M ⊗N =
⊕
λ∈Λ

L(λ) (multiplicity one!)

where Λ is the following set of partitions. . .
(Littlewood-Richardson, Okada)

(ac) ⊗ = ⊕ ⊕

⊕ ⊕ ⊕
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Why the representation theory is type A
A two-dimensional Hecke module (k = 1): Generators: Y1 and T0

a

c

��
��
��
��
��
��
�

1

−c

2

a
��
��
��
��
�

��
��

5

Y1 =

(
q−c 0
0 qa

)
T0 ∼

(
q−2 0
0 q2

)

(formulas for T0 given in terms of

contents of added boxes)



Why the representation theory is type A
An eight-dimensional Hecke module (k = 2)

(ac)

A
B −A B A−B −B −A

B
A

−A −B

Shift: Label edges by action of q−
1
2 (a−c+b−d)Y1 and q−

1
2 (a−c+b−d)Y2



Why the representation theory is type A

An eight-dimensional Hecke module (k = 2)

(ac)

A
B

A
B −A B−A B A−B−B A −B −A−B −A

BB
AA

−A−A −B−B

Using the same representation,
we can build operators from H2:

s0 changes level 0
s1 changes level 1

1 (A,B)
s0 (−A,B)

s1s0 (B,−A)
s0s1s0 (−B,−A)

s1s0s1s0 (−A,−B)
s0s1s0s1s0 (A,−B)

s1s0s1s0s1s0 (−B,A)
s0s1s0s1s0s1s0 (B,A)

s1s0s1s0s1s0s1s0 (A,B)
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