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Warm-up with Schur-Weyl duality
Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GLn(C)-modules as follows:

Let V = Cn, and denote V ⊗ V ⊗ · · · ⊗ V = V ⊗k.

GLn(C) acts on V ⊗k diagonally
Sk acts on V ⊗k by place permutations

These actions commute!

For example: g (1 2) · (v1 ⊗ v2) = g · (v2 ⊗ v1)

= gv2 ⊗ gv1
= (1 2) · (gv1 ⊗ gv2)

= (1 2) g · (v1 ⊗ v2)
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Warm-up with Schur-Weyl duality
Goal: Find simple modules.

Big deal:
For n ≥ k, the centralizer of the action of GLn(C) on V ⊗k in End(V ⊗k)
is

EndGLn(C)(V
⊗k) ∼= CSk.

Bigger deal:
Centralizer relationship produces

V ⊗k ∼=
⊕
λ ` k

ht(λ) ≤ n

Gλ ⊗ Sλ as a GLn-Sk bimodule,

where
Gλ are distinct irreducible GLn-modules
Sλ are distinct irreducible Sk-modules
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The set up

Let g be a finite dimensional complex reductive Lie algebra.

e.g. gln(C), sln(C), son(C), sp2n(C).

Let M , N , and V be finite dimensional simple g-modules.

Our goal:

Understand Endg(M ⊗N ⊗ V ⊗k).
(the set of endomorphisms which commute with the action of g)
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Examples of Endg(M ⊗N ⊗ V ⊗k)

Let L(λ) be the finite dim’l irreducible g-module of highest weight λ.

Let V = L(ω1)= L( ) (the first fundamental weight).

1 If M = N = L(0) and

• g = sln, this gives CSk modules (Schur, 1901);
• g = son or sp2n, this gives Brauer algebra modules (Brauer,

1937);

2 If M = L(0) and N = L(λ) and

• g = sln, this gives graded Hecke algebra of type A modules
(Arikawa & Suzuki, 1998);

• g = son or sp2n, this gives degenerate affine Wenzl algebra
modules (Nazarov, 1996).

Quantized versions yield standard and affine type A Hecke and
Birman-Murakami-Wenzl algebra modules (Orellana & Ram, 2007)
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First big question:

Is there an algebra which has centralizers
Endg(M ⊗N ⊗ V ⊗k) as quotients?

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

Definition
The degenerate two-boundary braid group Gk is the C-algebra
generated by

CSk = C

〈
ti

∣∣∣∣∣
i = 1, . . . k
t2i = 1

titj = tjti |i− j| > 1
titi+1ti = ti+1titi+1

〉

C[z0, z1, . . . , zk], C[y1, . . . , yk], C[x1, . . . , xk]

and relations...
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〉

C[z0, z1, . . . , zk], C[y1, . . . , yk], C[x1, . . . , xk]

and relations...

tixj = xjti, tiyj = yjti, tizj = zjti, for j 6= i, i + 1
(z0 + · · · + zi) xj = xj (z0 + · · · + zi) , (z0 + · · · + zi) yj = yj (z0 + · · · + zi) , for i ≥ j
ti(xi + xi+1) = (xi + xi+1)ti, ti(yi + yi+1) = (yi + yi+1)ti, for 1 ≤ i ≤ k − 1

(titi+1)
(
xi+1 − tixiti

)
(ti+iti) = xi+2 − ti+1xi+1ti+1

(titi+1)
(
yi+1 − tiyiti

)
(ti+iti) = yi+2 − ti+1yi+1ti+1

for 1 ≤ i ≤ k − 2,

xi+1 − tixiti = yi+1 − tiyiti for 1 ≤ i ≤ k − 1,
zi = xi + yi −mi, 1 ≤ i ≤ k,

where if mi,j =

{
xi+1 − tixiti if j = i + 1,

(i + 1 j)mi,i+1(i + 1 j) if j 6= i, i + 1,
then m1 = 0, mi =

∑
1<j<i

mi,j .
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〉

C[z0, z1, . . . , zk], C[y1, . . . , yk], C[x1, . . . , xk]

and relations twisting the four factors together...
Gk contains three images of the graded braid group:

C[z1, . . . , zk]⊗ CSk
∼

∼=
C[y1, . . . , yk]⊗ CSk

∼
∼=

C[x1, . . . , xk]⊗ CSk
∼

and
zi = xi + yi − lower terms.
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Representations of Gk
Define an action Φ of Gk on M ⊗N ⊗ V ⊗k

:

CSk

permutes factors of V ⊗k,

C[x1, . . . , xk]

acts on M and V ⊗k,

C[y1, . . . , yk]

acts on N and V ⊗k,

C[z1, . . . , zk]

acts on M ⊗N together and V ⊗k,

z0

acts on M ⊗N alone,

by nested central elements of Ug.

Theorem (D.)
Φ is a representation of Gk which commutes with the action of g.

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

Representations of Gk
Define an action Φ of Gk on M ⊗N ⊗ V ⊗k:

CSk permutes factors of V ⊗k,

C[x1, . . . , xk]

acts on M and V ⊗k,

C[y1, . . . , yk]

acts on N and V ⊗k,

C[z1, . . . , zk]

acts on M ⊗N together and V ⊗k,

z0

acts on M ⊗N alone,

by nested central elements of Ug.

Theorem (D.)
Φ is a representation of Gk which commutes with the action of g.

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

Representations of Gk
Define an action Φ of Gk on M ⊗N ⊗ V ⊗k:

CSk permutes factors of V ⊗k,

C[x1, . . . , xk] acts on M and V ⊗k,

C[y1, . . . , yk]

acts on N and V ⊗k,

C[z1, . . . , zk]

acts on M ⊗N together and V ⊗k,

z0

acts on M ⊗N alone,

by nested central elements of Ug.

Theorem (D.)
Φ is a representation of Gk which commutes with the action of g.

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

Representations of Gk
Define an action Φ of Gk on M ⊗N ⊗ V ⊗k:

CSk permutes factors of V ⊗k,

C[x1, . . . , xk] acts on M and V ⊗k,

C[y1, . . . , yk] acts on N and V ⊗k,

C[z1, . . . , zk]

acts on M ⊗N together and V ⊗k,

z0

acts on M ⊗N alone,

by nested central elements of Ug.

Theorem (D.)
Φ is a representation of Gk which commutes with the action of g.

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

Representations of Gk
Define an action Φ of Gk on M ⊗N ⊗ V ⊗k:

CSk permutes factors of V ⊗k,

C[x1, . . . , xk] acts on M and V ⊗k,

C[y1, . . . , yk] acts on N and V ⊗k,

C[z1, . . . , zk] acts on M ⊗N together and V ⊗k,

z0

acts on M ⊗N alone,

by nested central elements of Ug.

Theorem (D.)
Φ is a representation of Gk which commutes with the action of g.

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

Representations of Gk
Define an action Φ of Gk on M ⊗N ⊗ V ⊗k:

CSk permutes factors of V ⊗k,

C[x1, . . . , xk] acts on M and V ⊗k,

C[y1, . . . , yk] acts on N and V ⊗k,

C[z1, . . . , zk] acts on M ⊗N together and V ⊗k,

z0 acts on M ⊗N alone,

by nested central elements of Ug.

Theorem (D.)
Φ is a representation of Gk which commutes with the action of g.
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An Example:

Is there an algebra which has centralizers

Endg(M ⊗N ⊗ V ⊗k) as quotients

when g is of type A?
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Definition
Fix a, b, p, q ∈ Z>0.
The degenerate extended two-boundary Hecke algebra Hext

k is the
quotient of the degenerate two-boundary braid group by the
relations

tixi = xi+1ti − 1,
tiyi = yi+1ti − 1,
tizi = zi+1ti − 1,

i = 1, . . . , k − 1.

(x1 − a)(x1 + p) = 0 (y1 − b)(y1 + q) = 0.

The degenerate two-boundary Hecke algebra Hk is the subalgebra
of Hext

k generated by
x1, . . . , xk, y1, . . . , yk, z1, . . . , zk, t1, . . . , tk−1.

(everything but z0. . . we’ll come back to this.)
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A partition is a collection of boxes:

λ =
4
+3
+1

If a box B is in row i and column j, then the content of B is

c(B) = j − i.

If λ = (ap) is rectangular, there are exactly two “addable” boxes:

(ap) =

-p

a
p

a

(recall relations (x1 − a)(x1 + p) = 0 and (y1 − b)(y1 + q) = 0)
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Theorem (D.)

Fix k < n non-neg. integers.
Let g = gln, M = L((ap)), N = L((bq)), and V = L((11)).

(1) Φ is a rep. of Hext
k which commutes with the g-action, so

Φ(Hext
k ) ⊆ Endg(M ⊗N ⊗ V ⊗k).

(2) For small cases,

Φ(Hext
k ) = Endg(M ⊗N ⊗ V ⊗k).

Remark

(1) When Φ is not surjective, the image differs by a portion of the
action of the center of Ug on M ⊗N .

(2) Same results for g = sln and a shift of Φ.
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Let M = L((ap)) and N = L((bq)). Then

M ⊗N =
⊕
λ∈Λ

L(λ) (multiplicity one!)

where Λ is the following set of partitions: (Okada)
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p

a

q

b
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Let M = L((ap)) and N = L((bq)). Then

M ⊗N =
⊕
λ∈Λ

L(λ) (multiplicity one!)

where Λ is the following set of partitions. . . (Okada)

(ap) ⊗ = ⊕ ⊕

⊕ ⊕ ⊕
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a

p

1 2 3 4 5 6 Lev. 0

5 7 8 10 12 15

1 2 3 11 14 17 Lev. 1

4 6 9 13 16 18

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

a

p

1 2 3 4 5 6 Lev. 0

5 7 8 10 12 15

1 2 3 11 14 17 Lev. 1

4 6 9 13 16 18

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

a

p

1 2 3 4 5 6 Lev. 0

5 7 8 10 12 15

1 2 3 11 14 17 Lev. 1

4 6 9 13 16 18

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

a

p

1 2 3 4 5 6 Lev. 0

5

7 8 10 12 15

1 2 3 11 14 17 Lev. 1

4 6 9 13 16 18

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

a

p

1 2 3 4 5 6 Lev. 0

5

7 8 10 12 15

1 2 3 11 14 17 Lev. 1

4 6 9 13 16 18

Zajj Daugherty Two-boundary Hecke algebras



Background
Degenerate two-boundary braid group and Hecke algebra

Connections to type C
Summary

Braid group
Braid representations
Hecke algebra
Hecke representations

a

p

1
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5

7 8 10 12 15

1 2 3 11 14 17 Lev. 1
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a

p

1

−p

a+2

a−2

2

a −p+1
−p−1

a+2

a−2

3

a−1

−p−1

a+2

−p+2

4

a+1

−p+1

a−2

−p−2

5

a+1

a−1
−p

−p+2

−p−2

6 Lev. 0

a

−p+2

−p−2

5 7 8 10 12 15

1 2 3 11 14 17 Lev. 1

4 6 9 13 16 18
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A two-dimensional Hext
1 -module: Hext

1 = C〈z0, z1, x1, y1〉

a

p

4a
��
��
��
��

��
��

3a−p

1

−p

2

a
��
��
��
��
�

��
��

5

z0 =

(
4a 0
0 3a− p

)
z1 =

(
−p 0
0 a

)
x1 ∼

(
−p 0
0 a

)
y1 ∼

(
−2 0
0 2

)
(formulas x1, y1, z1, z0 all given in

terms of contents of added boxes)
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An eight-dimensional H2-module:

(ap)

A
B C B AD D

C

B
A

C
D

where C = −A+ (a− p+ b− q) and D = −B + (a− p+ b− q)
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An eight-dimensional H2-module:

(ap)

A
B −A B A−B −B −A

B
A

−A −B

Shift! Label edges by action of z1 − 1
2 (a− p+ b− q) and z2 − 1

2 (a− p+ b− q))
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Type C symmetry
Restructuring Hk
Basis
Center

The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations

s2
i = 1, sisj = sjsi for |i−j| > 1, s0s1s0s1 = s1s0s1s0, and

sisi+1si = si+1sisi+1, for i = 1, . . . , k − 2.

d d d d · · · d d0 1 2 3 k−2 k−1
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An eight-dimensional H2-module:

(ap)

A
B

A
B −A B−A B A−B−B A −B −A−B −A

BB
AA

−A−A −B−B

Using the same representation,
we can build operators from H2:

s0 changes level 0
s1 changes level 1

1 (A,B)
s0 (−A,B)

s1s0 (B,−A)
s0s1s0 (−B,−A)

s1s0s1s0 (−A,−B)
s0s1s0s1s0 (A,−B)

s1s0s1s0s1s0 (−B,A)
s0s1s0s1s0s1s0 (B,A)

s1s0s1s0s1s0s1s0 (A,B)
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An eight-dimensional H2-module:

(ap)

A
B −A B A−B−B −B −A

B
AA

−A −B

Using the same representation,
we can build operators from H2:

s0 changes level 0
s1 changes level 1

1 (A,B)
s0 (−A,B)

s1s0 (B,−A)
s0s1s0 (−B,−A)

s1s0s1s0 (−A,−B)
s0s1s0s1s0 (A,−B)

s1s0s1s0s1s0 (−B,A)
s0s1s0s1s0s1s0 (B,A)

s1s0s1s0s1s0s1s0 (A,B)
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Let wi = zi − 1
2
(a− p+ b− q).

Hk is presented by generators
x1, t1, . . . , tk−1, w1, . . . , wk,

and relations
t2i = 1, titj = tjti for |i− j| > 1, titi+1ti = ti+1titi+1

(x1 − a)(x1 + p) = 0, x1(t1x1t1 + t1) = (t1x1t1 + t1)x1

tiwi = wi+1ti − 1, tiwj = wjti, for j 6= i, i+ 1,

x1wi = wix1 and x1ti = tix1, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,
and

x1w1 = −w1x1 + (a− p)w1 + w2
1 +

(
(a+p)2−(b+q)2

4

)
.
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(x1 − a)(x1 + p) = 0, x1(t1x1t1 + t1) = (t1x1t1 + t1)x1
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and
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Let wi = zi − 1
2
(a− p+ b− q).

Hk is presented by generators
t0, t1, . . . , tk−1, w1, . . . , wk,

and relations
t2i = 1, titj = tjti for |i− j| > 1, titi+1ti = ti+1titi+1

t20 = 1, t0t1t0t1 = t1t0t1t0 +
2

(a+p)
(t1t0 − t0t1)

tiwi = wi+1ti − 1, tiwj = wjti, for j 6= i, i+ 1,

t0wi = wit0 and t0ti = tit0, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,
and

t0w1 = −w1t0 +
2

a+p

(
w2

1 +
(

(a+p)2−(b+q)2

4

))
where t0 = 1

a+p
(2x1 − (a− p)).
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Let wi = zi − 1
2
(a− p+ b− q).

Hk is presented by generators
t0, t1, . . . , tk−1, w1, . . . , wk,

and relations
t2i = 1, titj = tjti for |i− j| > 1, titi+1ti = ti+1titi+1

t20 = 1, t0t1t0t1 = t1t0t1t0 +
2

(a+p)
(t1t0 − t0t1)

tiwi = wi+1ti − 1, tiwj = wjti, for j 6= i, i+ 1,

t0wi = wit0 and t0ti = tit0, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,
and

t0w1 = −w1t0 +
2

a+p

(
w2

1 +
(

(a+p)2−(b+q)2

4

))
where t0 = 1

a+p
(2x1 − (a− p)).
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Let wi = zi − 1
2
(a− p+ b− q).

The graded Hecke algebra of type C is presented by generators
t0, t1, . . . , tk−1, w1, . . . , wk,

and relations
t2i = 1, titj = tjti for |i− j| > 1, titi+1ti = ti+1titi+1

t20 = 1, t0t1t0t1 = t1t0t1t0 +
2

(a+p)
(t1t0 − t0t1)

tiwi = wi+1ti − 1, tiwj = wjti, for j 6= i, i+ 1,

t0wi = wit0 and t0ti = tit0, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,
and

t0w1 = −w1t0 +
2

a+p

(
w2

1 +
(

(a+p)2−(b+q)2

4

))
where t0 = 1

a+p
(2x1 − (a− p)).
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t0, t1, . . . , tk−1, w1, . . . , wk,

and relations
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2
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(t1t0 − t0t1)

tiwi = wi+1ti − 1, tiwj = wjti, for j 6= i, i+ 1,

t0wi = wit0 and t0ti = tit0, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,
and

t0w1 = −w1t0 +
2

a+p

(
w2

1 +
(

(a+p)2−(b+q)2

4

))
where t0 = 1

a+p
(2x1 − (a− p)).
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Let wi = zi − 1
2
(a− p+ b− q).

The graded Hecke algebra of type C is presented by generators
t0, t1, . . . , tk−1, w1, . . . , wk,

and relations
t2i = 1, titj = tjti for |i− j| > 1, titi+1ti = ti+1titi+1

t20 = 1, t0t1t0t1 = t1t0t1t0 +
2

(a+p)
(t1t0 − t0t1)

tiwi = wi+1ti − 1, tiwj = wjti, for j 6= i, i+ 1,

t0wi = wit0 and t0ti = tit0, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,
and

t0w1 = −w1t0 + c
   

   
  ````````

2
a+p

(
w2

1 +
(

(a+p)2−(b+q)2

4

))
where t0 = 1

a+p
(2x1 − (a− p)).
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Recall: The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations c c c c · · · c c0 1 2 3 k−2 k−1

For each element w ∈W , fix a preferred word w = si1si2 · · · of
minimal length. Then let tw = ti1ti2 · · · .
Let wλ = wλ11 · · ·w

λk
k , where λ = (λ1, . . . , λk) ∈ Zk.
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Recall: The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations c c c c · · · c c0 1 2 3 k−2 k−1

For each element w ∈W , fix a preferred word w = si1si2 · · · of
minimal length. Then let tw = ti1ti2 · · · .
Let wλ = wλ11 · · ·w

λk
k , where λ = (λ1, . . . , λk) ∈ Zk.

Fact (by definition)

The graded Hecke algebra of type C
has basis

{wλ tw | w ∈W,λ ∈ Zk≥0}
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Recall: The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations c c c c · · · c c0 1 2 3 k−2 k−1

For each element w ∈W , fix a preferred word w = si1si2 · · · of
minimal length. Then let tw = ti1ti2 · · · .
Let wλ = wλ11 · · ·w

λk
k , where λ = (λ1, . . . , λk) ∈ Zk.

Fact (by definition)

The graded Hecke algebra of type C
has basis

{wλ tw | w ∈W,λ ∈ Zk≥0}

�
��

Monomials
in the w’s

A
AK

Elements of the
reflection group
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Recall: The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations c c c c · · · c c0 1 2 3 k−2 k−1

For each element w ∈W , fix a preferred word w = si1si2 · · · of
minimal length. Then let tw = ti1ti2 · · · .
Let wλ = wλ11 · · ·w

λk
k , where λ = (λ1, . . . , λk) ∈ Zk.

Theorem (D.)

The degenerate two-boundary Hecke algebra Hk
has basis

{wλ tw | w ∈W,λ ∈ Zk≥0}

�
��

Monomials
in the w’s

A
AK

Elements of the
reflection group
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Recall: The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations c c c c · · · c c0 1 2 3 k−2 k−1

W permutes {−k, . . . ,−1, 1, . . . , k} by

s0 =
• • • •

• • • •

• •

• •

-k

-k

k

k

-2

-2

-1

-1

1

1

2

2

@@R��	? ? ? ?· · · · · · si =
• •

• •

• •

• •

• •

• •

-k

-k

k

k

-i-1

-i-1

-i

-i

i

i

i+1

i+1

@@R��	 @@R��	 ??· · · · · ·· · ·

Define w−i = −wi. Then W acts on monomials wλ by

w · (wλ1
1 wλ2

2 · · ·w
λk

k ) = wλ1

w(1)w
λ2

w(2) · · ·w
λk

w(k)
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Recall: The type C Weyl group W is generated by s0, s1, . . . , sk−1,
with relations c c c c · · · c c0 1 2 3 k−2 k−1

W permutes {−k, . . . ,−1, 1, . . . , k} by

s0 =
• • • •

• • • •

• •

• •

-k

-k

k

k

-2

-2

-1

-1

1

1

2

2

@@R��	? ? ? ?· · · · · · si =
• •

• •

• •

• •

• •

• •

-k

-k

k

k

-i-1

-i-1

-i

-i

i

i

i+1

i+1

@@R��	 @@R��	 ??· · · · · ·· · ·

Define w−i = −wi. Then W acts on monomials wλ by

w · (wλ1
1 wλ2

2 · · ·w
λk

k ) = wλ1

w(1)w
λ2

w(2) · · ·w
λk

w(k)

Theorem (Lusztig)

The graded Hecke algebra of type C
has center

C[w1, . . . , wk]
W,

symmetric polynomials in the w’s with respect to the action of W .
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Theorem (D.)

The degenerate two-boundary Hecke algebra Hk
has center

C[w1, . . . , wk]
W,

symmetric polynomials in the w’s with respect to the action of W .
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Up next for Endg(M ⊗N ⊗ V ⊗k)

1 When g = sln or gln, and M and N are rectangular, we get
the degenerate (extended) two-boundary Hecke algebra.

1 What are the intertwining operators? What is the
correspondence between type C Hecke modules and Hk
modules?

2 How does the center act?
3 Develop the combinatorics: cool dimension formulas? familiar

tableaux games?
4 Quantized versions yield two-boundary Hecke algebras.

2 When g = son or sp2n, and M and N are rectangular, study
the the (degenerate and nondegenerate) two-boundary BMW
algebras.
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