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Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&

GL,(C) actson V®*  diagonally
S, acts on V®* by place permutations
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Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&

GL,(C) actson V®*  diagonally
S, acts on V®* by place permutations

These actions commute!
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&

GL,(C) actson V®*  diagonally
S, acts on V®* by place permutations

These actions commute!

For example: g (12):(v1 ®va)
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&

GL,(C) actson V®*  diagonally
S, acts on V®* by place permutations

These actions commute!

For example: g(12)-(v1®@v2) =g (v2®@071)
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&

GL,(C) actson V®*  diagonally
S, acts on V®* by place permutations

These actions commute!

For example: g(12)-(v1®@v2) =g (v2®@071)
= gu2 ® guy
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&

GL,(C) actson V®*  diagonally
S, acts on V®* by place permutations
These actions commute!
For example: g(12)-(v1®@v2) =g (v2®@071)
= gv2 ® guy
= (12)- (gv1 ® gv2)
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Knowing the representation theory of the symmetric group Sk,
Schur (1901) produced simple GL,,(C)-modules as follows:

Let V=C" and denote VRV -V = V&
GL,(C) actson V¥ diagonally
S, acts on V®* by place permutations
These actions commute!
For example: g(12)-(v1®@v2) =g (v2®@071)

= gv2 ® guy
= (12)- (gv1 ® gv2)
=(12)g-(n1®v2)
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Big deal:
For n > k, the centralizer of the action of GL,,(C) on V®* in End(V ®*)

IS
Endgy,, (©) (V®k) = CSk.
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Background

Schur-Weyl duality

More examples

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Big deal:
For n > k, the centralizer of the action of GL,,(C) on V®* in End(V ®*)
is
EndGLn(C)(V®k) ~ CS,.
Bigger deal:

Centralizer relationship produces

YOk o @ G*® S asa GL,-S) bimodule,

AFk
ht(\) < n

G»  are distinct irreducible  GL,,-modules
S*  are distinct irreducible  Si-modules
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Background
Schur-Weyl duality

More examples

The set up

Let g be a finite dimensional complex reductive Lie algebra.

e.g. g,(C), s1,,(C), 50,(C), spy,(C).
Let M, N, and V be finite dimensional simple g-modules.

Our goal:
Understand Endy(M ® N @ V&F).

(the set of endomorphisms which commute with the action of g)
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Background
Schur-Weyl duality

More examples

Examples of Endg(M @ N ® V@@’\T)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(@) (the first fundamental weight).
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Background
Schur-Weyl duality

More examples

Examples of Endg(M @ N ® V@@’\T)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(@) (the first fundamental weight).

® If M =N = L(0) and
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More examples

Examples of Endg(M @ N ® V@@’\T)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(@) (the first fundamental weight).

®If M =N=L(0) and
e g =sl,, this gives CSy modules (Schur, 1901);
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Schur-Weyl duality

More examples

Examples of Endg(M @ N ® V@@’\T)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(O) (the first fundamental weight).
®If M =N=L(0) and
e g =sl,, this gives CSy modules (Schur, 1901);

e g =50, Or 5P,,, this gives Brauer algebra modules (Brauer,
1937);
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Schur-Weyl duality

More examples

Examples of Endg(M @ N ® V@@’\T)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(O) (the first fundamental weight).
®If M =N=L(0) and
e g =sl,, this gives CSy modules (Schur, 1901);

e g =50, Or 5P,,, this gives Brauer algebra modules (Brauer,
1937);

® If M = L(0) and N = L(\) and
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Background
Schur-Weyl duality

More examples

Examples of Endg(M @ N ® V@@’\?)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(O) (the first fundamental weight).
®If M =N=L(0) and
e g =sl,, this gives CSy modules (Schur, 1901);

e g =50, Or 5P,,, this gives Brauer algebra modules (Brauer,
1937);

® If M = L(0) and N = L(\) and
e g = sl,, this gives graded Hecke algebra of type A modules
(Arikawa & Suzuki, 1998);
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Schur-Weyl duality

More examples

Examples of Endg(M @ N ® V@@’\?)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(@) (the first fundamental weight).

®If M =N=L(0) and
e g =sl,, this gives CSy modules (Schur, 1901);
e g =50, Or 5P,,, this gives Brauer algebra modules (Brauer,
1937);
® If M = L(0) and N = L(\) and
e g = sl,, this gives graded Hecke algebra of type A modules
(Arikawa & Suzuki, 1998);

® g =50, Or §p,,, this gives degenerate affine Wenzl algebra
modules (Nazarov, 1996).
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Background
Schur-Weyl duality

More examples

Examples of Endg(M @ N ® VW?)

Let L(\) be the finite dim’l irreducible g-module of highest weight A.
Let V = L(wy)= L(@) (the first fundamental weight).

®If M =N=L(0) and
e g =sl,, this gives CSy modules (Schur, 1901);
e g =50, Or 5P,,, this gives Brauer algebra modules (Brauer,
1937);
® If M = L(0) and N = L(\) and
e g = sl,, this gives graded Hecke algebra of type A modules
(Arikawa & Suzuki, 1998);

® g =50, Or §p,,, this gives degenerate affine Wenzl algebra
modules (Nazarov, 1996).

Quantized versions yield standard and affine type A Hecke and
Birman-Murakami-Wenzl algebra modules (Orellana & Ram, 2007)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

First big question:

Is there an algebra which has centralizers
Endy(M @ N @ V®k) as quotients?
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Definition
The degenerate two-boundary braid group Gy, is the C-algebra
generated by
i=1,...k
t2=1
tit; = t;t; |Z 7]‘ >1
titiv1t; = tip1titia

CS,=C(t;

(C[zo,zl,...,zk], (C[yl,...,yk], (C[xl,...,xk}

and relations...
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Definition
The degenerate two-boundary braid group Gy, is the C-algebra
generated by
i=1,...k
t2=1
tit; = t;t; |Z 7]‘ >1
titiv1t; = tip1titia

CS,=C(t;

(C[zo,zl,...,zk], (C[yl,...,yk}, (C[xl,...,xk}

and relations...
tizj = xjty, tiy; = yt;, tizj = zjt;, forgF#i,i+1

(zo+ - +z)mj=zj(z0+ - +2z), (20+ - +z)y;j=y;(z0+- - +2z), fori>j
ti(zi +xip1) = (o +zip1)ti, ti(yi +¥it1) = (Yi +yir1)ts, forl1 <i<k—1
(titiy1) Ezi+1 —ti@ity) (bigits) = Tigo — tip1Tip1ti41 for1<i<k-—2,

(titig1) (itr — tiyits) (figits) = Yipa — tip1¥ipitipl
Tip1 — 6@ty = yip1 — tiyity forl1 <i < k-1,
zi = xy +yi —my, 1<i<k,
i —tixit; ifj =1 1
where if m; ; = x_l+1 . iTiti . . I ] Z+ ' thenmy =0, m; = Z Mg, j-
GG+ 15)m;ip1(i+13) ifj#di+1, 1 5%
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Definition
The degenerate two-boundary braid group Gy, is the C-algebra

generated by
i=1,...k

CSp =C{ t; =1
v tit; = t;t; |Z 7]‘ >1
titiv1t; = tip1titia
(C[zo,zl,...,zk], (C[yl,...,yk}, (C[J?l,...,l‘k}

and relations twisting the four factors together...
Gy contains three images of the graded braid group:

Clet, -, 5] ©CSk o, Clyn,- - ] ® TSy, Clan, ., 78] © TS

~ ~ ~

and
z; = x; + y; — lower terms.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Representations of Gy,
Define an action ® of G, on M @ N ®@ V®F
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Representations of Gy,
Define an action ® of G, on M @ N ® V©F:

CSy, permutes factors of V&K,
(C[:El, cee ,l‘k]
C[yh B yk]

(C[Zl, ey Zk]
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Representations of Gy,
Define an action ® of G, on M @ N ® V©F:

CSy, permutes factors of V&,
Clry, ...,z acts on M and V&,
Clyi, - ..,k
Clzt, .-, 2k

20

by nested central elements of Ug.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Representations of Gy,
Define an action ® of G, on M @ N @ V©F:

CSy, permutes factors of V&,
Clzy, ..., o] acts on M and V&,
Clyr, .-,y acts on N and V&,
Clzt, .-, 2k

20

by nested central elements of Ug.
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Braid group

Braid representations
Hecke algebra

Hecke representations

Degenerate two-boundary braid group and Hecke algebra

Representations of Gy,
Define an action ® of G, on M @ N @ V@F:

CSg permutes factors of V&,
Clz,. ..,z acts on M and V®F,

Cly1,-- -, y&) acts on N and V&,

Clz1y- -+ 2k acts on M ® N together and V®F,
20

by nested central elements of Ug.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Representations of Gy,
Define an action ® of G, on M @ N ® V®k:

CSk permutes factors of V&,
Clz1, ...,z acts on M and V&,
Cly1s-- -y acts on N and V&,
Clz1s .- 2] acts on M ® N together and V&,

20 acts on M ® N alone,

by nested central elements of Ug.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Representations of Gy,
Define an action ® of G, on M @ N ® V®*:

CSk permutes factors of V&,
Clz1, ...,z acts on M and V&,
Cly1s-- -y acts on N and V&,
Clz1s .- 2] acts on M ® N together and V&,

20 acts on M ® N alone,

by nested central elements of Ug.

Theorem (D.)
® is a representation of G, which commutes with the action of g.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

An Example:

Is there an algebra which has centralizers
Endy(M @ N ® V®*) as quotients
when g is of type A?
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Definition

Fix a,b,p,q € Z~g.

The degenerate extended two-boundary Hecke algebra H{* is the
quotient of the degenerate two-boundary braid group by the

relations
tz'.CL‘Z' = l'z‘—i—ltz’ — 1,
tiyi = viqati—1, i=1,...,k—1.
tizi = Zzigp1t; —1,

(z1 —a)(x1+p) =0 (y1 —b)(y1 +¢q) = 0.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Definition

Fix a,b,p,q € Z~g.

The degenerate extended two-boundary Hecke algebra H{* is the
quotient of the degenerate two-boundary braid group by the

relations
tz'.CL‘Z' = l'z‘—i—ltz’ — 1,
tiyi = viqati—1, i=1,...,k—1.
tizi = Zzigp1t; —1,

(z1 —a)(x1+p) =0 (y1 —b)(y1 +¢q) = 0.

The degenerate two-boundary Hecke algebra H;, is the subalgebra
of H{*' generated by
xly LR | 'Tk’y yL R ] yky Zl, R | Zk,‘v tll ytk—l

(everything but zo...we'll come back to this.)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

A partition is a collection of boxes:

+1
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

A partition is a collection of boxes:

o
=
N

3]

1
—
o
=

If a box B is in row ¢ and column j, then the content of B is

c¢(B)=j—i.
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

A partition is a collection of boxes:

o
=
N

3]

If a box B is in row ¢ and column j, then the content of B is

c¢(B)=j—i.

If X = (aP) is rectangular, there are exactly two “addable” boxes:

a

2]
(a?)=p

-p]
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

A partition is a collection of boxes:

o
=
N

3]

1
—
o
=

If a box B is in row ¢ and column j, then the content of B is
c¢(B)=j—i.

If A = (aP) is rectangular, there are exactly two “addable” boxes
a

2]
(a?)=p

Pl
(recall relations (x1 — a)(x1 +p) = 0 and (y1 — b)(y1 + q) = 0)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Theorem (D.)

Fix k < n non-neg. integers.
Let g =gl,,, M = L((a?)), N = L((b%)), and V = L((1Y)).
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Theorem (D.)

Fix k < n non-neg. integers.
Let g =gl,,, M = L((a?)), N = L((b%)), and V = L((1Y)).

(1) @ is a rep. of H* which commutes with the g-action, so

O(HP®) C Endy(M @ N @ VEF).
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Theorem (D.)

Fix k < n non-neg. integers.
Let g =gl,,, M = L((a?)), N = L((b%)), and V = L((1Y)).

(1) @ is a rep. of H* which commutes with the g-action, so
O(HP®) C Endy(M @ N @ VEF).

(2) For small cases,

®(HPY) = Endg(M ® N @ V).
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Theorem (D.)

Fix k < n non-neg. integers.
Let g =gl,,, M = L((a?)), N = L((b%)), and V = L((1Y)).

(1) @ is a rep. of H* which commutes with the g-action, so
O(HP®) C Endy(M @ N @ VEF).
(2) For small cases,

®(HPY) = Endg(M ® N @ V).

Remark

(1) When @ is not surjective, the image differs by a portion of the
action of the center of /g on M ® N.

(2) Same results for g = sl,, and a shift of .
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Let M = L((a?)) and N = L((b%)). Then

M (024 N = @ L()\) (multiplicity onel)
AEA

where A is the following set of partitions: (Okada)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Let M = L((aP)) and N = L((89)). Then
M (024 N = @ L()\) (multiplicity onel)

A€A
where A is the following set of partitions: (Okada)
a b
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Let M = L((a?)) and N = L((b%)). Then

M (024 N = @ L()\) (multiplicity onel)
AEA

where A is the following set of partitions: (Okada)

T
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Let M = L((a?)) and N = L((b%)). Then

M (024 N = @ L()\) (multiplicity onel)
AEA

where A is the following set of partitions: (Okada)

0

T
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

Let M = L((a?)) and N = L((b%)). Then

M (024 N = @ L()\) (multiplicity onel)
AEA

where A is the following set of partitions. .. (Okada)

(aP) ®EB: :H@ :P@ -

& . N
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra

Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra

Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra

Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra

Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

[
11—

;P ; b | Lev.o
i

5
I
i
-

Lev. 1

¥
N
2

L
5
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra

Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra

Hecke representations
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

a

P ]
WM\
/'7 / \\@,3 —ap
2(a=p—1)
2(a— 7J+1)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

a

P ]
WM\
/'7 / \\@,3 —ap
2(a=p—1)
2(a— 7J+1)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

\WM\H74I)
2(a>p—1)

f
2(a—p+1)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

A two-dimensional H{* -module: HEE = Clz0, 21,71, 91)
. p 4a 0
0 =
» 0 3a—p
—p 0
= Op a
da 3a—p -~ —p 0
/ | o 0 a
H =i -2 0
1 2 ~
| Y1 0 2
(formulas x1, 91, 21, 29 all given in
a terms of contents of added boxes)
-/
s
5
I
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations
Hecke algebra

Hecke representations

An eight-dimensional Hs-module:

(a?)

ﬁ/ﬁ\;ﬁ

L7 L I I

7
L~ \\f \\ ﬁc D/f
BQ B

where C=—-A+(a—p+b—¢)and D=—-B+(a—p+b—gq)
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Braid group
Degenerate two-boundary braid group and Hecke algebra Braid representations

Hecke algebra
Hecke representations

An eight-dimensional Hs-module:

(a?)

ﬁ/ﬁ\;ﬁ

L7 L I I

jf
g \J\\ JHA /—B/j4
B\\ B
L

Shift! Label edges by action of 2y — $(a —p+b—g) and 22 — (a —p+ b — q))
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Type C symmetry
Restructuring H j,

Connections to type C Basis
Center

The type C Weyl group W is generated by sg, s1, ..., Sg_1,
with relations
s2 = 1, sisj = sjs; for |[i—j| > 1,  s0s15081 = 51505150,  and

2

8i8i+15; = Si+15iSi+1, for i = 1, ceey k— 2.

01 2 3  k-2k-1
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Connections to type C

Type C symmetry
Restructuring H j,
Basis

Center

An eight-dimensional Hs-module:

(a?)

Using the same representation,
we can build operators from Ha:
so changes level 0

s1 changes level 1

L L

T

Iy

[

Iy

IL\B _A/ R R _IA
LN N AN
g

L LH\ _1 _B/

N

L7

Zajj Daugherty
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Connections to type C

Type C symmetry
Restructuring H j,
Basis

Center

An eight-dimensional Hs-module:

(a?)

Using the same representation,
we can build operators from Ha:
so changes level 0

s1 changes level 1

lx B ”BiB A -
Ly

L L

\B A _

L7

Zajj Daugherty
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Type C symmetry
Restructuring H .

Connections to type C Basis
Center

An eight-dimensional Hs-module:

Using the same representation,
(ap) ) we can build operators from Hs:
L - so changes level 0
i T s1 changes level 1
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Type C symmetry
Restructuring H .

Connections to type C Basis
Center

An eight-dimensional Hs-module:

Using the same representation,
(ap) ) we can build operators from Ha:
L - so changes level 0
i T s1 changes level 1

P o P A
AR 7 -

4 B A B —B A 7]? 7;4 1 (A, B)
: ' : S0 (—A,B)

c T
) e

gL

‘A

[P
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Type C symmetry
Restructuring H .

Connections to type C Basis
Center

An eight-dimensional Hs-module:

(a?)

Using the same representation,
we can build operators from Ha:

[

7 L

"B -B ‘A —B

-

"B.

EE ro

7

—B

1

[P

so changes level 0
s1 changes level 1

1 (A B)
So (—A,B)
8180 (B, 7A)

S0S8150 (—B7 —A)
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Connections to type C

Type C symmetry
Restructuring H .

Basis
Center

An eight-dimensional Hs-module:

(a?)

Using the same representation,
we can build operators from Ha:
so changes level 0

s1 changes level 1

o F

Zajj Daugherty

(A, B)
! S0 (_A7 B)
S1S0 (B, 7A)
S0S1S50 (—B, —A)
51505180 (*A7 *B)
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Type C symmetry
Restructuring H .

Connections to type C Basis
Center

An eight-dimensional Hs-module:

Using the same representation,
(ap) ) we can build operators from Ha:
o so changes level 0
s1 changes level 1

el N A S

LB B -B ACB 4 1 (4 B)
B , \ ; s0 (A, B)

K S150 (Bv 7A)
}jf ‘ Pf sos1s0 (=B, —A)
: : S15051S50 (_A7 _B)

eré L[‘J B/ 5081808150 (A7 7B)

A
A
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Type C symmetry

Restructuring H j,
Connections to type C Basis
Center

An eight-dimensional Hs-module:

Using the same representation,
(ap) ) we can build operators from Ha:

. : e so changes level 0
. \ R s1 changes level 1
N A

4 B A B —B A fl? A 1 (A, B)
e g so (~AB)
5180 (B, 7A)
‘ }Jfﬁ ‘ V S0S81S50 (—B, —A)
S15051S50 (—A, —B)

LVA L[A \ S0S150S1S0 (A, 73)
S — 518051508150 (— ,A)

= N "ff
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Type C symmetry
Restructuring H .

Connections to type C Basis
Center

An eight-dimensional Hs-module:

Using the same representation,
(ap) ) we can build operators from Ha:

R s0 changes level 0
/ : N s1 changes level 1
T [ F

- .

A \B _A B,fl? ‘A fB !A 1 (A, B)
\ R S so  (—A,B)

' ’ S1S0 (B, 7A)
‘ }'rﬁ ‘ V S0S1S50 (—B, —A)
UA . L[J L S15051S50 (—A, —B)
\ 8081808180 (A, 7B)

A —A ,_B 5150515051580 (—B,A)

"B. \ J_FJ S08150S8150S1S0 (B7 A)

[P
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Type C symmetry
Restructuring H .

Connections to type C Basis
Center

An eight-dimensional Hs-module:

Using the same representation,
(ap) ) we can build operators from Ha:

S so changes level 0
/ T s1 changes level 1

%l Bf‘"l Bri—'iB 47]3 75‘4 1 ((AABB))
cs (Bd)
¥V =

LVA L[J 81808180
S0S150S1S0 (A, 73)
""\ —A S150S1S0S1S0 (—B,A)
B. - ff'J S0S815081S0S81S0 (
(

\ = $150818051508180

Zajj Daugherty Two-boundary Hecke algebras




Type C symmetry
Restructuring #H .

Connections to type C Basis
Center

Let w; =z — 2(a—p+b—q).

Hy is presented by generators
T1,t1, .y th—1, W1,y ..., Wk,
and relations
'L’? = ]., titj = tjti for |’L — _]| > 17 tit¢+1ti = ti+1titi+1

(r1 —a)(x1 +p) =0, z1(tizaty + t1) = (hizats + t)z

tiw; = wit1t; — 1, tiw; = w;jtq, forj ;é 1,1+ 1,
T1W; = W1 and $1ti = tixl, fOf 7 Z 2,
W;W; = Wjws, fori,j=0,...,k,

and

2_ 2
1wy = —wiz1 + (a — p)wy +wi + (%).
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Type C symmetry
Restructuring #H .

Connections to type C Basis
Center

Let w; =z — 2(a—p+b—q).

Hy is presented by generators
T1,t1, .oy b1, W1, ..., Wk,
and relations
'L’? =1, titj = tjti for |’L — ]| > 1, titigiti = tivatitisa

(,T] — (1)(11?1 +])) =0, .171(1/1371[1 + /,]) = ([1;171[1 + [1).’7:1

tiw; = wit1t; — 1, tiw; = w;jtq, forj ;é 1,1+ 1,
T1W; = W;T1 and rit; = tiwy, fori > 2,
W;W; = Wjws, fori,j =0,...,k,

and , )
2 e
1w = —wiz1 + (@ — p)wr + wi + (M)
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Type C symmetry
Restructuring #H .

Connections to type C Basis
Center

Let w; =z — 2(a—p+b—q).

Hy is presented by generators
to,t1y .oy th—1, W1, ..., Wk,

and relations
'L’? =1, titj = tjti for |’L — ]| > 1, titig1ti = tivatitisa

to =1, totitots :1/1[01/1//0-%@(1/1[0—[0//1)
tiw; = wit1t; — 1, tiw; = w;jtq, forj ;é 1,1+ 1,
tg’ll,',' = Ui,‘to and f(]t,' = t,fo, fOI‘ ’L Z 2,

W;w; = Wjws, fori,j =0,...,k,

and N i
towr = —wito + ﬁ)p (Ul% + (%))

where to = aip(2,7?1 — (a—p)).
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Type C symmetry
Restructuring #H .
Basis

Connections to type C
Center

Let w; = z; — %(1fp+bf(/)

Hp is presented by generators
fu‘f].... ,7‘,1\»,1,{1‘1,....

and relations
t7 =1, tit; =tjt; for [i —j| > 1, titip1t; = tipititip

tot1tots = t1totito + (Mm (t1to — totr)
for j #i,i+1,
for i > 2,

2 =1,

tiw, = wie1t; — 1, tiw; = w,t;,
+ J gl

toti = tito,

T,()ll‘,‘ = ’H?;f() and
Wiw; = Wiw;, fori,j=0,...,k,
and ) X
P s 2 2 (a+p)”—(b+q)~
tow1 = —w1to pEes <71,1 } ( i

where o = n+p(211 — (a —p))
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Type C symmetry
Restructuring #H .

Connections to type C Basis
Center

Let w; = z; — %(1 —p+b—9q).
The graded Hecke algebra of type C is presented by generators
fu‘ f] S ,T,;\»,l, Wiy ..., Wk,

and relations
t7 =1, tit; =tt; for |i—j| > 1, titiv1t; = tiprtitis

/;2) =1, totitot1 = titotito + (Mm (t1to — totr)

tiw; = wit1t; — 1, /,r,,ll‘j = Il‘j/,,,‘, for ] 31& 1,0+ 1,

T,()ll‘,‘ = ’H?;f() and ?L(Jf,‘ = T,r,f,(). for ¢ 2 2,

Wiw; = Wiw;, fori,j=0,...,k,
and ) -
tow, = —wito 4 ﬁ)]) <u:f ! (M))

where tg = n+p(211 — (a —p)).
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Type C symmetry
Restructuring #H .
Basis

Connections to type C
Center

Let w; = z; — %(u, —p+b—9q).

The graded Hecke algebra of type C is presented by generators
to,t1,.. .y thk—1,W1,..., Wk,

[z[1+l[z — [[71[’1,[/L+|

and relations
t7 =1, tit; = tt; for [i — j| > 1,
/;2) =1, totitot1 = titotito + @ ’m (t1to — totr)
tiw; = wit1t; — 1, /,r,,ll‘j = Il‘j/,,,‘, for ] 31& 1,0+ 1,
T,()ll‘,‘ = ’H?;T() and ?L(Jf,‘ = T,r,f,(). for ¢ 2 2,
Wiw; = Wiw;, fori,j=0,..., k,
and . / 2] \2

tow, = —wito 4 ﬁ <u:f ! (M))

where tg = n+p(211 — (a —p))
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Type C symmetry
Restructuring #H .

Connections to type C Basis
Center

Let w; = z; — %(u —p+b—9q).

The graded Hecke algebra of type C is presented by generators
to,t1,.. .y thk—1,W1,..., Wk,

and relations
'L’? = ]., titj = tjti for |’L — ]| > 17 titiv1ti = tig1titiy1

th=1,  totrtots = tatotito + 2 (tato — tot1)
tiw; = wit1t; — 1, tiw; = w;jtq, forj ;é 1,1+ 1,

tow,- = wito and toti = tito, fOI‘ 7 Z 2,

W;w; = Wjws, fori,j=0,...,k,
and
towi = —wito + ¢ uiﬂv a) >>
where to = #(251:1 — (a —p)).

a+p
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Type C symmetry
Restructuring H g,

Connections to type C Basis
Center

Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations

01 2 3 k—2 k—1

For each element w € W, fix a preferred word w = s;, s;, - - - of
minimal length. Then let ¢y, = ;%5 - -
Let w? = wi‘l . w];\’“ where A = (\1,...,\y) € ZF.
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Type C symmetry
Restructuring H g,

Connections to type C Basis
Center

Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations
0 1 2 3 k—2 k—1

For each element w € W, fix a preferred word w = s;,5;, - - - of
minimal length. Then let ¢y, = ¢;,t;, - - -

Let w? = wi‘l w];\’“ where A = (\1,...,\y) € ZF.

Fact (by definition)

The graded Hecke algebra of type C
has basis

{wty | we W\ eZh}
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Type C symmetry
Restructuring H g,

Connections to type C Basis
Center

Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations
0 1 2 3 k—2 k—1

For each element w € W, fix a preferred word w = s;,5;, - - - of
minimal length. Then let ¢y, = ¢;,t;, - - -

Let w? = wi‘l---w];\k, where A = (\1,...,\y) € ZF.

Fact (by definition)
The graded Hecke algebra of type C
has basis
{wty | we W\ e Zh}

/A

Monomials Elements of the
in the w's reflection group

Zajj Daugherty Two-boundary Hecke algebras



Type C symmetry
Restructuring H g,

Connections to type C Basis
Center

Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations
0 1 2 3 k—2 k—1

For each element w € W, fix a preferred word w = s;,5;, - - - of
minimal length. Then let ¢y, = ¢;,t;, - - -

Let w? = wi‘l w];\’“ where A = (\1,...,\y) € ZF.

Theorem (D.)

The degenerate two-boundary Hecke algebra H;,
has basis

{wty | we WX e Zh}

/A

Monomials Elements of the
in the w's reflection group

Zajj Daugherty Two-boundary Hecke algebras



Type C symmetry
Restructuring H j,

Connections to type C Basis
Center

Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations
0 1 2 3 k—2 k—1
- -0—O0

o—0—0—0--
W permutes {—k,...,—1,1,... k} by
-k -2 —1 1 2 k - -t-1 -1 i i+1 k
w=]] 5T wm 3]
-k -2 -1 1 2 k -k -t-1 -1 7 i+1 k
Define w_; = —w;. Then W acts on monomials w? by
w e (wtw)? - wpt) _w\f\v(l) j\v(2) "w;\v’Zk)
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Type C symmetry
Restructuring H j,

Connections to type C Basis
Center
Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations
0o 1 2 3 k—2 k—1
o—0—~0—-0 .- -0—0
W permutes {—k,...,—1,1,... k} by
-k -2 —1 1 2 k - -1-1 -1 k3 i+1 k
-k -2 -1 1 2 k -k -i-1 -1 1 i+1 k
Define w_; = —w;. Then W acts on monomials w? by
A1 Ao 3 )\k A1 Ao .. >\k
W (witwy® - wph) = W (1) Wi(2) " Witk

Theorem (Lusztig)

The graded Hecke algebra of type C
has center
(C[wla cee 7wk]V7V

symmetric polynomials in the w's with respect to the action of W.
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Type C symmetry
Restructuring H j,

Connections to type C Basis
Center
Recall: The type C Weyl group W is generated by sg, s1, ..., Sgp—1,
with relations
0o 1 2 3 k—2 k—1
o—0—~0—-0 .- -0—0
W permutes {—k,...,—1,1,... k} by
-k -2 —1 1 2 k - -1-1 -1 k3 i+1 k
SO - ; o ; X ; ; sz I >< >< N ;
-k -2 -1 1 2 k -k -i-1 -1 1 i+1 k
Define w_; = —w;. Then W acts on monomials w? by
A1 Ao 3 )\k A1 Ao .. >\k
W (witwy® - wph) = W (1) Wi(2) " Witk

Theorem (D.)

The degenerate two-boundary Hecke algebra H,
has center
(C[wl, N ,wk]v,v

symmetric polynomials in the w's with respect to the action of W.
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Summary

Up next for Endy(M @ N @ V&F)

@ When g =sl, or gl,,, and M and N are rectangular, we get
the degenerate (extended) two-boundary Hecke algebra.

@ What are the intertwining operators? What is the
correspondence between type C Hecke modules and Hy,
modules?

® How does the center act?

©® Develop the combinatorics: cool dimension formulas? familiar
tableaux games?

@ Quantized versions yield two-boundary Hecke algebras.

® When g = so,, or spy,,, and M and N are rectangular, study
the the (degenerate and nondegenerate) two-boundary BMW
algebras.
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Summary
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