Degenerate two-boundary centralizer algebras

Zajj Daugherty
University of Wisconsin, Madison

May 3, 2010

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally
$S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally
$S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations
These actions commute!

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally
$S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations
These actions commute!
For example: $\quad g(12) \cdot\left(v_{1} \otimes v_{2}\right)$

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally
$S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations
These actions commute!
For example: $\quad g(12) \cdot\left(v_{1} \otimes v_{2}\right)=g \cdot\left(v_{2} \otimes v_{1}\right)$

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally
$S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations
These actions commute!
For example: $\quad g(12) \cdot\left(v_{1} \otimes v_{2}\right)=g \cdot\left(v_{2} \otimes v_{1}\right)$ $=g v_{2} \otimes g v_{1}$

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally $S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations

These actions commute!
For example: $\quad g(12) \cdot\left(v_{1} \otimes v_{2}\right)=g \cdot\left(v_{2} \otimes v_{1}\right)$

$$
\begin{aligned}
& =g v_{2} \otimes g v_{1} \\
& =(12) \cdot\left(g v_{1} \otimes g v_{2}\right)
\end{aligned}
$$

Warm-up with Schur-Weyl duality

Goal: Find simple modules.
Knowing the representation theory of the symmetric group S_{k}, Schur (1901) produced simple $\mathrm{GL}_{n}(\mathbb{C})$-modules as follows:

Let $V=\mathbb{C}^{n}$, and denote $V \otimes V \otimes \cdots \otimes V=V^{\otimes k}$.
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $V^{\otimes k}$ diagonally $S_{k} \quad$ acts on $V^{\otimes k} \quad$ by place permutations

These actions commute!
For example: $\quad g(12) \cdot\left(v_{1} \otimes v_{2}\right)=g \cdot\left(v_{2} \otimes v_{1}\right)$

$$
\begin{aligned}
& =g v_{2} \otimes g v_{1} \\
& =\left(\begin{array}{ll}
1 & 2
\end{array}\right) \cdot\left(g v_{1} \otimes g v_{2}\right) \\
& =\left(\begin{array}{ll}
1 & 2
\end{array}\right) g \cdot\left(v_{1} \otimes v_{2}\right)
\end{aligned}
$$

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Big deal:
For $n \geq k$, the centralizer of the action of $\mathrm{GL}_{n}(\mathbb{C})$ on $V^{\otimes k}$ in $\operatorname{End}\left(V^{\otimes k}\right)$ is

$$
\operatorname{End}_{\operatorname{GL}_{n}(\mathbb{C})}\left(V^{\otimes k}\right) \cong \mathbb{C} S_{k}
$$

Warm-up with Schur-Weyl duality

Goal: Find simple modules.

Big deal:
For $n \geq k$, the centralizer of the action of $\mathrm{GL}_{n}(\mathbb{C})$ on $V^{\otimes k}$ in $\operatorname{End}\left(V^{\otimes k}\right)$ is

$$
\operatorname{End}_{\operatorname{GL}_{n}(\mathbb{C})}\left(V^{\otimes k}\right) \cong \mathbb{C} S_{k}
$$

Bigger deal:
Centralizer relationship produces

$$
V^{\otimes k} \cong \bigoplus_{\substack{\lambda+k \\ h t(\lambda) \leq n}} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where $\begin{array}{cll}G^{\lambda} & \text { are distinct irreducible } & \mathrm{GL}_{n} \text {-modules } \\ S^{\lambda} & \text { are distinct irreducible } & S_{k} \text {-modules }\end{array}$

The set up

Let \mathfrak{g} be a finite dimensional complex reductive Lie algebra.

$$
\text { e.g. } \mathfrak{g l}_{n}(\mathbb{C}), \mathfrak{s l}_{n}(\mathbb{C}), \mathfrak{s o}_{n}(\mathbb{C}), \mathfrak{s p}_{2 n}(\mathbb{C})
$$

Let M, N, and V be finite dimensional simple \mathfrak{g}-modules.

Our goal:
Understand $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$.
(the set of endomorphisms which commute with the action of \mathfrak{g})

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ. Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ.
Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ. Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives $\mathbb{C} S_{k}$ modules (Schur, 1901);

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ.
Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives $\mathbb{C} S_{k}$ modules (Schur, 1901);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, this gives Brauer algebra modules (Brauer, 1937);

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ. Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives $\mathbb{C} S_{k}$ modules (Schur, 1901);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, this gives Brauer algebra modules (Brauer, 1937);
(2) If $M=L(0)$ and $N=L(\lambda)$ and

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ. Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives $\mathbb{C} S_{k}$ modules (Schur, 1901);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, this gives Brauer algebra modules (Brauer, 1937);
(2) If $M=L(0)$ and $N=L(\lambda)$ and
- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives graded Hecke algebra of type A modules (Arikawa \& Suzuki, 1998);

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ. Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives $\mathbb{C} S_{k}$ modules (Schur, 1901);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, this gives Brauer algebra modules (Brauer, 1937);
(2) If $M=L(0)$ and $N=L(\lambda)$ and
- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives graded Hecke algebra of type A modules (Arikawa \& Suzuki, 1998);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, this gives degenerate affine Wenzl algebra modules (Nazarov, 1996).

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Let $L(\lambda)$ be the finite dim'l irreducible \mathfrak{g}-module of highest weight λ.
Let $V=L\left(\omega_{1}\right)=L(\square)$ (the first fundamental weight).
(1) If $M=N=L(0)$ and

- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives $\mathbb{C} S_{k}$ modules (Schur, 1901);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, this gives Brauer algebra modules (Brauer, 1937);
(2) If $M=L(0)$ and $N=L(\lambda)$ and
- $\mathfrak{g}=\mathfrak{s l}_{n}$, this gives graded Hecke algebra of type A modules (Arikawa \& Suzuki, 1998);
- $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{S p}_{2 n}$, this gives degenerate affine Wenzl algebra modules (Nazarov, 1996).

Quantized versions yield standard and affine type A Hecke and Birman-Murakami-Wenzl algebra modules (Orellana \& Ram, 2007)

First big question:

Is there an algebra which has centralizers
$\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$ as quotients?

Definition

The degenerate two-boundary braid group \mathcal{G}_{k} is the \mathbb{C}-algebra generated by

$$
\left.\begin{array}{c}
\mathbb{C} S_{k}=\mathbb{C}\left\langle t_{i}\right| \begin{array}{c}
i=1, \ldots k \\
t_{i}^{2}=1 \\
t_{i} t_{j}=t_{j} t_{i}
\end{array}|i-j|>1 \\
t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1}
\end{array}\right\rangle
$$

and relations...

Definition

The degenerate two-boundary braid group \mathcal{G}_{k} is the \mathbb{C}-algebra generated by

$$
\left.\begin{array}{c}
\mathbb{C} S_{k}=\mathbb{C}\left\langle t_{i}\right| \begin{array}{c}
i=1, \ldots k \\
t_{i}^{2}=1 \\
t_{i} t_{j}=t_{j} t_{i} \\
t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1}
\end{array}|i-j|>1
\end{array}\right\rangle
$$

and relations...

$$
\begin{aligned}
& t_{i} x_{j}=x_{j} t_{i}, \quad t_{i} y_{j}=y_{j} t_{i}, \quad t_{i} z_{j}=z_{j} t_{i}, \quad \text { for } j \neq i, i+1 \\
& \left(z_{0}+\cdots+z_{i}\right) x_{j}=x_{j}\left(z_{0}+\cdots+z_{i}\right), \quad\left(z_{0}+\cdots+z_{i}\right) y_{j}=y_{j}\left(z_{0}+\cdots+z_{i}\right), \quad \text { for } i \geq j \\
& t_{i}\left(x_{i}+x_{i+1}\right)=\left(x_{i}+x_{i+1}\right) t_{i}, \quad t_{i}\left(y_{i}+y_{i+1}\right)=\left(y_{i}+y_{i+1}\right) t_{i}, \quad \text { for } 1 \leq i \leq k-1 \\
& \left(t_{i} t_{i+1}\right)\left(x_{i+1}-t_{i} x_{i} t_{i}\right)\left(t_{i+i} t_{i}\right)=x_{i+2}-t_{i+1} x_{i+1} t_{i+1} \quad \text { for } 1 \leq i \leq k-2, \\
& \left(t_{i} t_{i+1}\right)\left(y_{i+1}-t_{i} y_{i} t_{i}\right)\left(t_{i+i} t_{i}\right)=y_{i+2}-t_{i+1} y_{i+1} t_{i+1} \\
& x_{i+1}-t_{i} x_{i} t_{i}=y_{i+1}-t_{i} y_{i} t_{i} \quad \text { for } 1 \leq i \leq k-1, \\
& z_{i}=x_{i}+y_{i}-m_{i}, \quad 1 \leq i \leq k,
\end{aligned}
$$

where if $m_{i, j}=\left\{\begin{array}{ll}x_{i+1}-t_{i} x_{i} t_{i} & \text { if } j=i+1, \\ (i+1 j) m_{i, i+1}(i+1 j) & \text { if } j \neq i, i+1,\end{array}\right.$ then $m_{1}=0, m_{i}=\sum_{1<j<i} m_{i, j}$.

Definition
The degenerate two-boundary braid group \mathcal{G}_{k} is the \mathbb{C}-algebra generated by

$$
\left.\begin{array}{c}
\mathbb{C} S_{k}=\mathbb{C}\left\langle t_{i}\right| \begin{array}{c}
i=1, \ldots k \\
t_{i}^{2}=1 \\
t_{i} t_{j}=t_{j} t_{i}
\end{array}|i-j|>1 \\
t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1}
\end{array}\right\rangle
$$

and relations twisting the four factors together... \mathcal{G}_{k} contains three images of the graded braid group:

$$
\frac{\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] \otimes \mathbb{C} S_{k}}{\sim} \cong \frac{\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes \mathbb{C} S_{k}}{\sim} \cong \frac{\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \otimes \mathbb{C} S_{k}}{\sim}
$$

and

$$
z_{i}=x_{i}+y_{i}-\text { lower terms }
$$

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$:
$\mathbb{C} S_{k} \quad$ permutes factors of $V^{\otimes k}$,

$$
\begin{aligned}
& \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \\
& \mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \\
& \mathbb{C}\left[z_{1}, \ldots, z_{k}\right]
\end{aligned}
$$

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$:

$$
\begin{aligned}
\mathbb{C} S_{k} & \text { permutes factors of } V^{\otimes k}, \\
\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] & \text { acts on } M \text { and } V^{\otimes k}, \\
\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] & \\
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] & \\
z_{0} &
\end{aligned}
$$

by nested central elements of $\mathcal{U g}$.

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$:

$$
\begin{aligned}
\mathbb{C} S_{k} & \text { permutes factors of } V^{\otimes k}, \\
\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] & \text { acts on } M \text { and } V^{\otimes k}, \\
\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] & \text { acts on } N \text { and } V^{\otimes k}, \\
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] & \\
z_{0} &
\end{aligned}
$$

by nested central elements of $\mathcal{U g}$.

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$:

$$
\begin{aligned}
\mathbb{C} S_{k} & \text { permutes factors of } V^{\otimes k}, \\
\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] & \text { acts on } M \text { and } V^{\otimes k}, \\
\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] & \text { acts on } N \text { and } V^{\otimes k}, \\
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] & \text { acts on } M \otimes N \text { together and } V^{\otimes k}, \\
z_{0} &
\end{aligned}
$$

by nested central elements of $\mathcal{U g}$.

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$:

$$
\begin{aligned}
\mathbb{C} S_{k} & \text { permutes factors of } V^{\otimes k}, \\
\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] & \text { acts on } M \text { and } V^{\otimes k}, \\
\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] & \text { acts on } N \text { and } V^{\otimes k}, \\
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] & \text { acts on } M \otimes N \text { together and } V^{\otimes k}, \\
z_{0} & \text { acts on } M \otimes N \text { alone, }
\end{aligned}
$$

by nested central elements of $\mathcal{U g}$.

Let $\langle\rangle:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathbb{C}$ be the trace form:
$\langle x, y\rangle=\operatorname{Tr}(x y), \quad$ where x and y are viewed in a defining rep of \mathfrak{g}.
Let $\{b\}$ be a basis of \mathfrak{g} and $\left\{b^{*}\right\}$ the dual basis wrt \langle,$\rangle .$
Let $\kappa=\sum_{b} b b^{*}$.
κ is the Casimir invariant and is central in $\mathcal{U g}$.

Theorem (D.)
Define $\Phi: \mathcal{G}_{k} \rightarrow \operatorname{End}\left(M \otimes N \otimes V^{\otimes k}\right)$

$$
\begin{aligned}
\Phi\left(t_{j}\right) & =\mathrm{id}_{M} \otimes \mathrm{id}_{N} \otimes \mathrm{id}_{V}^{\otimes(j-1)} \otimes t_{1} \otimes \mathrm{id}_{V}^{\otimes(k-j-1)} \\
\Phi\left(x_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes V \otimes j}-\left.\kappa\right|_{M \otimes V \otimes j-1}\right) \\
\Phi\left(y_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{N \otimes V \otimes j}-\left.\kappa\right|_{N \otimes V^{\otimes j-1}}\right) \\
\Phi\left(z_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes N \otimes V \otimes j}-\left.\kappa\right|_{M \otimes N \otimes V \otimes j-1}+\left.\kappa\right|_{V}\right) \\
\Phi\left(z_{0}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes N}-\left.\kappa\right|_{M}-\left.\kappa\right|_{N}\right)
\end{aligned}
$$

where $t_{1} \cdot\left(v_{i_{1}} \otimes v_{i_{2}}\right)=v_{i_{2}} \otimes v_{i_{1}}$.

Theorem (D.)
Define $\Phi: \mathcal{G}_{k} \rightarrow \operatorname{End}\left(M \otimes N \otimes V^{\otimes k}\right)$

$$
\begin{aligned}
\Phi\left(t_{j}\right) & =\mathrm{id}_{M} \otimes \mathrm{id}_{N} \otimes \mathrm{id}_{V}^{\otimes(j-1)} \otimes t_{1} \otimes \mathrm{id}_{V}^{\otimes(k-j-1)} \\
\Phi\left(x_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes V \otimes j}-\left.\kappa\right|_{M \otimes V \otimes j-1}\right) \\
\Phi\left(y_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{N \otimes V^{\otimes j}}-\left.\kappa\right|_{N \otimes V^{\otimes j-1}}\right) \\
\Phi\left(z_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes N \otimes V \otimes j}-\left.\kappa\right|_{M \otimes N \otimes V \otimes j-1}+\left.\kappa\right|_{V}\right) \\
\Phi\left(z_{0}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes N}-\left.\kappa\right|_{M}-\left.\kappa\right|_{N}\right)
\end{aligned}
$$

where $t_{1} \cdot\left(v_{i_{1}} \otimes v_{i_{2}}\right)=v_{i_{2}} \otimes v_{i_{1}}$.
Then Φ is a representation of \mathcal{G}_{k} which commutes with the action of \mathfrak{g}.

An Example:

Is there an algebra which has centralizers
$\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$ as quotients
when \mathfrak{g} is of type A ?

Definition

Fix $a, b, p, q \in \mathbb{Z}_{>0}$.
The degenerate extended two-boundary Hecke algebra $\mathcal{H}_{k}^{\text {ext }}$ is the quotient of the degenerate two-boundary braid group by the relations

$$
\begin{aligned}
t_{i} x_{i} & =x_{i+1} t_{i}-1, \\
t_{i} y_{i} & =y_{i+1} t_{i}-1, \quad i=1, \ldots, k-1 \\
t_{i} z_{i} & =z_{i+1} t_{i}-1 \\
\left(x_{1}-a\right) & \left(x_{1}+p\right)=0 \quad\left(y_{1}-b\right)\left(y_{1}+q\right)=0
\end{aligned}
$$

Definition

Fix $a, b, p, q \in \mathbb{Z}_{>0}$.
The degenerate extended two-boundary Hecke algebra $\mathcal{H}_{k}^{\text {ext }}$ is the quotient of the degenerate two-boundary braid group by the relations

$$
\begin{aligned}
t_{i} x_{i} & =x_{i+1} t_{i}-1, \\
t_{i} y_{i} & =y_{i+1} t_{i}-1, \quad i=1, \ldots, k-1 \\
t_{i} z_{i} & =z_{i+1} t_{i}-1 \\
\left(x_{1}-a\right) & \left(x_{1}+p\right)=0 \quad\left(y_{1}-b\right)\left(y_{1}+q\right)=0
\end{aligned}
$$

The degenerate two-boundary Hecke algebra \mathcal{H}_{k} is the subalgebra of $\mathcal{H}_{k}^{\text {ext }}$ generated by

$$
x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}, t_{1}, \ldots, t_{k-1}
$$

(everything but $z_{0} \ldots$ we'll come back to this.)

A partition is a collections of boxes:

A partition is a collections of boxes:

$$
\lambda=
$$

If a box B is in row i and column j, then the content of B is

$$
c(B)=j-i .
$$

A partition is a collections of boxes:

$$
\lambda=\begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

If a box B is in row i and column j, then the content of B is

$$
c(B)=j-i .
$$

If $\lambda=\left(a^{p}\right)$ is rectangular, there are exactly two "addable" boxes:

A partition is a collections of boxes:

$$
\lambda=\begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

If a box B is in row i and column j, then the content of B is

$$
c(B)=j-i
$$

If $\lambda=\left(a^{p}\right)$ is rectangular, there are exactly two "addable" boxes:

(recall relations $\left(x_{1}-a\right)\left(x_{1}+p\right)=0$ and $\left.\left(y_{1}-b\right)\left(y_{1}+q\right)=0\right)$

Theorem (D.)

Fix $k<n$ non-neg. integers.
Let $\mathfrak{g}=\mathfrak{g l}_{n}, M=L\left(\left(a^{p}\right)\right), N=L\left(\left(b^{q}\right)\right)$, and $V=L\left(\left(1^{1}\right)\right)$.

Theorem (D.)

Fix $k<n$ non-neg. integers.
Let $\mathfrak{g}=\mathfrak{g l}_{n}, M=L\left(\left(a^{p}\right)\right), N=L\left(\left(b^{q}\right)\right)$, and $V=L\left(\left(1^{1}\right)\right)$.
(1) Φ is a rep. of $\mathcal{H}_{k}^{\mathrm{ext}}$ which commutes with the \mathfrak{g}-action, so

$$
\Phi\left(\mathcal{H}_{k}^{\mathrm{ext}}\right) \subseteq \operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

Theorem (D.)

Fix $k<n$ non-neg. integers.
Let $\mathfrak{g}=\mathfrak{g l}_{n}, M=L\left(\left(a^{p}\right)\right), N=L\left(\left(b^{q}\right)\right)$, and $V=L\left(\left(1^{1}\right)\right)$.
(1) Φ is a rep. of $\mathcal{H}_{k}^{\mathrm{ext}}$ which commutes with the \mathfrak{g}-action, so

$$
\Phi\left(\mathcal{H}_{k}^{\mathrm{ext}}\right) \subseteq \operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

(2) For small cases,

$$
\Phi\left(\mathcal{H}_{k}^{\mathrm{ext}}\right)=\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

Theorem (D.)

Fix $k<n$ non-neg. integers.
Let $\mathfrak{g}=\mathfrak{g l}_{n}, M=L\left(\left(a^{p}\right)\right), N=L\left(\left(b^{q}\right)\right)$, and $V=L\left(\left(1^{1}\right)\right)$.
(1) Φ is a rep. of $\mathcal{H}_{k}^{\text {ext }}$ which commutes with the \mathfrak{g}-action, so

$$
\Phi\left(\mathcal{H}_{k}^{\mathrm{ext}}\right) \subseteq \operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

(2) For small cases,

$$
\Phi\left(\mathcal{H}_{k}^{\text {ext }}\right)=\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

Remark
(1) When Φ is not surjective, the image differs by a portion of the action of the center of $\mathcal{U g}$ on $M \otimes N$.
(2) Same results for $\mathfrak{g}=\mathfrak{s l}_{n}$ and a shift of Φ.

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions...

$$
\square
$$

\square

$\underset{\square}{6} \quad$ Lev. 0

A two-dimensional $\mathcal{H}_{1}^{\text {ext }}$-module:

$$
\begin{aligned}
z_{0} & =\left(\begin{array}{cc}
4 a & 0 \\
0 & 3 a-p
\end{array}\right) \\
z_{1} & =\left(\begin{array}{cc}
-p & 0 \\
0 & a
\end{array}\right) \\
x_{1} & \sim\left(\begin{array}{cc}
-p & 0 \\
0 & a
\end{array}\right) \\
y_{1} & \sim\left(\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

(formulas $x_{1}, y_{1}, z_{1}, z_{0}$ all given in terms of contents of added boxes)

An eight-dimensional \mathcal{H}_{2}-module:

where $C=-A+(a-p+b-q)$ and $D=-B+(a-p+b-q)$

An eight-dimensional \mathcal{H}_{2}-module:

Shift! Label edges by action of $z_{1}-\frac{1}{2}(a-p+b-q)$ and $\left.z_{2}-\frac{1}{2}(a-p+b-q)\right)$

Let $w_{i}=z_{i}-\frac{1}{2}(a-p+b-q)$.
\mathcal{H}_{k} is presented by generators

$$
x_{1}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{gathered}
t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
\left(x_{1}-a\right)\left(x_{1}+p\right)=0, \quad x_{1}\left(t_{1} x_{1} t_{1}+t_{1}\right)=\left(t_{1} x_{1} t_{1}+t_{1}\right) \\
t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
x_{1} w_{i}=w_{i} x_{1} \quad \text { and } \quad x_{1} t_{i}=t_{i} x_{1}, \quad \text { for } i \geq 2, \\
w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{gathered}
$$

and

$$
x_{1} w_{1}=-w_{1} x_{1}+(a-p) w_{1}+w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)
$$

Let $w_{i}=z_{i}-\frac{1}{2}(a-p+b-q)$.
\mathcal{H}_{k} is presented by generators

$$
x_{1}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{gathered}
t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
\left(x_{1}-a\right)\left(x_{1}+p\right)=0, \quad x_{1}\left(t_{1} x_{1} t_{1}+t_{1}\right)=\left(t_{1} x_{1} t_{1}+t_{1}\right) \\
t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
x_{1} w_{i}=w_{i} x_{1} \quad \text { and } \quad x_{1} t_{i}=t_{i} x_{1}, \quad \text { for } i \geq 2, \\
w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{gathered}
$$

and

$$
x_{1} w_{1}=-w_{1} x_{1}+(a-p) w_{1}+w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)
$$

$$
\text { Let } w_{i}=z_{i}-\frac{1}{2}(a-p+b-q)
$$

$$
\text { Let } w_{i}=z_{i}-\frac{1}{2}(a-p+b-q)
$$

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{aligned}
$$

and

$$
t_{0} w_{1}=-w_{1} t_{0}+\frac{2}{a+p}\left(w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right)
$$

$$
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
$$

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{aligned}
$$

and

$$
t_{0} w_{1}=-w_{1} t_{0}+\frac{2}{a+p}\left(w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right)
$$

$$
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
$$

\mathcal{H}_{k} is presented by generators

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \quad \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k
\end{aligned}
$$

and

$$
\begin{gathered}
t_{0} w_{1}=-w_{1} t_{0}+\frac{2}{a+p}\left(w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right) \\
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
\end{gathered}
$$

\mathcal{H}_{k} is presented by generators

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \quad \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k
\end{aligned}
$$

and

$$
\begin{gathered}
t_{0} w_{1}=-w_{1} t_{0}+\frac{2}{a+p}\left(w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right) \\
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
\end{gathered}
$$

The graded Hecke algebra of type C is presented by generators

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& \quad w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{aligned}
$$

and

$$
\begin{gathered}
t_{0} w_{1}=-w_{1} t_{0}+\frac{2}{a+p}\left(w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right) \\
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
\end{gathered}
$$

The graded Hecke algebra of type C is presented by generators

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& \quad w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{aligned}
$$

and

$$
\begin{gathered}
t_{0} w_{1}=-w_{1} t_{0}+\frac{2}{a+p}\left(w_{1}^{2}+\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right) \\
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
\end{gathered}
$$

The graded Hecke algebra of type C is presented by generators

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{aligned}
$$

and

$$
\begin{gathered}
t_{0} w_{1}=-w_{1} t_{0}+c \frac{2}{a+p}\left(w_{1}^{2}\left(\frac{(a+p)^{2}-(b+q)^{2}}{4}\right)\right) \\
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
\end{gathered}
$$

The graded Hecke algebra of type C is presented by generators

$$
t_{0}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{aligned}
& t_{i}^{2}=1, \quad t_{i} t_{j}=t_{j} t_{i} \text { for }|i-j|>, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \\
& t_{0}^{2}=1, \quad t_{0} t_{1} t_{0} t_{1}=t_{1} t_{0} t_{1} t_{0}+\frac{2}{(a+p)}\left(t_{1} t_{0}-t_{0} t_{1}\right) \\
& t_{s_{i}} w_{i}=w_{i+1} t_{s_{i}}-1, \quad t_{s_{i}} w_{j}=w_{j} t_{s_{i}}, \quad \text { for } j \neq i, i+1, \\
& t_{0} w_{i}=w_{i} t_{0} \quad \text { and } \quad t_{0} t_{i}=t_{i} t_{0}, \quad \text { for } i \geq 2, \\
& w_{i} w_{j}=w_{j} w_{i}, \quad \text { for } i, j=0, \ldots, k,
\end{aligned}
$$

and

$$
\begin{gathered}
t_{0} w_{1}=-w_{1} t_{0}+c \frac{2}{a+p}\left(w_{1}^{2}+\left((a+p)^{2}-(b+q)^{2}\right.\right. \\
\in \mathcal{Z}\left(\mathcal{H}_{1}\right) \\
\text { where } t_{0}=\frac{1}{a+p}\left(2 x_{1}-(a-p)\right)
\end{gathered}
$$

An eight-dimensional \mathcal{H}_{2}-module:

An eight-dimensional \mathcal{H}_{2}-module:

$1 \quad(A, B)$

An eight-dimensional \mathcal{H}_{2}-module:

$\begin{array}{cc}1 & (A, B) \\ s_{0} & (-A, B)\end{array}$

An eight-dimensional \mathcal{H}_{2}-module:

Up next for $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

(1) When $\mathfrak{g}=\mathfrak{s l}_{n}$ or $\mathfrak{g l}_{n}$, and M and N are rectangular, we get the degenerate (extended) two-boundary Hecke algebra.
(1) Quantized versions yield two-boundary Hecke algebras.
(2) What is a good basis? What is the center? How does the center act?
(3) Develop the combinatorics: cool dimension formulas? familiar tableaux games?
(4) What exactly is the correspondence to type C?
(2) When $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, and M and N are rectangular, study the the (degenerate and nondegenerate) two-boundary BMW algebras.

References

[OR] R. Orellana and A. Ram, Affine braids, Markov traces and the category \mathcal{O}, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces Mumbai 2004, V.B. Mehta ed., Tata Institute of Fundamental Research, Narosa Publishing House, Amer. Math. Soc. (2007) 423-473.
[GN] J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009) 11321167.

In preparation:
[Dau] Z. Daugherty, Degenerate two-boundary centralizer algebras
[DRV] Z. Daugherty, A. Ram, R. Virk, Affine and graded BMW algebras

