Degenerate two-boundary centralizer algebras

Zajj Daugherty
University of Wisconsin, Madison

January 22, 2010

Background

Let \mathfrak{g} be a finite dimensional complex reductive Lie algebra. e.g. $\mathfrak{g l}_{n}(\mathbb{C}), \mathfrak{s l}_{n}(\mathbb{C}), \mathfrak{s o}_{n}(\mathbb{C}), \mathfrak{s p}_{2 n}(\mathbb{C})$.

Let M, N, and V be finite dimensional simple \mathfrak{g}-modules.

Goal:
Understand $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$.
(the set of endomorphisms which commute with the action of \mathfrak{g})

Examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Fix $k<n$ integers.
Let $L(\lambda)$ be the f.d. irreducible \mathfrak{g}-module of highest weight λ.
Let $V=L\left(\omega_{1}\right)$.
(1) If $\mathfrak{g}=\mathfrak{s l}_{n}$ and

- $M=N=L(0)$, this gives $\mathbb{C} S_{k}$;
- $M=L(0)$ and $N=L(\lambda)$, this gives is a quotient of the graded Hecke algebra of type A;
(2) If $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$ and
- $M=N=L(0)$, this gives the Brauer algebra;
- $M=L(0)$ and $N=L(\lambda)$, this gives a quotient of the degenerate affine Wenzl algebra.

Quantized versions yield standard and affine type A Hecke and Birman-Murakami-Wenzl algebras.

Big question:

Is there an algebra which has centralizers $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$ as quotients?

Definition

The degenerate two-boundary braid group \mathcal{G}_{k} is the \mathbb{C}-algebra generated by

$$
\left.\begin{array}{c}
\mathbb{C} S_{k}=\mathbb{C}\left\langle t_{i}\right| \begin{array}{c}
i=1, \ldots k \\
t_{i}^{2}=1 \\
t_{i} t_{j}=t_{j} t_{i} \\
t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1}
\end{array}|i-j|>1
\end{array}\right\rangle
$$

and relations twisting the four factors together...
\mathcal{G}_{k} contains three images of the graded braid group:
$\frac{\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] \otimes \mathbb{C} S_{k}}{\sim} \cong \frac{\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes \mathbb{C} S_{k}}{\sim} \cong \frac{\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \otimes \mathbb{C} S_{k}}{\sim}$
and

$$
z_{i}=x_{i}+y_{i}-\text { lower terms },
$$

Representations of \mathcal{G}_{k}

We'll define an action of \mathcal{G}_{k} on $M \otimes N \otimes V^{\otimes k}$: $\mathbb{C} S_{k} \quad$ permutes factors of $V^{\otimes k}$,

$$
\begin{aligned}
\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] & \text { acts on } M \text { and } V^{\otimes k}, \\
\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] & \text { acts on } N \text { and } V^{\otimes k}, \\
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] & \text { acts on } M \otimes N \text { together and } V^{\otimes k,} \\
z_{0} & \text { acts on } M \otimes N \text { alone, }
\end{aligned}
$$

by nested central elements of $\mathcal{U g}$.

Let $\langle\rangle:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathbb{C}$ be the trace form: $\langle x, y\rangle=\operatorname{Tr}(x y), \quad$ where x and y are viewed in a defining rep of \mathfrak{g}.

Let $\{b\}$ be a basis of \mathfrak{g} and $\left\{b^{*}\right\}$ the dual basis wrt \langle,$\rangle .$
Let $\kappa=\sum_{b} b b^{*}$.
κ is the Casimir invariant and is central in $\mathcal{U g}$.

Theorem (D.)
Define $\Phi: \mathcal{G}_{k} \rightarrow \operatorname{End}\left(M \otimes N \otimes V^{\otimes k}\right)$

$$
\begin{aligned}
\Phi\left(t_{j}\right) & =\mathrm{id}_{M} \otimes \mathrm{id}_{N} \otimes \mathrm{id}_{V}^{\otimes(j-1)} \otimes t_{1} \otimes \mathrm{id}_{V}^{\otimes(k-j-1)} \\
\Phi\left(x_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes V^{\otimes j}}-\left.\kappa\right|_{M \otimes V \otimes j-1}\right) \\
\Phi\left(y_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{N \otimes V^{\otimes} \otimes j}-\left.\kappa\right|_{N \otimes V \otimes j-1}\right) \\
\Phi\left(z_{j}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes N \otimes V \otimes j}-\left.\kappa\right|_{M \otimes N \otimes V \otimes j-1}+\left.\kappa\right|_{V}\right) \\
\Phi\left(z_{0}\right) & =\frac{1}{2}\left(\left.\kappa\right|_{M \otimes N}-\left.\kappa\right|_{M}-\left.\kappa\right|_{N}\right)
\end{aligned}
$$

where $t_{1} \cdot\left(v_{i_{1}} \otimes v_{i_{2}}\right)=v_{i_{2}} \otimes v_{i_{1}}$.
Then Φ is a representation of \mathcal{G}_{k} which commutes with the action of \mathfrak{g}.

An Example:

Is there an algebra which has centralizers
$\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$ as quotients
when \mathfrak{g} is of type A ?

Definition

Fix $a, b, p, q \in \mathbb{Z}_{>0}$.
The degenerate extended two-boundary Hecke algebra $\mathcal{H}_{k}^{\text {ext }}$ is the quotient of the degenerate two-boundary braid group by the relations

$$
\begin{aligned}
t_{i} x_{i} & =x_{i+1} t_{i}-1, \\
t_{i} y_{i} & =y_{i+1} t_{i}-1, \quad i=1, \ldots, k-1 \\
t_{i} z_{i} & =z_{i+1} t_{i}-1 \\
\left(x_{1}-a\right) & \left(x_{1}+p\right)=0 \quad\left(y_{1}-b\right)\left(y_{1}+q\right)=0 .
\end{aligned}
$$

The degenerate two-boundary Hecke algebra \mathcal{H}_{k} is the subalgebra of $\mathcal{H}_{k}^{\text {ext }}$ generated by

$$
x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}, t_{1}, \ldots, t_{k-1}
$$

(everything but $z_{0} \ldots$ we'll come back to this.)

A partition is a collections of boxes:

$$
\lambda=\begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

If a box B is in row i and column j, then the content of B is

$$
c(B)=j-i .
$$

If $\lambda=\left(a^{p}\right)$ is rectangular, there are exactly two "addable" boxes:

$$
\left(a^{p}\right)=\mathrm{p} \underset{\begin{array}{|l|l}
\hline-\mathrm{a} \\
\hline-\mathrm{p} & \mathrm{a} \\
\hline
\end{array}}{\substack{\mathrm{a} \\
\hline}}
$$

(recall relations $\left(x_{1}-a\right)\left(x_{1}+p\right)=0$ and $\left.\left(y_{1}-b\right)\left(y_{1}+q\right)=0\right)$

Theorem (D.)

Fix $k<n$ non-neg. integers.
Let $\mathfrak{g}=\mathfrak{g l}_{n}, M=L\left(\left(a^{p}\right)\right), N=L\left(\left(b^{q}\right)\right)$, and $V=L\left(\left(1^{1}\right)\right)$.
(1) Φ is a rep. of $\mathcal{H}_{k}^{\text {ext }}$ which commutes with the \mathfrak{g}-action, so

$$
\Phi\left(\mathcal{H}_{k}^{\mathrm{ext}}\right) \subseteq \operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

(2) For small cases,

$$
\Phi\left(\mathcal{H}_{k}^{\mathrm{ext}}\right)=\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)
$$

Remark
(1) When Φ is not surjective, the image differs by a portion of the action of the center of $\mathcal{U g}$ on $M \otimes N$.
(2) Same results for $\mathfrak{g}=\mathfrak{s l}_{n}$ and a shift of Φ.

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:. . .

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:. . .
(Okata)

Let $M=L\left(\left(a^{p}\right)\right)$ and $N=L\left(\left(b^{q}\right)\right)$. Then

$$
M \otimes N=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions:. . .

A two-dimensional $\mathcal{H}_{1}^{\text {ext }}$-module:

$$
\begin{aligned}
& z_{0}=\left(\begin{array}{cc}
4 a & 0 \\
0 & 3 a-p
\end{array}\right) \\
& z_{1}=\left(\begin{array}{cc}
-p & 0 \\
0 & a
\end{array}\right) \\
& x_{1} \sim\left(\begin{array}{cc}
-p & 0 \\
0 & a
\end{array}\right) \\
& y_{1} \sim\left(\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

(formulas $x_{1}, y_{1}, z_{1}, z_{0}$ all given in terms of contents of added boxes)

An eight-dimensional \mathcal{H}_{2}-module:

where $c_{3}=-c_{1}+(a-p+b-q)$ and $c_{4}=-c_{2}+(a-p+b-q)$

An eight-dimensional \mathcal{H}_{2}-module:

Shift! Label edges by action of $z_{1}-\frac{1}{2}(a-p+b-q)$ and $\left.z_{2}-\frac{1}{2}(a-p+b-q)\right)$

Let $w_{i}=z_{i}-\frac{1}{2}(a-p+b-q)$.
\mathcal{H}_{k} is presented by generators

$$
x_{1}, t_{1}, \ldots, t_{k-1}, w_{1}, \ldots, w_{k}
$$

and relations

$$
\begin{gathered}
t_{i} w_{i}=w_{i+1} t_{i}-1, \quad i=1, \ldots, k-1, \\
x_{1} w_{1}=-w_{1} x_{1}+(a-p) w_{1}+w_{1}^{2}+\frac{1}{4}(a+p+b+q)(a+p-(b+q)), \\
x_{1} w_{1}=-w_{1} x_{1}+(a-p) w_{1}+\underbrace{w_{1}^{2}+\frac{1}{4}(a+p+b+q)(a+p-(b+q))}_{\text {central in } \mathcal{H}_{1}},
\end{gathered}
$$

The type C graded Hecke algebra is presented by generators

$$
x_{1}, t_{1}, \ldots, t_{k-1}, \varepsilon_{1}, \ldots, \varepsilon_{k}
$$

and relations

$$
\begin{gathered}
\cdots(\text { similar }) \cdots \\
t_{i} \varepsilon_{i}=\varepsilon_{i+1} t_{i}+c, \quad i=1, \ldots, k-1 \\
x_{1} \varepsilon_{1}=-\varepsilon_{1} x_{1}+(a-p) \varepsilon_{1}+\frac{1}{2} c(a-p)
\end{gathered}
$$

Punchline: In the quantized versions, the two-boundary Hecke algebra appears to be isomorphic to the type C affine Hecke algebra. Similarities are appearing suggestivelv in degenerate versions, where some computations are easier.

More examples of $\operatorname{End}_{\mathfrak{g}}\left(M \otimes N \otimes V^{\otimes k}\right)$

Fix $k<n$ integers.
Let $L(\lambda)$ be the f.d. irreducible \mathfrak{g}-module of highest weight λ.
Let $V=L\left(\omega_{1}\right)$.
(1) When $\mathfrak{g}=\mathfrak{s l}_{n}$ or $\mathfrak{g l}_{n}$, and M and N are rectangular, we get the degenerate (extended) two-boundary Hecke algebra. (explored in thesis)
(2) When $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{2 n}$, and M and N are rectangular, we get the degenerate two-boundary Brauer algebra. (future work)
Quantized versions should yield two-boundary Hecke and BMW algebras.

Two-boundary centralizer algebras are yielding familiar objects.

References

[OR] R. Orellana and A. Ram, Affine braids, Markov traces and the category \mathcal{O}, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces Mumbai 2004, V.B. Mehta ed., Tata Institute of Fundamental Research, Narosa Publishing House, Amer. Math. Soc. (2007) 423-473.
[GN] J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009) 11321167.

In preparation:
[Dau] Z. Daugherty, Degenerate two-boundary centralizer algebras
[DRV] Z. Daugherty, A. Ram, R. Virk, Affine and graded BMW algebras

find me at...

http://www.math.wisc.edu/~daughert/

