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Abstract

Diagram algebras (e.g. graded braid groups, Hecke algebras, Brauer algebras) arise as
tensor power centralizer algebras, algebras of commuting operators for a Lie algebra
action on a tensor space. This work explores centralizers of the action of a complex
reductive Lie algebra g on tensor space of the form M ⊗ N ⊗ V ⊗k. We define the
degenerate two-boundary braid group Gk and show that centralizer algebras contain
quotients of this algebra in a general setting. As an example, we study in detail the
combinatorics of special cases corresponding to Lie algebras gln and sln and modules
M and N indexed by rectangular partitions. For this setting, we define the degenerate
two-boundary Hecke algebra Hext

k as a quotient of Gk, and show that a quotient of Hext
k is

isomorphic to a large subalgebra of the centralizer. We further study the representation
theory of Hext

k to find that the seminormal representations are indexed by a known
family of partitions. The bases for the resulting modules are given by paths in a lattice
of partitions, and the action of Hext

k is given by combinatorial formulas.
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Chapter 1

Introduction

This work is in the construction and study of algebras that are very similar in nature to
the group algebra of the symmetric group. Early work of Frobenius laid the groundwork
for studying groups using character theory. He specifically outlined the rich and beautiful
structure of the character theory of symmetric group through the use of combinatorial
tools. Schur’s thesis then provided the link between the combinatorics developed for the
symmetric group Sk and similar phenomena appearing in the character theory of the
general linear group GLn(C). He brought these two groups together using the insight
that the action of GLn(C) on tensor space (Cn)⊗k centralizes the action of Sk, and that
this relationship could be used to produce irreducible modules. This phenomenon is now
known as Schur-Weyl duality—the general statement is that if A is the full centralizer
of the action of a semisimple algebra B on a B-module M , then M decomposes into
direct irreducible summands

M ∼=
⊕
λ

Aλ ⊗Bλ

as an (A,B)-bimodule, where Aλ and Bλ are distinct irreducible modules for A and B,
respectively. This means that the representation theory of A is “determined” by the
representation theory of B, and vice versa.

The centralizer property stimulated many advances in the development of tensor
power centralizer algebras, algebras of operators which preserve symmetries in a tensor
space. Striking examples include:

1. the Brauer algebras in [Br] centralize the action of symplectic and orthogonal
groups on tensor space (Cn)⊗k ;

2. the graded Hecke algebra of type A centralizes the action of sln on L(λ)⊗ (Cn)⊗k,
where L(λ) is the irreducible sln module indexed by a partition λ (see [AS]);

3. the degenerate affine Wenzl algebra in [Naz] centralizes the action of symplectic
and orthogonal groups on L(λ)⊗ (Cn)⊗k.

The paper of Orellana and Ram [OR] provides a unified approach to studying ten-
sor power centralizer algebras, including the affine and cyclotomic Hecke and Birman-
Murakami-Wenzl algebras.

Recent work in the study of loop models and spin chains in statistical mechanics un-
covered yet another potential use of Schur-Weyl duality in [GN]. Specifically, a connec-
tion was discovered between the two-boundary Temperley-Lieb algebra and a quotient
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of the affine Hecke algebra of type C. Since the Temperley-Lieb algebra is the centralizer
of the quantum group Uqsl2 on tensor space M ⊗ N ⊗ (C2)⊗k, where M and N are
simple Uqsl2-modules, this connection opened the community’s eyes to the possibility of
constructing affine Hecke algebra type C modules explicitly using Schur-Weyl duality
tools.

In Section 3, we begin the study of the centralizer of g on M ⊗N ⊗V ⊗k, where g is a
finite dimensional complex reductive Lie algebra and M , N , and V are finite dimensional
irreducible g-modules. The new definition is that of the degenerate two-boundary braid
group Gk, an associative algebra over the complex numbers. The structure of Gk is

C[z0, z1, . . . , zk]⊗ C[y1, . . . , yk]⊗ C[x1, . . . , xk]⊗ CSk,

with relations twisting the polynomial rings and the symmetric group together. The
first main theorem, Theorem 3.3, is that Gk acts on M ⊗N ⊗ V ⊗k and that this action
commutes with the action of g. In many examples, this action will produce a large
subalgebra of Endg(M ⊗N ⊗ V ⊗k).

In Section 4, we consider the cases where g = sln or gln, M = L((ap)) (the finite
dimensional irreducible g-module indexed by the rectangular partition with p parts of
length a), N = ((bq)), and V is the first fundamental representation. In this case, we
identify a large subalgebra of the centralizer as a quotient of Gk. Theorem 4.6 states
that the representations given in Theorem 3.3 and Corollary 3.5 factor through this
quotient. We call this the extended degenerate two-boundary Hecke algebra Hext

k , as it is
a generalization of the graded Hecke algebra of type A and is related to the two-boundary
Hecke algebra.

We further study the representation theory of Hext
k in Sections 4.2 and 4.3, and find

that the seminormal representations are indexed by partitions which index g-submodules
of M⊗N⊗V ⊗k. Using the combinatorics of Young tableaux, we describe these represen-
tations explicitly in Section 4.2 and Theorem 4.15. The basis for the resulting modules
are given by paths in a lattice of partitions, and the action of Hext

k is given in terms of
contents of boxes in those partitions.

One subalgebra of Hext
k , the degenerate two-boundary Hecke algebra Hk, is of par-

ticular interest as it is strikingly similar to the graded Hecke algebra of type C. This
observation opens a new door to studying representations of type C Hecke algebras using
Schur-Weyl duality techniques.
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Chapter 2

Preliminaries

2.1 Structure

Good sources for the background provided here on Lie algebras include [GW], [Hum]
and [Ser].

Let g be a finite dimensional complex semisimple Lie algebra. Let h be a Cartan
subalgebra of g. A weight is an element of h∗ = Hom(h,C), the dual space of h. If M is
a g-module and µ ∈ h∗, the µ-weight space of M is

Mµ = {m ∈M | hm = µ(h)m, for all h ∈ h}. (2.1)

Furthermore, if M is finite dimensional, then M decomposes into weight spaces as M =⊕
µ∈h∗Mµ.
The vector space g is a g-module under the adjoint action:

adx : g→ g given by adx(y) = [x, y].

Under the adjoint action, g0 = {x ∈ g | [h, x] = 0 for all h ∈ g} = h, and g decomposes
as

g = h⊕

(⊕
α∈R

gα

)
, gα = {x ∈ g | [h, x] = α(h)x for all h ∈ g},

where R = {α ∈ h∗ | α 6= 0, gα 6= 0} is the set of roots.
The set R is the root system of g, whose structure is explored in depth in [Hum,

Ch. 8-10] and [Ser, Ch. 5]. In particular, the roots of g span h∗, and we choose a basis
{α1, . . . , αn} ⊆ R for h∗, called the set of simple roots (see [Hum, Ch.10, §1], [Ser, Ch.5,
§8]). This basis is chosen to have the property that it generates R by integral linear
combinations which have either all non-negative or all non-positive coefficients. Let R+

be the set of positive roots, the roots which are non-negative combinations of the simple
roots, and let R− = {−α | α ∈ R+} be the set of negative roots, so R = R+ ∪R−. This
fixes the triangular decomposition

g = n− ⊕ h⊕ n+, where n+ =
⊕
α∈R+

gα and n− =
⊕
α∈R−

gα. (2.2)

The highest weight module L(λ) is a g-module generated by a nonzero highest weight
vector v+

λ of weight λ, i.e.

hv+
λ = λ(h)v+

λ and xv+
λ = 0 for x ∈ n+, h ∈ h.
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The Killing form is the symmetric bilinear form K(, ) : g× g→ C defined by

K(x, y) = Tr(adxady).

The properties of this form are explored in [Hum, Ch. 5]. A trace form is the symmetric
bilinear form 〈, 〉 : g× g→ C associated to an injective representation φ of g, defined by

〈x, y〉 = Tr(φ(x)φ(y)),

When g is simple, it follows from Schur’s lemma that the trace form differs from the
Killing form by a constant. For the purposes of this exposition, we concentrate primarily
on types gln and sln and define φ explicitly in Section 2.2, and

K(x, y) = 2n〈x, y〉 when g = sln.

However, if g = gln, K(, ) is degenerate on the center but 〈, 〉 may be nondegenerate. In
fact, for the choice of φ in Section 2.2, 〈, 〉 is nondegenerate on g and h. The trace form,
like K(, ), is also ad-invariant, meaning that 〈[x, y], z〉 = −〈y, [x, z]〉 for x, y, z ∈ g.

As a result of these properties of the trace form, the map

h −→ h∗

h 7→ 〈h, ·〉
hµ 7→ µ

is an isomorphism, (2.3)

where hµ is the unique element of h such that

〈hµ, h〉 = µ(h) for all h ∈ h. (2.4)

Extending notation, we define a form 〈, 〉 : h∗ ⊗ h∗ → C by

〈λ, µ〉 = 〈hλ, hµ〉. (2.5)

Then 〈, 〉 : h∗ ⊗ h∗ → C is also symmetric, bilinear, and nondegenerate on h∗, and

〈λ, µ〉 = µ(hλ) = λ(hµ). (2.6)

2.2 Type A Lie algebras and their weights

All finite dimensional simple Lie algebras over C are either members of the four infinite
families {An | n ≥ 1}, {Bn | n ≥ 3}, {Cn | n ≥ 2}, {Dn | n ≥ 4} (the classical
Lie algebras), or are one of the five exceptional Lie algebras G2, F4, E6, E7, and E8.
A semisimple Lie algebra is a direct sum of simple Lie algebras, and a reductive Lie
algebra is the sum of a semisimple Lie algebra and an abelian Lie algebra. In this work,
we concentrate predominantly on the Lie algebras sln and gln. While type A strictly
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refers to the family sln, gln exhibits a similar combinatorial structure, and so we study
both in tandem.

Let V = Cn+1 with orthonormal basis {v1, . . . , vn+1}. Let Eij ∈ End(V ) be defined
by

Eijvk = δjkvi,

where δjk is the Kronecker delta. We view each of the following Lie algebras as a Lie-
subalgebra of the Lie algebra End(V ) of all (n+ 1)× (n+ 1) matrices, with commutator
product [x, y] = xy − yx.

The general linear algebra is gln+1
∼= gl(V ) = End(V ). It has basis

{bij, hi | 1 ≤ i 6= j ≤ n+ 1}, where bij = Eij and hi = Eii.

The dual basis with respect to 〈, 〉 is given by

b∗ij = bji and h∗i = hi.

The triangular decomposition is given by h = spanC{hi | 1 ≤ i ≤ n}, n+ =
spanC{bij | 1 ≤ i < j ≤ n}, and n− = spanC{b∗ij | bij ∈ n+}.

Next, An is the special linear algebra sln+1
∼= sl(V ) = {x ∈ End(V ) | tr(x) = 0}. It

has basis

{bij, hk | 1 ≤ i 6= j ≤ n+1, 1 ≤ k ≤ n}, where bij = Eij and hk = Ekk−Ek+1 k+1,

with dual basis with respect to 〈, 〉 given by

b∗ij = bji and h∗k = E11 + · · ·+ Ekk −
k

n+ 1
(E11 + · · ·+ En+1 n+1) .

The triangular decomposition is given by h = spanC{hi | 1 ≤ i ≤ n}, n+ = spanC{bij | 1 ≤
i < j ≤ n+ 1}, and n− = spanC{b∗ij | bij ∈ n+}.

The center of gln+1 is the span of
∑n+1

i=1 hi, and therefore gln+1 is not semisimple.
However,

gln+1
∼= sln+1 ⊕ C,

so gln+1 is reductive.
Now, we calculate the difference between K(, ) and 〈, 〉 on sln+1. Since sln+1 is simple,

we need only calculate the difference in one case; we consider the element h1 = E11−E22.
First,

〈h1, h1〉 = tr(E2
11 + E2

22) = 2.

Next,

adh1(Eij) =



0 if i = j or i, j 6= 1, 2,

2E12 if i = 1, j = 2,

−2E21 if i = 2, j = 1,

Eij if i = 1 and j 6= 1, 2 or j = 2 and i 6= 1, 2,

− Eij if i = 2 and j 6= 1, 2 or j = 1 and i 6= 1, 2.
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So
K(h1, h1) = 4 + 4 + 2(n− 1) + 2(n− 1) = 4n+ 4 = 4(n+ 1)〈h1, h1〉.

Thus K(x, y) = 2(n+ 1)〈x, y〉.

2.2.1 The weights of sln

Let ε1, . . . , εn be an orthonormal basis of the vector space Rn. Then

h∗ ∼= { a1ε1 + · · ·+ anεn | ai ∈ R, a1 + · · ·+ an = 0 },

where εi is identified with the weight

εi(hj) = δi,j − δi,j+1.

The roots for the classical Lie algebras can be expressed in terms of the εi. For sln,

R = {±(εi − εj) | 1 ≤ i < j ≤ n}

The roots span h∗, and we choose as a basis the set {αi}n−1
i=1 of simple roots,

αi = εi − εi+1, for i = 1, 2, . . . , n− 1.

Then the positive roots (those roots arising from nonnegative integral linear combina-
tions of the simple roots) are

R+ = {εi − εj | 1 ≤ i < j ≤ n}.

The finite dimensional irreducible g-modules are indexed by the set of dominant integral
weights, denoted P+ ⊆ h∗. The fundamental weights ωi ∈ h∗ form a Z≥0 basis for P+,
i.e.

P+ =
n−1∑
i=1

Z≥0ωi = {λ1ω1 + · · ·+ λn−1ωn−1 | λi ∈ Z≥0}.

The fundamental weights have the property that

〈ωi, αj〉 = δi,j, i.e. ωi(hαj) = δi.j,

so are given by

ωi = ε1 + · · ·+ εi −
i

n
(ε1 + · · ·+ εn) 1 ≤ i ≤ n− 1.

Thus the dominant integral weights are given by

λ = λ1ε1 + · · ·+ λn−1εn−1 −
|λ|
n

(ε1 + · · ·+ εn), where
λi ∈ Z,

λ1 ≥ · · · ≥ λn−1 ≥ 0,
|λ| = λ1 + · · ·+ λn−1.

Finally, let

ρ =
1

2

∑
α∈R+

α =
n−1∑
j=1

ωj =
1

2

n∑
i=1

(n+ 1− 2i)εi. (2.7)
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2.2.2 The weights of gln

Let ε1, . . . , εn be an orthonormal basis of the vector space Rn. Then

h∗ ∼= Rn,

where εi is identified with the weight

εi(hj) = δi,j.

We no longer choose a root system which spans h∗, but instead inherit the structure
from the simple part of gln, i.e. just as with sln, write

R = {±(εi − εj) | 1 ≤ i < j ≤ n},

We choose as the basis the set of simple roots

αi = εi − εi+1, 1 ≤ i ≤ n− 1.

Then the positive roots are

R+ = {εi − εj | 1 ≤ i < j ≤ n}.

The finite dimensional irreducible gln-modules are indexed by elements of

P+ = Zωn +
n−1∑
i=1

Z≥0ωi, where ωi = ε1 + · · ·+ εi for 1 ≤ i ≤ n.

So the dominant integral weights for gln are given by

λ = λ1ε1 + · · ·+ λnεn, where λi ∈ Z, λ1 ≥ · · · ≥ λn.

The choice of ρ is no longer unique. To serve as the analogous weight, define

δ = (n− 1)ε1 + (n− 2)ε2 + · · ·+ εn−1 =
n∑
i=1

(n− i)εi. (2.8)

This choice matches [Mac, I,1].

2.3 Partitions and highest weight modules

In this section, we explore the combinatorial properties of modules for g either a finite
dimensional complex simple Lie algebra or gln. Though we concentrate on the specific
cases where g = gln or sln, many analagous results hold for other simple Lie algebras.
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Definition 2.1. For a positive integer k, a k-multisegment, or simply a multisegment,
λ, is a sequence of pairs

λ = {(µ1, λ1), . . . , (µ`, λ`)}
where λi ∈ Z>0, µi ∈ C, and

∑
i λi = k. We call ` = ht(λ) the height of λ. Pictori-

ally, a (real-valued) multisegment can be represented by rows of boxes of length λi with
displacement µi. For example,

{(4.5, 2), (−2.3, 5), (0, 4)} =

0

is an 11-multisegment. A partition is a multisegment with µ1 = · · · = µ` = 0. A skew
shape λ/µ is a multisegment {(µ1, ν1), . . . , (µ`, ν`)} for which µi ∈ Z≥0 and µi + νi ≥
µi+1 + νi+1 for each 1 ≤ i ≤ `. Each skew shape is a partition λ = (µ1 + ν1, . . . , µ` + ν`)
with the partition µ = (µ1, . . . , µ`′), `′ ≤ `, removed.

For g = sln, identify each dominant integral weight λ with the partition with λi
boxes in row i. For example, if λ = 3ε1 + 2ε2 + 2ε3 − 7

n
(ε1 + · · · + εn), the associated

partition is

λ =

For g = gln, associate to weight λ1ε1 + · · · + λnεn an infinite multisegment. This
multisegment has n rows extending to the left infinitely and ending in column λi. So,
for example, if λ = 3ε1 + 2ε2 + 2ε3 − ε4,

λ =

0
· · ·
· · ·
· · ·
· · ·
· · ·

If λi ≥ 0 for all 1 ≤ i ≤ n, we often represent this multisegment as a partition, leaving
off boxes to the left of 0.

Remark 2.2. When we refer to changing a weight by adding or removing a box in row
i, this specifically means changing λi by ±1.

If B is the box in row i and column j of λ, the content of B is

c(B) = j − i. (2.9)

For example, if we fill in the boxes in the above λ with their respective contents, we get

0
· · ·
· · ·
· · ·
· · ·
· · ·

-2
-1
0-1

-2
-3

-2
-3
-4
-5

-1
0
1 2

.
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Let g = gln or sln and let L(λ) be the finite dimensional irreducible highest-weight
g-module of weight λ, where λ ∈ P+, i.e. the irreducible g-module generated by highest
weight vector v+

λ of weight λ with action

hv+
λ = λ(h)v+

λ and xv+
λ = 0, for h ∈ h, x ∈ n+.

If g is reductive, every finite dimensional g-module M decomposes as the direct sum of
simple modules:

M =
⊕
λ∈P+

cλL(λ).

For example, if g = sln and µ ∈ P+,

L(µ)⊗ L(ω1) =
⊕
λ∈µ+

L(λ), (2.10)

where

µ+ =

{
partitions of height ≤ n− 1

obtained by adding a box to µ

}
.

In general, the decomposition numbers for the tensor product of two highest weight
modules can be calculated using the Littlewood-Richardson rule (Theorem 2.4).

Definition 2.3. Let µ, ν, λ be partitions such that µ, ν ⊂ λ, and suppose ht(ν) = `.
A tableau T of shape λ/µ of weight ν is a filling of the boxes of λ which are not in µ
with ν1 1’s, ν2 2’s, . . . , ν` `’s, such that the row fillings are weakly increasing left to
right and the column fillings are strictly increasing top to bottom. We can derive a word
w(T ) = a1a2 · · · aN , where N = |λ| − |µ|, by reading off the numbers in T right to left,
top to bottom. For example, if

λ = , µ = , ν = ,

then one tableau is

T =
1 1 1 2

2 3
1 3

,

and this tableau has word w(T ) = 2 1 1 1 3 2 3 1.
A word w = a1a2 · · · aN is a lattice permutation if for each 1 ≤ r ≤ N and 2 ≤ i ≤ `,

there are no more occurrences of i than of i− 1 in a1a2 . . . ar. So 2 1 1 1 3 2 3 1 is not
a lattice permutation, but 1 2 1 1 3 2 3 1 is. In the above example, the only tableau of
shape λ/µ and weight ν which also generates a lattice permutation is the one generating
the word 1 1 1 1 2 2 3 3.



10

Theorem 2.4 (Littlewood-Richardson rule, [Mac, I,1] ). Let g = sln+1 or gln.

L(µ)⊗ L(ν) =
∑

µ, ν ⊂ λ
|λ| = |µ|+ |ν|

ht(λ) ≤ n

cλµ,νL(λ)

where cλµν is the number of tableaux of shape λ/µ and weight ν which generate lattice
permutations.

For example,

L

( )
⊗ L

( )
=

0 · L

( )
+ 1 · L

( )
+ 1 · L

( )
+ 1 · L

( )
+ 2 · L

( )
+ 1 · L

( )
+ 1 · L

( )
+ 1 · L

( )
+ 0 · L

( )
The interesting factor here is 2 · L

( )
, which comes from fillings

2
1

1
and

1
2

1
.

If a and b are positive integers, let (ab) be the partition with b rows of length a.

Example 2.5 (Horizontal strips). If ν = (a), a ∈ Z>0, then each cλµν is at most 1, since
there is only one way to fill in all boxes with 1’s. Moreover, since columns must be filled
with strictly increasing values, λ/µ must be a horizonal strip (a skew shape where every
column has at most one box).

Example 2.6 (Vertical strips). Similarly, if ν = (1a), then each cλµν is at most 1, and
is nonzero exactly when λ/µ is a length-a vertical strip (a skew shape where every row
has at most one box).

Example 2.7 (Rectangles). (See [St, Lem. 3.3], [Ok, Thm 2.4]) Let p ≥ q and a, b be
non-negative integers. Then each cλ(ap)(bq) is 1 if λ ∈ P((ap), (bq)), and is zero otherwise,

where P((ap), (bq)) is the set of partitions λ with height ≤ p+ q such that

λq+1 = λq+2 = · · · = λp = a,
λq ≥ max(a, b),

λi + λp+q−i+1 = a+ b, i = 1, . . . , q.
(2.11)
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In other words, P((ap), (bq)) is the set of partitions made by placing (ap) to the left of
(bq), carving a corner out of (bq), rotating it 180◦ and gluing it to the bottom of (ap).
For example,

× = + +

+ + +

A useful visualization of these partitions is as follows. The outlined section is filled
with boxes, and the dashed regions are filled with complementary partitions.

µ′

µ

a b

p q

q

b

a > b :

µ is a partition in a b× q box
µ′ is the 180◦ rotation of (bq)/µ

µ′

µ

b a

p q

q

a

a < b :

µ is a partition in an a× q box
µ′ is the 180◦ rotation of (aq)/µ

Remark 2.8. As a consequence of the requirements in (2.17), if a box in λ ∈ P((ab), (pq))
is moved from position (i, j) to form another partition in P((ap), (bq)), it must be moved
to position (a+ b+ 1− i, p+ q + 1− j).

2.3.1 Orders on sets of partitions

Finally, we briefly introduce several orders on the set of partitions of n.

Definition 2.9 ([Mac, §I.1] ). Fix n ∈ Z>0. Lexicographical order is a linear ordering
on the set of partitions of n given by

λ > µ if λi ≥ µi for all i and λ 6= µ.

Dominance order (or natural order) is a partial ordering on the set of partitions of n
given by

λ > µ if

j∑
i=1

λi ≥
j∑
i=1

µi for all j and λ 6= µ.
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For example, if n = 4,

> > > >

in both lexicographical and dominance order. Dominance ordering of two partitions
implies lexicographical ordering, and the two orders are equivalent if and only if n ≤ 5.

Finally, we return to the set of partitions described in Example 2.7, and provide a
third partial order, this time only on the set of partitions P((ap), (bq)). Observe that
any partition in P((ap), (bq)) can be built iteratively by beginning with the partition

(ap) + (bq) = (a+ b, . . . , a+ b︸ ︷︷ ︸
q

, a, . . . , a︸ ︷︷ ︸
p−q

)

and moving successive boxes down (by Remark 2.8, this process is well-defined). For
example, see Figure 2.10.

Figure 2.10.

&&NNNNNNNNNNN

//

88qqqqqqqqqq

$$JJJJJJJJJJJJ
//

99tttttttttttt

Nodes in this lattice represent partitions in P((32), (22)), and arrows represent moving
one box to build the rightmost partition from the leftmost.

This process produces a partial order on partitions in P((ap), (bq)), with the highest
element in P((ap), (bq)) being (ap) + (bq), and λ > µ when µ can be built from λ by
moving successive boxes down. If two partitions are comparable with respect to this
partial order, then their ordering will agree with dominance ordering, and therefore
lexicographical ordering. However, this partial order is not the same as dominance order
restricted to P((ap), (bq)). For example, the two incomparable partitions in Figure 2.10
are comparable in dominance ordering since

5 ≥ 4, 5 + 3 ≥ 4 + 4, 5 + 3 + 2 ≥ 4 + 4 + 1, and 5 + 3 + 2 + 0 ≥ 4 + 4 + 1 + 1.
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2.4 The Casimir element and the operator γ

If g is semisimple or g = gln, the Casimir element of g is

κ =
∑
i

bib
∗
i ,

where if {bi} is a basis for g, then {b∗i } is the dual basis to {bi} with respect to the trace
form, i.e. 〈b∗i , bj〉 = δij. If M and N are g-modules, κ acts on M ⊗N by

κ⊗ 1 + 1⊗ κ+ 2γ, where γ =
∑
i

bi ⊗ b∗i . (2.12)

The Casimir is central in the enveloping algebra of g, so it acts on each irreducible
component of a g-module M as a scalar.

Theorem 2.11.

(a) Let g be a finite-dimensional complex semisimple Lie algebra, and let λ, µ, and ν
be dominant integral weights for g. Recall ρ = 1

2

∑
α∈R+ α.

(i) The Casimir element κ acts on a g-module L(λ) of highest weight λ by the
constant

〈λ, λ+ 2ρ〉.

(ii) If L(λ) is a submodule of L(µ) ⊗ L(ν), then γ acts on the L(λ) isotypic
component of L(µ)⊗ L(ν) by the constant

γλµν = 1
2
(〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉 − 〈ν, ν + 2ρ〉). (2.13)

(b) Let g = gln, and let λ, µ, and ν be dominant integral weights for g. As in equation
(2.8), let

δ = (n− 1)ε1 + (n− 2)ε2 + · · ·+ εn−1 =
n∑
i=1

(n− i)εi.

(i) The Casimir element κ acts on a g-module L(λ) of highest weight λ by the
constant

〈λ, λ+ 2δ〉 − (n− 1)|λ|.

(ii) If L(λ) is a submodule of L(µ) ⊗ L(ν), then γ acts on the L(λ) isotypic
component of L(µ)⊗ L(ν) by the constant

γλµν = 1
2

(
〈λ, λ+ 2δ〉 − 〈µ, µ+ 2δ〉 − 〈ν, ν + 2δ〉

)
− n−1

2
.
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Proof.

(a) First, take g to be semisimple.

(i) We will first need to choose a very specific basis for g, one which corresponds
to the triangular decomposition in (2.2). To this end, first notice that if h ∈ h,
x ∈ gα, y ∈ gβ, then

α(h)〈x, y〉 = 〈[h, x], y〉 = −〈x, [h, y]〉 = −β(h)〈x, y〉.

So
if α 6= −β, then 〈x, y〉 = 0, (2.14)

i.e. since the form 〈, 〉 : g⊗ g→ C is nondegenerate, the subspaces gα and gβ
are orthogonal precisely when α + β 6= 0. Also, by (2.4),

〈h, [x, y]〉 = 〈[h, x], y〉 = α(h)〈x, y〉 = 〈h, hα〉〈x, y〉 = 〈h, 〈x, y〉hα〉.

So, again since 〈, 〉 : g⊗ g→ C is nondegenerate,

[x, y] = 〈x, y〉hα, for x ∈ gα, y ∈ gβ. (2.15)

Now let {h1, . . . , hn} be a basis for h and let {h∗1, . . . , h∗n} be the dual basis
with respect to 〈, 〉 : h⊗ h→ C (i.e. 〈hi, h∗j〉 = δij). For each α ∈ R+, choose
bα ∈ gα and the corresponding b∗α ∈ g−α satisfying 〈bα, b∗α〉 = 1. Then

{h1, . . . , hn} ∪ {bα, b∗α | α ∈ R+} (2.16)

is a basis of g, and has dual basis

{h∗1, . . . , h∗n} ∪ {b∗α, bα | α ∈ R+}.

Rewriting in terms of the basis (2.16), we have

κ =
n∑
i=1

hih
∗
i +

∑
α∈R+

bαb
∗
α + b∗αbα.

The module L(λ) is the finite-dimensional g-module generated by the highest
weight vector v+

λ of weight λ, i.e.

hv+
λ = λ(h)v+

λ and bαv
+
λ = 0 for α ∈ R+, h ∈ h.
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So

κv+
λ =

(
n∑
i=1

hih
∗
i +

∑
α∈R+

(bαb
∗
α + b∗αbα)

)
v+
λ

=

(
n∑
i=1

hiλ(h∗i ) +
∑
α∈R+

([bα, b
∗
α] + 2b∗αbα)

)
v+
λ

=

(
n∑
i=1

hi〈hλ, h∗i 〉+
∑
α∈R+

(〈bα, b∗α〉hα + 2b∗αbα)

)
v+
λ by (2.4), (2.15)

=

(
hλ +

∑
α∈R+

(hα + 0)

)
v+
λ =

(
λ(hλ) +

∑
α∈R+

λ(hα)

)
v+
λ

=

(
〈λ, λ〉+

〈
λ,
∑
α∈R+

α

〉)
v+
λ = 〈λ, λ+ 2ρ〉v+

λ ,

since λ(hµ) = 〈λ, µ〉 by the definition of 〈, 〉 : h∗ ⊗ h∗ → C in(2.5).

(ii) Since κ acts on L(µ)⊗L(ν) by (κ⊗1L(ν))+(1L(µ)⊗κ)+2γ, it follows directly
from part (i) that γ acts on the L(λ) isotypic component of L(µ)⊗ L(ν) by

1
2
(〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉 − 〈ν, ν + 2ρ〉)

as desired.

(b) (i) In the case where g = gln, recall {Eij | 1 ≤ i, j ≤ n} forms a basis with dual
basis {Eji | 1 ≤ i, j ≤ n} with respect to the trace form. So

κ =
∑

1≤i,j≤n

EijEji =
n∑
i=1

EiiEii +
∑

1≤i<j≤n

EijEji + EjiEij

=
n∑
i=1

EiiEii +
∑

1≤i<j≤n

([Eij, Eji] + 2EjiEij)

=
n∑
i=1

EiiEii +
∑

1≤i<j≤n

(Eii − Ejj + 2EjiEij)

The module L(λ) is the g-module generated by highest weight vector v+
λ of

weight λ, i.e.

Eiiv
+
λ = λiv

+
λ and Eijv

+
λ = 0 for i < j.
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So

κv+
λ =

(
n∑
i=1

EiiEii +
∑

1≤i<j≤n

(Eii − Ejj + 2EjiEij)

)
v+
λ

=

(
n∑
i=1

λ2
i +

∑
1≤i<j≤n

λi − λj + 0

)
v+
λ

=

(
〈λ, λ〉+

n∑
i=1

(
(n− i)− (i− 1)

)
λi

)
v+
λ

=

(
〈λ, λ〉+

n∑
i=1

(
2n− 2i

)
λi − (n− 1)λi

)
v+
λ

= (〈λ, λ〉+ 〈λ, 2δ〉 − (n− 1)|λ|) v+
λ

(ii) Again, since κ acts on L(µ) ⊗ L(ν) by (κ ⊗ 1L(ν)) + (1L(µ) ⊗ κ) + 2γ, it
follows directly from part (i) that γ acts on the L(λ) isotypic component of
L(µ)⊗ L(ν) by

1
2

(
〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉 − 〈ν, ν + 2ρ〉 − (n− 1)

(
|λ| − |µ| − |ν|

))
.

But by Theorem 2.4, |λ| = |µ|+ |ν|, so the desired result follows.

From equation (2.10), we know exactly how L(µ)⊗L(ω1) decomposes. In fact, we can
express the constants in Theorem 2.11 in terms of contents of boxes added or removed
in the associated partitions. Recall, from (2.9), if B is the box in row i and column j of
λ, the content of B is

c(B) = j − i.

See Section 2.3 for a discussion of this construction.

Theorem 2.12. Let g = gln or sln, let µ be a dominant integral weight for g, and let
V = L(ω1). If L(λ) has a nontrivial isotypic component in L(µ)⊗ L(ω1), write γλµω1

to
mean the constant by which γ acts on this component.

1. If g = gln, then
γλµω1

= c(B),

where B is the box added to obtain λ from µ.
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2. If g = sln, then

γλµω1
= c(B)− |µ|

n
,

where B is the box added to obtain λ from µ.

Proof.
Case g = gln. Write µ = µ1ε1 + · · · + µnεn. Adding a box to µ in the ith row is

equivalent to adding εi to µ. Recall ω1 = ε1 and δ =
n∑
i=1

(n− i)εi.

Thus

2γλµω1
=
(
〈µ+ εi, µ+ εi + 2δ〉 − 〈µ, µ+ 2δ〉 − 〈ω1, ω1 + 2δ〉

)
= 2〈µ, ε1〉+ 2〈εi − ε1, µ〉+ 2〈εi − ε1, ε1〉+ 〈εi − ε1, εi − ε1 + 2δ〉
= 2
(
µ1 + µi − µ1 − 1 + 1 + (n− i)− (n− 1)

)
= 2(µi + 1− i)

A box added to row i of µ is in position (i, µi + 1) and has content (µi + 1)− i, so

γλµω1
= c(B).

Case g = sln. Write µ = µ1ε1 + · · · + µn−1εn−1 − |µ|
n

(ε1 + · · · + εn). Recall that

ω1 = ε1 − 1
n
(ε1 + · · · + εn) and 2ρ =

n−1∑
i=1

ωi =
n∑
j=1

(n + 1 − 2j)εj. Adding a box to µ in

the ith row is equivalent to adding εi − 1
n
(ε1 + · · ·+ εn) to µ, and so

λ = µ+ εi − ε1 + ω1.

Thus

2γλµω1
=
(
〈µ+ εi − ε1 + ω1, µ+ εi − ε1 + ω1 + 2ρ〉 − 〈µ, µ+ 2ρ〉 − 〈ω1, ω1 + 2ρ〉

)
=

(
2〈µ, ω1〉+ 2〈εi − ε1, µ〉+ 2〈εi − ε1, ω1〉+ 〈εi − ε1, εi − ε1 + 2ρ〉

)
=2

(
µ1 −

|µ|
n

+ µi − µ1 − 1 + 1 + 1
2
(n+ 1− 2i− (n+ 1− 2))

)
=2

(
µi + 1− i− |µ|

n

)
The content of a box added from row i of µ is (µi + 1)− i, and so

γλµω1
= c(B)− |µ|

n
.
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2.4.1 Rectangles

Finally, we will need to understand the the action of γ on M ⊗N , where M and N are
indexed by rectangles.

Let g = gln or sln. Fix a, b, p, q be positive integers with p ≥ q and

p+ q ≤

{
n if g = gln,

n− 1 if g = sln.

Let M = L((ap)), N = L((bq)). Recall from Example 2.7 that the nontrivial irreducible
submodules of M ⊗ N each have multiplicity one and are indexed by the partitions
λ ∈ P((ap), (bq)) where P((ap), (bq)) is the set of partitions λ with height ≤ p + q such
that

λq+1 = λq+2 = · · · = λp = a,
λq ≥ max(a, b),

λi + λp+q−i+1 = a+ b, i = 1, . . . , q.
(2.17)

In Section 2.3.1 we observed that that any partition in P((ap), (bq)) can be built
iteratively by beginning with the partition

(ap) + (bq) =

{
a(ε1 + · · · εp) + b(ε1 + · · ·+ εq) when g = gln,

a(ε1 + · · · εp) + b(ε1 + · · ·+ εq)− ap+bq
n

(ε1 + · · ·+ εn) when g = sln,

and moving successive boxes down. An example of this process is given in Figure 2.10.

Lemma 2.13. Let µ and λ index distinct non-trivial components of M ⊗N , assume λ
differs from µ by moving one box from position (µi, i). Denote the constant by which κ
acts on an irreducible component L(ν) as κL(ν). Then

κL(λ) = κL(µ) − 4((µi − i)− 1
2
(a− p+ b− q)).

Proof. If g = gln and λ = µ − εi + εj is obtained from µ by moving a box from row i
into row j, then

κL(λ) = 〈λ, λ+ 2δ〉 − (n− 1)|λ|
= 〈µ, µ+ 2δ〉 − (n− 1)|µ|+ 2〈µ, εj − εi〉+ 〈εj − εi, εj − εi + 2δ〉
= κL(µ) + 2(µj − µi) + 2 + (n− 2j)− (n− 2i)

= κL(µ) − 2((µi − i)− (µj + 1− j))

= κL(µ) − 2
(

(µi − i)− (λj − j)
)

= κL(µ) − 2(content of old box− content of new box)
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If g = sln and λ = µ − εi + εj is obtained from µ by moving a box from row i into
row j, then

κL(λ) = 〈λ, λ+ 2ρ〉
= 〈µ, µ+ 2ρ〉+ 2〈µ, εj − εi〉+ 〈εj − εi, εj − εi + 2ρ〉
= κL(µ) + 2(µj − µi) + 2 + (n+ 1− 2j)− (n+ 1− 2i)

= κL(µ) − 2((µi − i)− (µj + 1− j))

= κL(µ) − 2
(

(µi − i)− (λj − j)
)

= κL(µ) − 2(content of old box− content of new box)

Now, if λ and µ are both elements of P((ap), (bq)), then we have already seen

j = p+ q + 1− i and λj = a+ b+ 1− µi.

So

κL(λ) = κL(µ) − 2
(

(µi − i)−
(
(a− p) + (b− q)− (µi − i)

))
= κL(µ) − 4((µi − i)− 1

2
(a− p+ b− q))

Remark 2.14. If λ and µ satisfy the criteria in Lemma 2.13, then

κL(µ) − κL(λ) = 4((µi − i)− 1
2
(a− p+ b− q)) 6= 0.

Proof. If a box in position (i, j) in µ ∈ P((ap), (bq)) can be moved to get another partition
in P((ap), (bq)), then that box must satisfy either

(1) max(a, b) < i ≤ a+ b and 0 < j ≤ q, or

(2) 0 < i ≤ min(a, b) and p < j ≤ p+ q

The first case is when position (i, j) is to the upper right, and the second case is when
(i, j) is to the lower left. If (i, j) satisfies (1), then

max(a, b)− q < i− j < a+ b− q.

If (i, j) satisfies (2), then

−p− q < i− j < min(a, b)− p.

So since

1
2
(a+ b) + 1

2
(p+ q) ≤ max(a, b)− q and min(a, b)− p ≤ 1

2
(a+ b) + 1

2
(p+ q),

we have
i− j 6= 1

2
(a− p+ b− q). (2.18)

In other words, any movable box is off of the diagonal 1
2
(a−p+b−q), and the difference

between the contents in µ and λ above is nonzero.
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Lemma 2.15. Let λ ∈ P((ap), (bq)) and define Bλ to be the set of boxes in λ in rows
p + 1 and below. Recall that we denote the constant by which γ acts on an irreducible
component L(λ) of L((ap))⊗ L((bq)) as γλ(ap)(bq) .

1. If g = gln,

γλ(ap)(bq) = abq + 2
∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
.

2. If g = sln,

γλ(ap)(bq) = abq − abpq

n
+ 2

∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
.

Proof.

1. Let g = gln. Again, denote the constant by which κ acts on an irreducible compo-
nent L(ν) as κL(ν)). By Theorem 2.11

κL(λ) = 〈λ, λ+ 2δ〉 − (n− 1)|λ|,

where δ =
n∑
i=1

(n− i)εi. So

κL((ap)+(bq)) = 〈(ap) + (bq), (ap) + (bq) + 2δ〉 − (n− 1)(ap+ bq)

= 〈(ap), (ap) + 2δ〉 − (n− 1)ap

+ 〈(bq), (bq) + 2δ〉 − (n− 1)bq + 2〈(ap), (bq)〉
= κM + κN + 2〈a(ε1 + · · ·+ εp), b(ε1 + · · ·+ εq)〉
= κM + κN + 2abq.

Therefore γ acts on the L((ap) + (bq)) component of M ⊗N by

γ
(ap)+(bq)
(ap),(bq) = 1

2

(
κL((ap)+(bq)) − κM − κN

)
= abq. (2.19)

Let λ be a partition indexing a component of M ⊗N . If we build another compo-
nent λ′ by moving a box (i, j) to the place (a + b + 1 − i, p + q + 1 − j), Lemma
2.13 implies

κL(λ′) = κL(λ) − 4(i− j − 1
2
(a− p+ b− q))



21

Since any partition indexing a component of M ⊗N can be arrived at recursively
through this process by beginning with λ0 = (ap) + (bq), this tells us

κL(λ) = κL(λ0) + 4
∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
= κM + κN + 2abq + 4

∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
.

So γ acts on the L(λ) component of M ⊗N by

γλ(ap),(bq) = abq + 2
∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
.

2. Let g = sln. By Theorem 2.11

κL(λ) = 〈λ, λ+ 2ρ〉,

where ρ =
n∑
i=1

(n+ 1− 2i)εi. So

κL((ap)+(bq)) = 〈(ap) + (bq), (ap) + (bq) + 2ρ〉
= 〈(ap), (ap) + 2ρ〉+ 〈(bq), (bq) + 2ρ〉+ 2〈(ap), (bq)〉
= κM + κN

+ 2〈a(ε1 + · · ·+ εp)− ap
n

(ε1 + · · ·+ εn),

b(ε1 + · · ·+ εq)− bq
n

(ε1 + · · ·+ εn)〉

= κM + κN + 2

(
abq − bqap

n
− apbq

n
+ n

apbq

n2

)
= κM + κN + 2abq − 2

apbq

n
.

Therefore γ acts on the L((ap) + (bq)) component of M ⊗N by

γ
(ap)+(bq)
(ap),(bq) = 1

2

(
κL((ap)+(bq)) − κM − κN

)
= abq − apbq

n
. (2.20)

Let λ be a partition indexing a component of M ⊗N . If we build another compo-
nent λ′ by moving a box (i, j) to the place (a + b + 1 − i, p + q + 1 − j), Lemma
2.13 implies

κL(λ′) = κL(λ) − 4(i− j − 1
2
(a− p+ b− q))
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Since any partition indexing a component of M ⊗N can be arrived at recursively
through this process by beginning with λ0 = (ap) + (bq), this tells us

κL(λ) = κL(λ0) + 4
∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
= κM + κN + 2abq − 2

abpq

n
+ 4

∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)
.

So γ acts on the L(λ) component of M ⊗N by

γλ(ap),(bq) = abq − abpq

n
+ 2

∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

)

Let’s examine this lemma a little closer with an example. The diagram below shows
the six partitions indexing irreducible submodules of M⊗N when g = gln, M = L((ap))
with 2 ≤ a, p, and N = L((22)), as given by the Littlewood Richardson rule (see Example
2.7). The values by which γ acts are shown in the middle of each partition, and can be
calculated in two ways. First, the diagram begins with the value on partition (A) being
a(2)(2) = 4a as given by (2.19), and follows the recursive process outlined in the proof
of Lemma 2.15, showing the value added as each box is moved.

-p-1
·

a-1·2(a -p -1)

(C)

−(a−1+p−1)

��=========

a4a

(A)

−(a+p)//

-p

a-1
·

a+1·
3a−p

(B)

−(a−1+p−1)
  AAAAAAAA

−(a+1+p+1)

>>}}}}}}}}}}

a−3p
a

-p-1
·

-p+1·

(E)

−(a+p) //

-p

−4p

(F)

-p+1
·

a+1
·

2(a -p+1)

(D)
−(a+1+p+1)

@@��������

We could also take any of these partitions individually, and compute the value of γ using
the result of Lemma 2.15. For example, partition (E) has three boxes in the set B(E),
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with contents −p, −p− 1, and −p+ 1 respectively, so the value of γ on the irreducible
module indexed by this partition is

a(2)(2)− 3
(
(a− p) + (2− 2)

)
+ 2
(
−p+ (−p− 1) + (−p+ 1)

)
= a− 3p.

2.5 Centralizer algebras

Let V be a finite-dimensional vector space and A ⊆ End(V ) a semisimple algebra. Define
the centralizer of A by

EndA(V ) = { x ∈ End(V ) | xa = ax for all a ∈ A}.

Note that EndA(V ) is an associative algebra with unit idV .

Theorem 2.16 (Double centralizer theorem). [GW, Thm 3.3.7]
The algebra B = EndA(V ) is semisimple, one has EndB(V ) = A, and V has the
multiplicity-free decomposition

V ∼=
⊕
i

Vi ⊗ Ui (2.21)

as an (A,B)-bimodule, where the Vi are mutually distinct irreducible A-modules and the
Ui are mutually distinct irreducible B-modules.

This theorem allows us to simultaneously decompose V as an A-module and as a B-
module. As an A-module, Vi occurs with multiplicity dim(Ui), and vice versa. This
duality also provides a correspondence between irreducible A-modules and irreducible
B-modules.

In this work, we will be concentrating predominantly on modules of the form M ⊗
N ⊗ V ⊗k, g is a finite-dimensional complex reductive Lie algebra and M , N , and V are
finite-dimensional irreducible g-modules, with a goal of building Endg

(
M ⊗N ⊗ V ⊗k

)
.

It will be useful to understand how the centralizers for successive tensor products of
modules are related. To this end, let g be a finite dimensional complex reductive Lie
algebra, and let M and N be g-modules.

Lemma 2.17. The map given by

Endg(M)→ Endg(M ⊗N)

φ 7→ φ⊗ idN

is an injective algebra homomorphism.
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Proof. Let x ∈ g, u ∈M , v ∈ N , and suppose φ ∈ Endg(M). Then

(φ⊗ idN)x(u⊗ v) = (φ⊗ idN)(x⊗ 1 + 1⊗ x)(u⊗ v) = (φx⊗ idN + φ⊗ x)(u⊗ v)

= (xφ⊗ idN + φ⊗ x)(u⊗ v) = (x⊗ 1 + 1⊗ x)(φ⊗ idN)(u⊗ v) = x(φ⊗ idN)(u⊗ v).

So φ⊗ idN ∈ Endg(M ⊗N). If ψ ∈ Endg(M), then

(φ⊗ idN − ψ ⊗ idN)(u⊗ v) = (φ(u)− ψ(u))⊗ v

which is zero only when v = 0 or φ(u)− ψ(u) = 0, so the map

φ 7→ φ⊗ idN

is injective.

Denote the operator γ acting on the j and j′ factors of V ⊗k by γj,j′ , i.e.

γj,j′ · (vi1 ⊗ · · · ⊗ vik) =
∑
b

(vi1 ⊗ · · · ⊗ bvij ⊗ · · · ⊗ b∗vij′ ⊗ · · · ⊗ vik). (2.22)

If {b} is a basis of g, then {b∗} presents an alternate basis for g, with dual basis {b}.
Therefore,

γi,j = γj,i. (2.23)

Denote by

γX,Y γ acting on factors X and Y in a tensor space,

κX κ acting on the factor X in a tensor space.

Since κ is central in the enveloping algebra of g, it follows from lemma 2.17 that

0 = κM⊗N⊗V κM⊗N − κM⊗NκM⊗N⊗V
= (κM + κN + κV + 2(γM,N + γM,V + γN,V )) (κM + κN + 2γM,N)

− (κM + κN + 2γM,N) (κM + κN + κV + 2(γM,N + γM,V + γN,V ))

= 4(γM,V + γN,V )γM,N − 4γM,N(γM,V + γN,V ).

Therefore, γN,V γM,N − γM,NγN,V = γM,NγM,V − γM,V γM,N . By similarly comparing
κM⊗N⊗V to κM⊗V and κN⊗V , we find

γM,V γN,V − γN,V γM,V = γN,V γM,N − γM,NγN,V = γM,NγM,V − γM,V γM,N . (2.24)
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Chapter 3

The degenerate two-boundary braid
group

The following definition is motivated by a desire to study the centralizer of the action of
a reductive Lie algebra on the tensor space M ⊗N ⊗ V ⊗k. The the goal is to build an
algebra which will have many centralizers as quotients. In the case where g is reductive,
we will provide one homomorphism of this universal algebra into Endg(M ⊗N ⊗ V ⊗k).

Fix k ∈ Z>0.

Definition 3.1. The group algebra of the symmetric group CSk is generated by

ts1 , . . . , tsk−1

with relations

t2si = 1, i = 1, . . . , k − 1 (3.1)

tsitsj = tsj tsi j 6= i± 1 (3.2)

tsitsi+1
tsi = tsi+1

tsitsi+1
, i = 1, . . . , k − 2 (3.3)

We write
t(i i+1) = tsi and t(i j) = t(i+1 j)tsit(i+1 j),

so t(i j) acts as the transposition between i and j.

Throughout, we identify scalars c ∈ C with the elements c id ∈ CSk.

Definition 3.2. The degenerate two-boundary braid group is the algebra Gk generated
over C by subalgebras

C[x1, . . . , xk], C[y1, . . . , yk], C[z0, . . . , zk], and CSk
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with relations

tsixj = xjtsi , tsiyj = yjtsi , tsizj = zjtsi , for j 6= i, i+ 1

(3.4)

(z0 + · · ·+ zi)xj = xj (z0 + · · ·+ zi) ,
(z0 + · · ·+ zi) yj = yj (z0 + · · ·+ zi) ,

for i ≥ j

(3.5)

tsi(xi + xi+1) = (xi + xi+1)tsi , tsi(yi + yi+1) = (yi + yi+1)tsi , for 1 ≤ i ≤ k − 1
(3.6)

(tsitsi+1
) (xi+1 − tsixitsi) (tsi+itsi) = xi+2 − tsi+1

xi+1tsi+1

(tsitsi+1
) (yi+1 − tsiyitsi) (tsi+itsi) = yi+2 − tsi+1

yi+1tsi+1

for 1 ≤ i ≤ k − 2,

(3.7)

xi+1 − tsixitsi = yi+1 − tsiyitsi for 1 ≤ i ≤ k − 1,
(3.8)

and
zi = xi + yi −mi, 1 ≤ i ≤ k, (3.9)

where, if we define

mi,j =

{
xi+1 − tsixitsi if j = i+ 1,

t(j−1 i)mj−1,jt(j−1 i) if j 6= i+ 1,
(3.10)

for i = 1, 2, . . . , k − 1 (where (i + 1 j) is the transposition acting on the i + 1 and j
terms), then mi is the element

m1 = 0, mi =
∑

1<j<i

mj,i. (3.11)

As we will see, mi,j has been constructed to mimic the operator ti,j (defined in Section
2.4). In fact, notice that from (3.6) and (3.7), we have

mi+1,i = (tsitsi−1
tsi) mi−1,i (tsitsi−1

tsi)

= tsi(tsi−1
tsi(xi − tsi−1

xi−1tsi−1
)tsitsi−1

)tsi
= tsi(xi+1 − tsixitsi)tsi
= xi+1 − tsixitsi
= mi,i+1.

Similarly, we can show mi,j = mj,i.

The degenerate one-boundary braid group G(1)
k subalgebra of Gk generated by z1, . . . , zk

and ts1 , . . . tsk−1
.
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3.1 Action on tensor space

Let g be a finite dimensional complex reductive Lie algebra and let M , N , and V be
finite dimensional simple g-modules. Recall from Section 2.4 that the Casimir invariant
is

κ =
∑
i

bib
∗
i ,

where {bi} is a basis of g and {b∗i } is its dual basis with respect to the trace form 〈, 〉.
The Casimir invariant is central in the enveloping algebra Ug and acts on M ⊗N as

κ⊗ idN + idM ⊗ κ+ 2γ, where γ =
∑
i

bi ⊗ b∗i .

Consider the action of g on the tensor space M ⊗N ⊗ V ⊗k. We denote the operator
γ acting on the j and j′ factors of V ⊗k by γj,j′ , i.e.

γj,j+1 = idM ⊗ idN ⊗ id
⊗(j−1)
V ⊗ γ ⊗ id

⊗(k−j−1)
V and

γj,j′ = (idM ⊗ idN ⊗ (j′ j + 1))γj,j+1(idM ⊗ idN ⊗ (j′ j + 1))

as an operator on M ⊗N ⊗ V ⊗k, where (j′ j + 1) transposes the j′ and j + 1 factors of
V ⊗k and fixes all others. Similarly denote by

γX,Y γ acting on factors X and Y in a tensor space,

γX,i γ acting on factor X and the ith copy of V in a tensor space,

κX κ acting on the factor X in a tensor space.

κX,j κ acting on the factor X and the first j factors of V ,

where κX,0 = κX .

Notice that since M , N , and V are simple, κM , κN , and κV act as constants.
Applying κ =

∑
b bb
∗ iteratively to M ⊗ V ⊗k, N ⊗ V ⊗k, and M ⊗N ⊗ V ⊗k, we find

that as operators on M ⊗N ⊗ V ⊗k,

κX,j = κX + jκV + 2

(∑
1≤i≤j

γX,i +
∑

1≤r<s≤j

γr,s

)
, (3.12)

where X = M,N or M ⊗N , and so

κM⊗N,j = κM + κN + jκV + 2

(
γM,N +

∑
1≤i≤j

(γM,i + γN,i) +
∑

1≤r<s≤j

γr,s

)
.
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Theorem 3.3. There is a well-defined algebra homomorphism

Φ: Gk → Endg(M ⊗N ⊗ V ⊗k)

defined by

Φ(tsj) = idM ⊗ idN ⊗ id
⊗(j−1)
V ⊗ s1 ⊗ id

⊗(k−j−1)
V ,

Φ(yj) = 1
2
(κN,j − κN,j−1),

Φ(xj) = 1
2
(κM,j − κM,j−1),

Φ(zj) = 1
2
(κM⊗N,j − κM⊗N,j−1 + κV ),

Φ(z0) = 1
2
(κM⊗N − κM − κN) = γM,N ,

(3.13)

where s1 · (vi1 ⊗ vi2) = vi2 ⊗ vi1 .

Proof. The tsi act by simple transpositions, so they generate an action of CSk on V ⊗k.
Since the coproduct structure (the action of g on tensor space) is symmetric with respect
to place permutation, this action of CSk in turn commutes with the g-action.

The Casimir invariant κ is central in the enveloping algebra of g, so κM,i ∈ Endg(M⊗
V ⊗i). Therefore κM,i⊗ idj−iV is an element of Endg(M⊗V ⊗j) for i < j. Thus, by Lemma
2.17, κM,j commutes with κM,i as operators on M ⊗ V ⊗j (and therefore as operators
on M ⊗ N ⊗ V ⊗k). So the actions of κM,i, i = 1, 2, . . . , k, pairwise commute and are
elements of Endg(M ⊗N ⊗ V ⊗k). Similarly, the actions of κN,i, i = 1, 2, . . . , k, pairwise
commute and are elements of Endg(M ⊗ N ⊗ V ⊗k). This implies that the action of
x1, . . . , xk (respectively y1, . . . , yk and z0, . . . , zk ) on M ⊗N ⊗ V ⊗k pairwise commute.
Moreover, since κM , κN , and κV each act on M ⊗N ⊗ V ⊗k as constants,

Φ(z0 + · · ·+ zi) =
1

2
(κM⊗N,i + iκV − κM − κN)

commutes with κM,j and κN,j for j ≤ i by analogous reasoning, verifying (3.5).
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The relations in (3.6) follow from

Φ(tsi(xi + xi+1)) = 1
2
tsi(κM,i+1 − κM,i−1)

= 1
2
tsi

(
κM + (i+ 1)κV + 2

( ∑
1≤j≤i+1

γM,j +
∑

1≤r<s≤i+1

γr,s

)

−

(
κM + (i− 1)κV + 2

( ∑
1≤j≤i−1

γM,j +
∑

1≤r<s≤i−1

γr,s

)))

= 1
2
tsi

(
2κV + 2

i−1∑
`=1

(γ`,i + γ`,i+1) + 2γi,i+1

)

=
1

2

(
2κV + 2

i−1∑
`=1

(γ`,i+1 + γ`,i) + 2γi+1,i

)
tsi

= Φ((xi + xi+1)tsi).

(a similar computation will confirm Φ(tsi(yi + yi+1)) = Φ((yi + yi+1)tsi)). Notice that in
combination with (3.6), relation (3.4) is equivalent to

tsiκX,j = κX,jtsi , if j 6= i, and X = M , N , or M ⊗N. (3.14)

Since the action of the symmetric group commutes with the action of g, (3.14) is satisfied
for i < j. If j < i, κX,j acts by the identity on the i and i + 1 factors of V ⊗k, (3.14) is
satisfied. Thus (3.14) (and therefore (3.4)) is satisfied for all i 6= j.

Finally,

xj = 1
2

(κM,j − κM,j−1)

=
1

2

(
κM + jκV + 2

(∑
1≤i≤j

γM,i +
∑

1≤r<s≤j

γr,s

)

−

(
κM + (j − 1)κV + 2

( ∑
1≤i≤j−1

γM,i +
∑

1≤r<s≤j−1

γr,s

)))
= 1

2
κV + γM,j +

∑
1≤`<j

γ`,j,

and similarly

yj = 1
2

(κN,j − κN,j−1)

= 1
2
κj + γN,j +

∑
1≤`<j

γ`,j,

zj = 1
2

(κM⊗N,j − κM⊗N,j−1 + κV )

= κV + γN,j + γM,j +
∑

1≤`<j

γ`,j.
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So
xj+1 − tsjxjtsj = yj+1 − tsjyjtsj = zj+1 − tsjzjtsj = γj,j+1. (3.15)

So (3.8) and (3.9) are satisfied. Since tsj tsj+1
γj,j+1tsj+1

tsj = tsjγj,j+2tsj = γj+1,j+2,
relation (3.7) follows from (3.15).

Lemma 3.4. Fix cxi , cyi , c
z
i , c

z
0 ∈ C, 1 ≤ i ≤ k, satisfying

cxi+1 − cxi = cyi+1 − c
y
i = c and czi = cxi + cyi − (i− 1)c

for i ≥ 1, where c = cx2 − cx1. The map φ : Gk → Gk given by

tsi 7→ tsi , xi 7→ xi − cxi , yi 7→ yi − cyi , zi 7→ zi − czi , z0 7→ z0 − cz0,
is an algebra automorphism.

Proof. We need only check that relations (3.7), (3.8), and (3.9) are satisfied:

Relation (3.7): If cxi+2 − cxi+1 = cxi+1 − cxi and cyi+2 − c
y
i+1 = cyi+1 − c

y
i , then

φ((tsitsi+1
) (xi+1 − tsixitsi) (tsi+itsi))

= (tsitsi+1
) (xi+1 − tsixitsi) (tsi+itsi))− (cxi+1 − cxi )

= xi+2 − tsi+1
xi+1tsi+1

− (cxi+2 − cxi+1)

= φ(xi+2 − tsi+1
xi+1tsi+1

), and similarly

φ((tsitsi+1
) (yi+1 − tsiyitsi) (tsi+itsi))

= φ(yi+2 − tsi+1
yi+1tsi+1

)

Relation (3.8): If cxi+1 − cxi = cyi+1 − c
y
i , then

φ(xi+1 − tsixitsi) = xi+1 − tsixitsi − (cxi+1 − cxi )
= yi+1 − tsiyitsi − (cyi+1 − c

y
i ) = φ(yi+1 − tsiyitsi).

Relation (3.9): If cz1 = cx1 + cy1 then

φ(x1 + y1) = x1 + y1 − (cx1 + cy1) = φ(z1).

If czi = cxi + cyi − (i− 1)(cxi − cxi−1) for i > 1, then

φ(mi) = φ

(
i−1∑
j=1

t(j i−1)(xi − tsi−1
xi−1tsi−1

)t(j i−1)

)

=
i−1∑
j=1

(
t(j i−1)(xi − tsi−1

xi−1tsi−1
)t(j i−1) − (cxi − cxi−1)

)
= mi + (i− 1)(cxi − cxi−1), and so

φ(zi) = φ(xi + yi −mi)

= xi + yi −mi − (cxi + cyi − (i− 1)(cxi − cxi−1))

= zi − czi .
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This automorphism gives rise to the following corollary to Theorem 3.3.

Corollary 3.5. The map Φ′ : Gk → Endg(M ⊗N ⊗ V ⊗k) defined by

Φ′(tsi) = idM ⊗ idN ⊗ id
⊗(i−1)
V ⊗ s1 ⊗ id

⊗(k−i−1)
V ,

Φ′(xi) = 1
2
(κM,i − κM,i−1) + cxi ,

Φ′(yi) = 1
2
(κN,i − κN,i−1) + cyi ,

Φ′(zi) = 1
2
(κM⊗N,i − κM⊗N,i−1 + κV ) + czi ,

Φ′(z0) = 1
2
(κM⊗N − κM − κN) + cz0 = γM,N + cz0,

(3.16)

is a representation of Gk which commutes with the action of g whenever cxi , cyi , c
z
i , c

z
0 ∈ C,

1 ≤ i ≤ k satisfy

cxi+1 − cxi = cyi+1 − c
y
i = c and czi = cxi + cyi − (i− 1)c (3.17)

for i ≥ 1, where c = cx2 − cx1.
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Chapter 4

The degenerate two-boundary
Hecke algebra

We consider the case where g is of type gln or sln, and fix three specific g-modules (M and
N indexed by rectangular partitions, and V being the first fundamental representation).
We use the representations of Gk in Corollary 3.5 to motivate the construction of a new
algebra, the degenerate extended two-boundary Hecke algebra. The goal is to find the
centralizer of the action of g in M ⊗N ⊗ V ⊗k.

Definition 4.1. Fix a, b, p, q ∈ Z>0. The degenerate extended two-boundary Hecke
algebra Hext

k is the quotient of the two-boundary graded braid group by the relations

tsixi = xi+1tsi − 1, tsiyi = yi+1tsi − 1, i = 1, . . . , k − 1. (4.1)

(x1 − a)(x1 + p) = 0 (y1 − b)(y1 + q) = 0. (4.2)

The degenerate two-boundary Hecke algebra Hk is the subalgebra of Hext
k generated

by x1, . . . , xk, y1, . . . , yk, z1, . . . , zk, ts1 , . . . , tsk−1
.

The degenerate one-boundary Hecke algebra H(1)
k is the quotient of G(1)

k by the rela-
tions

tsizi = zi+1tsi − 1, i = 1, . . . k − 1. (4.3)

Note that though it is not indicated by the notation, each of these Hecke algebras are
dependent on the choice of constants a, b, p, q.

The following proposition provides a presentation of Hext
k which is a straightforward

consolidation of the presentation in Section 3. We will follow this up with Theorem 4.3,
which provides a much more efficient presentation that we will make use of in Section
4.3. Finally, we will extract from Theorem 4.3 a preferred presentation of Hk.

Proposition 4.2. Hext
k is presented as an algebra over C by generators

x1, z0, z1, ts1 , . . . , tsk−1

and relations

Braid relations:

t2si = 1, tsitsj = tsj tsi j 6= i± 1, tsitsi+1
tsi = tsi+1

tsitsi+1
, i = 1, . . . , k − 2



33

Quadratic relations:

(x1 − a)(x1 + p) = 0 (y1 − b)(y1 + q) = 0, a, b, p, q ∈ Z>0,

Commutation relations:

tsixj = xjtsi , tsizj = zjtsi , for j 6= i, i+ 1,

xixj = xjxi, yiyj = yjyi, zizj = zjzi, z0zi = ziz0, for 1 ≤ i, j ≤ k,

xjzi = zixj for i > j

Twisting relations:

xi(z0 + · · ·+ zi) = (z0 + · · ·+ zi)xi,
yi(z0 + · · ·+ zi) = (z0 + · · ·+ zi)yi,

for i = 1 . . . k

where

xi = tsi−1
xi−1tsi−1

+ tsi−1
, zi = tsi−1

zi−1tsi−1
+ tsi−1

, for i = 2, . . . , k,

and if

m1 = 0, mi =
i−1∑
j=1

t(j i)

then
yi = zi − xi +mi for i = 1, . . . , k.

Proof. We begin by simplifying relations (3.1) - (3.11) by introducing (4.1):

1. Equation (3.6) can be rewritten as

xitsi − tsixi+1 = tsixi − xi+1tsi and yitsi − tsiyi+1 = tsiyi − yi+1tsi

for 1 ≤ i ≤ k − 1. But

xitsi − tsixi+1 = tsi(tsixi − xi+1tsi)tsi = tsi(−1)tsi = −1.

Similarly, yitsi − tsiyi+1 = −1. So together with (4.1), equation (3.6) is equivalent
to −1 = −1, and can be discarded.

2. Equation (3.7), given by

(tsitsi+1
) (xi+1 − tsixitsi) (tsi+itsi) = xi+2 − tsi+1

xi+1tsi+1

(tsitsi+1
) (yi+1 − tsiyitsi) (tsi+itsi) = yi+2 − tsi+1

yi+1tsi+1

for 1 ≤ i ≤ k − 2,

is equivalent to

(tsitsi+1
) (tsi) (tsi+itsi) = tsi+1 for 1 ≤ i ≤ k − 2.

But tsitsi+1
tsitsi+itsi = tsitsi+itsi = tsi+1

by equation (3.3). So (3.7) can also be
discarded.
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3. Equation (3.8), given by

xi+1 − tsixitsi = yi+1 − tsiyitsi for 1 ≤ i ≤ k − 1

is equivalent to tsi = tsi and can be discarded.

4. Equations (3.10) can be rewritten as

mi,i+1 = xi+1 − tsixitsi = tsi

and mi,j = t(j−1 i)mj−1,jt(j−1 i) = t(i j) if j 6= i+ 1.

So
m1 = 0, mi =

∑
1<j<i

t(i j).

5. By the previous item, (3.9) implies

tsizitsi = tsi(xi + yi −mi)tsi

= xi+1 − tsi + yi+1 − tsi − tsi

(∑
1<j<i

t(i j)

)
tsi

= xi+i + yi+1 − tsi − tsi −
∑

1<j<i

t(i+1 j)

= xi+i + yi+1 −mi − tsi
= zi+1 − tsi .

Similarly, together with (3.9), any two of

xi+1 − tsixitsi , yi+1 − tsiyitsi , and zi+1 − tsizitsi , i = 1, . . . , k − 1,

imply the third.

6. Furthermore, we see that the quotient by (4.1) can be viewed as discarding the
generators x2, . . . , xk, y1, . . . , yk, and z2, . . . , zk, by defining

xi = tsi−1
xi−1tsi−1

+ tsi−1
, zi = tsi−1

zi−1tsi−1
+ tsi−1

, i = 2, . . . , k,

and yi = zi − xi +mi, i = 1, . . . , k

Finally, we choose two rearrangements from the original presentation which do not
depend on (4.1):
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1. The second relation in (3.4) can be discarded since for j 6= i, i+ 1,

tsiyj = tsi

(
zj − xj +

j−1∑
`=1

t(` j)

)

=

(
zj − xj +

j−1∑
`=1

t(` j)

)
tsi

= yjtsi .

2. We can separate (3.5), given by

(z0 + · · ·+ zi)xj = xj (z0 + · · ·+ zi) ,
(z0 + · · ·+ zi) yj = yj (z0 + · · ·+ zi) ,

for i ≥ j

into two relations. First, when we set i = j, these two equations can be rewritten
as

xiz0 = z0xi +
(
(z1 + · · ·+ zi)xi − xi(z1 + · · ·+ zi)

)
,

yiz0 = z0yi +
(
(z1 + · · ·+ zi)yi − yi(z1 + · · ·+ zi)

)
,

for i = 1, . . . , k.

Second, for i > j,

xjzi = xj(z0 + · · ·+ zi)− xj(z0 + · · ·+ zi−1)

= (z0 + · · ·+ zi)xj − (z0 + · · ·+ zi−1)xj

= zixj.

Similarly, yjzi = ziyj. In combination, we can also recover (3.5) from these two
sets of relations.

So we have found that Hext
k is presented as an algebra over C by generators

x1, z0, z1, ts1 , . . . , tsk−1

and relations

(3.1) - (3.3):

t2si = 1, tsitsj = tsj tsi j 6= i± 1, tsitsi+1
tsi = tsi+1

tsitsi+1
, i = 1, . . . , k − 2

(xi, yi, and zj generate polynomial rings):

xixj = xjxi, yiyj = yjyi, zizj = zjzi, z0zi = ziz0, for 1 ≤ i, j ≤ k,
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(3.4)′:
tsixj = xjtsi , tsizj = zjtsi , for j 6= i, i+ 1,

(3.5)′

xiz0 = z0xi +
(
(z1 + · · ·+ zi)xi − xi(z1 + · · ·+ zi)

)
,

yiz0 = z0yi +
(
(z1 + · · ·+ zi)yi − yi(z1 + · · ·+ zi)

)
,

for i = 1 . . . k

xjzi = zixj yjzi = ziyj for i > j

(4.2)
(x1 − a)(x1 + p) = 0 (y1 − b)(y1 + q) = 0

where

m1 = 0, mi =
i−1∑
j=1

t(j i)

xi = tsi−1
xi−1tsi−1

+ tsi−1
, zi = tsi−1

zi−1tsi−1
+ tsi−1

,

and yj = zj − xj +mj

for i = 2, . . . , k, j = 1, . . . , k ( (3.9)′, (3.10)′ , (3.11)′, and (4.1)′).

While the presentation provided just now in Proposition 4.2 is somehow the most
recognizable from the braid group Gk, we can distill further. The following presentation
will be our favorite choice in calculating representations in Section 4.3.

Theorem 4.3. Let wi = zi − 1
2
(a − p + b − q). Hext

k is presented as an algebra over C
by generators w0, w1, . . . , wk, x1, ts1, . . . , tsk−1

, and relations

Braid relations:

t2si = 1, i = 1, . . . , k − 1 (4.4)

tsitsj = tsj tsi , j 6= i± 1 (4.5)

tsitsi+1
tsi = tsi+1

tsitsi+1
, i = 1, . . . , k − 2 (4.6)

x1(ts1x1ts1 + ts1) = (ts1x1ts1 + ts1)x1 (4.7)

Quadratic relation:
(x1 − a)(x1 + p) = 0 (4.8)

Commutation relations:

tsiwj = wjtsi , j 6= i, i+ 1 (4.9)

x1wi = wix1 i = 2, . . . , k (4.10)

x1tsi = tsix1 i = 2, . . . , k − 1 (4.11)

wiwj = wjwi i, j = 0, . . . , k (4.12)
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Twisting relations:

tsiwi = wi+1tsi − 1, i = 1, . . . , k − 1, (4.13)

x1w0 = w0x1 − (x1w1 − w1x1), (4.14)

and

x1w1 = −w1x1 + (a− p)w1 + w2
1 +

(
a+ p+ b+ q

2

)(
a+ p− (b+ q)

2

)
. (4.15)

Proof. Since 1
2
(a − p + b − q) is central in Hext

k , each of the commutation and twisting
relations concerning zi in the presentation given in Proposition 4.2 are true with wi
replacing zi, i.e.

tsiwj = wjtsi , for j 6= i, i+ 1,

wiwj = wjwi, w0wi = wiw0, for 1 ≤ i, j ≤ k,

xjwi = wixj for i > j

and
xi(w0 + · · ·+ wi) = (w0 + · · ·+ wi)xi,
yi(w0 + · · ·+ wi) = (w0 + · · ·+ wi)yi.

Next, we address the new twisting relation (4.15) by proving the following claim:

Claim 0: The set of relations
(A): (x1−a)(x1 +p) = 0, (y1− b)(y1 +q) = 0, and w1 = x1 +y1− 1

2
(a−p+ b−q)

are equivalent to the set of relations

(B):
(x1 − a)(x1 + p) = 0 and

x1w1 = −w1x1 + (a− p)w1 + w2
1 +

(
a+p+b+q

2

) (a+p−(b+q)
2

)
Proof:

(A) =⇒ (B): First notice that

x2
1 = (a− p)x1 + ap, y2

1 = (b− q)y1 + bq,

and z2
1 = (x1 + y1)2 = x1y1 + y1x1 + (a− p)x1 + (b− q)y1 + ap+ bq.

So

x1w1 + w1x1 = x1(x1 + y1 − (a− p+ b− q)/2)

+ (x1 + y1 − (a− p+ b− q)/2)x1

= 2x2
1 + (x1y1 + y1x1)− (a− p+ b− q)x1

= (a− p− (b− q))x1 + 2ap+ (x1y1 + y1x1).
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Since

w2
1 = z2

1 − (a− p+ b− q)z1 +
1

4
(a− p+ b− q)2

= x1y1 + y1x1 + (a− p)x1 + (b− q)y1 + ap+ bq

− (a− p+ b− q)(x1 + y1) +
1

4
(a− p+ b− q)2

= (x1y1 + y1x1)− (b− q)x1 − (a− p)(w1 − x1 + (a− p+ b− q)/2)

+ ap+ bq +
1

4
(a− p+ b− q)2

= (x1y1 + y1x1) + (a− p− (b− q))x1 − (a− p)w1

+ ap+ bq − (a− p)2/4 + (b− q)2/4

we have

x1w1 + w1x1 = (a− p− (b− q))x1 + 2ap

+ (w2
1 −

(
(a− p− (b− q))x1 − (a− p)w1

+ ap+ bq − (a− p)2/4 + (b− q)2/4)
)

= w2
1 + (a− p)w1 +

(
ap+ (a− p)2/4

)
−
(
bq + (b− q)2/4

)
.

= w2
1 + (a− p)w1 +

(
a+ p+ b+ q

2

)(
a+ p− (b+ q)

2

)
.

(B) =⇒ (A): Let y1 = w1 − x1 + 1
2
(a− p+ b− q). Then

(y1 − b)(y1 + q) = (w1 − x1 + 1
2
(a− p+ b− q)− b)

(w1 − x1 + 1
2
(a− p+ b− q) + q)

= (w1 − x1)2 + (w1 − x1)(a− p+ b− q − b+ q)

+ (1
2
(a− p+ b− q)− b)(1

2
(a− p+ b− q) + q)

= w2
1 + x2

1 − (w1x1 + x1w1) + (a− p)w1 − (a− p)x1

+ (1
2
(a+ p− (b+ q))− p)(1

2
(a+ p+ b+ q)− p)

=
(
w2

1 + (a− p)w1 + (1
2
)2(a+ p+ b+ q)(a+ p− (b+ q))

)
− (1

2
)2(a+ p+ b+ q)(a+ p− (b+ q))

− (w1x1 + x1w1)

+ (x1 − a)(x1 + p) + ap

+ (1
2
)2(a+ p− (b+ q))(a+ p+ b+ q)

− p(1
2
(a+ p− (b+ q)) + 1

2
(a+ p+ b+ q)) + p2

= ap− p(a+ p) + p2 = 0
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Since the remainder of the relations listed in this presentation are a subset of the relations
in Proposition 4.2, we will proceed by showing that relations in Proposition 4.2 follow
from this shortened list. As in Proposition 4.2, define xi+1 = tsixitsi + tsi .

Claim 1:

xj+1 = tsj · · · tsi+1
(tsixitsi + tsi)tsi+1

· · · tsj

+

j∑
`=i+1

tsj · · · ts`+1
ts`ts`+1

· · · tsj (4.16)

Proof: This follows by induction on j.

Claim 2: tsixj = xjtsi for i > j.
Proof: If i > j, then tsi commutes with ts` for all ` < j, so by Claim 1 and 4.4

tsixj = tsi(tsj−1
· · · ts2)(ts1x1ts1 + ts1)(ts2 · · · tsj−1

)

+ tsi

j−1∑
`=2

tsj−1
· · · ts`+1

ts`ts`+1
· · · tsj−1

= (tsj−1
· · · ts2)(ts1x1ts1 + ts1)(ts2 · · · tsj−1

)tsi

+

(
j−1∑
`=2

tsj−1
· · · ts`+1

ts`ts`+1
· · · tsj−1

)
tsi

= xjtsi .

Claim 3: tsixj = xjtsi for i < j − 1.
Proof: By Claim 1,

tsixj = tsi(tsj−1
· · · tsi+2

tsi+1
)(tsixitsi + tsi)(tsi+1

tsi+2
· · · tsj−1

)

+ tsitsj−1
· · · tsi+2

tsi+1
tsi+2
· · · tsj−1

+ tsi

j−1∑
`=i+2

tsj−1
· · · ts`+1

ts`ts`+1
· · · tsj−1

= (tsj−1
· · · tsi+2

)(tsi)
(
tsi+1

(tsixitsi + tsi)tsi+1
+ tsi+1

)
(tsi+2

· · · tsj−1
)

+

(
j−1∑
`=i+2

tsj−1
· · · ts`+1

ts`ts`+1
· · · tsj−1

)
tsi
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But, by Claim 2, since i+ 1 > i,

tsi(tsi+1
(tsixitsi+tsi)tsi+1

+ tsi+1
)

= tsitsi+1
tsixitsitsi+1

+ tsitsi+1
tsitsi+1

+ tsitsi+1

= tsi+1
tsitsi+1

xitsitsi+1
+ tsi+1

tsit
2
si+1

+ tsitsi+1
t2si

= tsi+1
tsixitsi+1

tsitsi+1
+ tsi+1

tsi + tsi+1
tsitsi+1

tsi
= tsi+1

tsixitsitsi+1
tsi + tsi+1

tsi + tsi+1
tsitsi+1

tsi
= (tsi+1

(tsixitsi + tsi)tsi+1
+ tsi+1

)tsi .

So tsixj = xjtsi .

Claim 4: xixi+1 = xi+1xi for i = 1, . . . , k − 1.
Proof: This follows by induction on i. First, it is satisfied for i = 1 by 4.4. Next,

xixi+1

= xitsixitsi + xitsi

=
(
(tsi−1

xi−1tsi−1
+ tsi−1

)tsi(tsi−1
xi−1tsi−1

+ tsi−1
) + (tsi−1

xi−1tsi−1
+ tsi−1

)
)
tsi

= (tsi−1
xi−1tsi−1

tsitsi−1
xi−1tsi−1

+ tsi−1
xi−1tsi−1

)tsi
+ (tsi−1

tsitsi−1
xi−1tsi−1

+ tsi−1
xi−1tsi−1

tsitsi−1
)tsi

+ (tsi−1
tsitsi−1

+ tsi−1
)tsi .

But

(tsi−1
xi−1tsi−1

tsitsi−1
xi−1tsi−1

+ tsi−1
xi−1tsi−1

)tsi
= tsi−1

xi−1tsitsi−1
tsixi−1tsi−1

tsi + tsi−1
xi−1t

2
si
tsi−1

tsi
= tsi−1

tsixi−1tsi−1
xi−1tsitsi−1

tsi + tsi−1
tsixi−1tsitsi−1

tsi
= tsi−1

tsixi−1tsi−1
xi−1tsi−1

tsitsi−1
+ tsi−1

tsixi−1tsi−1
tsitsi−1

= tsi−1
tsi(xi−1tsi−1

xi−1tsi−1
+ xi−1tsi−1

)tsitsi−1

= tsi−1
tsi(tsi−1

xi−1tsi−1
xi−1 + tsi−1

xi−1)tsitsi−1

= tsi(tsi−1
xi−1tsi−1

tsitsi−1
xi−1tsi−1

+ tsi−1
xi−1tsi−1

),

(tsi−1
tsitsi−1

xi−1tsi−1
+ tsi−1

xi−1tsi−1
tsitsi−1

)tsi
= tsitsi−1

xi−1tsitsi−1
+ tsi−1

xi−1tsitsi−1

= tsitsi−1
xi−1tsitsi−1

+ t2sitsi−1
tsixi−1tsi−1

= tsi(tsi−1
xi−1tsi−1

tsitsi−1
tsi−1

tsitsi−1
xi−1tsi−1

),

and

(tsi−1
tsitsi−1

+ tsi−1
)tsi = tsitsi−1

t2si + t2sitsi−1
tsi = tsi(tsi−1

+ tsi−1
tsitsi−1

).
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So

xixi+1 = tsi
(
(tsi−1

xi−1tsi−1
+ tsi−1

)tsi(tsi−1
xi−1tsi−1

+ tsi−1
) + (tsi−1

xi−1tsi−1
+ tsi−1

)
)

= tsixitsixi + tsixi

= xi+1xi.

Claim 5: xixj = xjxi for i, j = 1, . . . , k.
Proof: Assume, without loss of generality, that i < j. By Claim 1,

xj = tsj−1
· · · tsi+1

xi+1tsi+1
· · · tsj−1

+

j∑
`=i+1

tsj · · · ts`+1
ts`ts`+1

· · · tsj .

Thus, by Claims 2 and 4, xixj = xjxi.

Claim 6: wjxi = xiwj for j > i.
Proof: By Claim 1,

xi = tsi−1
· · · ts1x1ts1 · · · tsi−1

+
i−1∑
`=1

tsi−1
· · · ts`+1

ts`ts`+1
· · · tsi−1

.

Since wjx1 = x1wj for j > 1 and wjts` = ts`wj for ` < j − 1, this implies that
wjxi = xiwj for j > i.

Claim 7:
xi(w0 + · · ·+ wi) = (w0 + · · ·+ wi)xi

Proof: This follows by induction on i. Since x1(w0+w1) = (w1+w0)x1, this relation
is satisfied for i = 1. Now assume xi−1(w0 + · · · + wi−1) = (w0 + · · · + wi−1)xi−1.
Recall that tsiwi = wi+1tsi − 1 implies tsi(wi + wi+1) = (wi + wi+1)tsi . So

xi(w0 + · · ·+ wi) = (tsi−1
xi−1tsi−1

+ tsi−1
)(w0 + · · ·+ wi)

= (w0 + · · ·+ wi)(tsi−1
xi−1tsi−1

+ tsi−1
)

= (w0 + · · ·+ wi)xi

since xi−1wi = wixi−1 by Claim 6, and ts`wj = wjts` for ` < j.

Claim 8: If y1 = w1−x1 + 1
2
(a−p+b−q) and y1 = w2−x2 + ts1 + 1

2
(a−p+b−q),

then y1y2 = y2y1.
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Proof: Let K = 1
2
(a− p+ b− q). So

y1y2 = (w1 − x1 +K)(w2 − (ts1x1ts1 + ts1) + ts1 +K)

= (w2 +K)(w1 − x1 +K)− (w1 − x1 +K)ts1x1ts1
= (w2 +K)(w1 − x1 +K)− (ts1x1ts1)K − w1ts1x1ts1 + x1ts1x1ts1
= (w2 +K)(w1 − x1 +K)− (ts1x1ts1)K + x1ts1x1ts1 − (ts1w2 − 1)x1ts1
= (w2 +K)(w1 − x1 +K)− (ts1x1ts1)K + x1ts1x1ts1 + x1ts1 − ts1x1w2ts1
= (w2 +K)(w1 − x1 +K)− (ts1x1ts1)K + ts1x1ts1x1 + ts1x1 − ts1x1(ts1w1 + 1)

= (w2 +K)(w1 − x1 +K)− (ts1x1ts1)K + ts1x1ts1x1 − ts1x1ts1w1

= (w2 − ts1x1ts1 +K)(w1 − x1 +K)

= y2y1.

Claim 9: If y1 = w1 − x1 + 1
2
(a− p+ b− q), then y1tsi = tsiy1 for i > 1.

Proof: This follows as tsi commutes with w1, x1, and 1
2
(a− p+ b− q) for i > 1.

Claim 10: Let mi =
∑i−1

j=1 t(j i) and K = 1
2
(a− p + b− q). If y1 = w1 − x1 + K,

then
yi = wi − xi +mi +K and yi = tsi−1

yi−1tsi−1
+ tsi−1

for i = 2, . . . , k are equivalent definitions of yi.
Proof: First, if i < j,

t(i j) = tsj−1
· · · tsi+1

tsitsi+1
· · · tsj−1

, .

Thus
tsj t(i j)tsj = t(i j+1), and so tsjmjtsj = mj+1 − tsj

tsiyitsi + tsi = tsi(wi − xi +mi +K)tsi + tsi
= (wi+1 − tsi)− (xi+1 − tsi) + (mi+1 − tsi) +K + tsi
= wi+1 − xi+1 +mi+1 +K

= yi+1.

Claim: If yi is as in Claim 9, then

yiyj = yjyi for i, j = 1, . . . , k, tsiyj = yjtsi for j 6= i, i+ 1,

and yiw0 = w0yi +
(
(w1 + · · ·+ wi)yi − yi(w1 + · · ·+ wi)

)
for i = 1, . . . k.

Proof: These follow from Claims 8 - 10, just as the corresponding xi-valued rela-
tions follow above.
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One advantage to this presentation of Theorem 4.3 is that we can pluck from it a
clean presentation of Hk.

Corollary 4.4. Hk is presented as an algebra over C by generators

w1, . . . , wk, x1, ts1 , . . . , tsk−1
,

and relations

Braid relations:

t2si = 1, tsitsj = tsj tsi j 6= i± 1, tsitsi+1
tsi = tsi+1

tsitsi+1
, i = 1, . . . , k − 2

x1(ts1x1ts1 + ts1) = (ts1x1ts1 + ts1)x1

Quadratic relation:
(x1 − a)(x1 + p) = 0

Commutation relations:

tsiwj = wjtsi , for j 6= i, i+ 1,

x1wi = wix1 and x1tsi = tsix1, for i ≥ 2,

wiwj = wjwi, for i, j = 0, . . . , k,

Twisting relations:

tsiwi = wi+1tsi − 1, i = 1, . . . , k − 1,

and

x1w1 = −w1x1 + (a− p)w1 + w2
1 +

(
a+ p+ b+ q

2

)(
a+ p− (b+ q)

2

)
,

Proof. From Theorem 4.3, Hext
k
∼= C[z0]⊗Hk as vector spaces. Therefore, we can extract

a presentation of Hk by dropping w0 from Theorem 4.3.

Remark 4.5. Some useful relations include:

wni+1tsi = tsiw
n
i +

wni+1 − wni
wi+1 − wi

= tsiw
n
i +

n∑
j=1

wj−1
i wn−ji+1 (4.17)

wni tsi = tsiw
n
i+1 −

wni − wni+1

wi − wi+1

= tsiw
n
i+1 +

n∑
j=1

wn−ji wj−1
i+1 (4.18)



44

So

wni w
m
i+1tsi = wni

(
tsiw

m
i +

wmi+1 − wmi
wi+1 − wi

)
= wni tsiw

m
i + wni

(
wmi+1 − wmi
wi+1 − wi

)
=

(
tsiw

n
i+1 −

wni − wni+1

wi − wi+1

)
wmi + wni

(
wmi+1 − wmi
wi+1 − wi

)
= tsiw

m
i w

n
i+1 −

(
wni − wni+1

wi − wi+1

)
wmi + wni

(
wmi+1 − wmi
wi+1 − wi

)

Let λ ∈ Zk
≥0 and denote

wλ = wλ1
1 · · ·w

λk
k .

Sk acts on λ by
siλ = (λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λk).

So we have

wλtsi = tsiw
siλ +

wλ − wsiλ

wi+1 − wi
. (4.19)

Now, renormalizing x1, let t0 = 1
a+p

(2x1 − (a− p)) so that

t20 =
1

(a+ p)2
(4x2

1 − 4(a− p)x1 + (a− p)2)

=
1

(a+ p)2
(4(a− p)x1 + 4ap− 4(a− p)x1 + (a− p)2)

=
1

(a+ p)2
(a+ p)2 = 1

Then

w1t0 = −t0w1 +
2

a+ p

(
w2

1 +

(
a+ p+ b+ q

2

)(
a+ p− (b+ q)

2

))
. (4.20)

Let

A =
2

a+ p
, B =

2

a+ p

(
a+ p+ b+ q

2

)(
a+ p− (b+ q)

2

)
.

So
w1t0 = −t0w1 + Aw2

1 +B
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implies

wn1 t0 = (−1)nt0w
n
1 +

{
wn−1

1 (Aw2
1 +B) n is odd,

0 n is even.
(4.21)

= t0(−w1)n +
wn1 − (−w1)n

2w1

(
Aw2

1 +B
)

(4.22)

Finally,

t0ts1t0ts1 − ts1t0ts1t0 =
2

(a+ p)
(ts1t0 − t0ts1) .

4.1 Representations

Let g = gln or sln. Let M = L ((ap)) (the finite dimensional g-module indexed by the
rectangular partition with p parts of length a) and N = ((bq)), and let V = L((11)) (the
first fundamental representation, isomorphic to Cn). We return to the representation
defined in Corollary 3.5, and see that for special choices of constants, Φ′ factors through
as a representation of Hext

k .

Theorem 4.6.

(a) When g = gln, fix cxi = cyi = 1
2
czi = −1

2
n.

(b) When g = sln, fix

cxi =
ap+ i− 1

n
− 1

2

(
n+

1

n

)
, cyi =

bq + i− 1

n
− 1

2

(
n+

1

n

)
,

and czi =
ap+ bq + i

n
− n.

These values satisfy the criteria in Lemma 3.4, so yield a representation

Φ′ = Φ ◦ φ : Gk → Endg(M ⊗N ⊗ V ⊗k).

Furthermore, for this choice of constants, Φ′ factors through the quotient defined in (4.1)
and (4.2), so defines an action of Hext

k which commutes with the action of g.

Proof. First,

1. when g = gln,

cxi+1 − cxi = cyi+1 − c
y
i = 0, and cxi + cyi − (i− 1)(0) = −n = czi , and
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2. when g = sln,

cxi+1 − cxi = cyi+1 − c
y
i =

1

n
, and

cxi + cyi − (i− 1)
1

n
=
ap+ bq + i

n
− n = czi ,

so cxi , c
y
i , c

z
i satisfy the requirements of Lemma 3.4. Therefore Φ′ is a representation of

Gk.
The relations in (4.1) can be rewritten as

xi+1 − tsixitsi = tsi , yi+1 − tsiyitsi = tsi , i = 1, . . . , k − 1.

Recall from (3.12) that

κX,j = κX + jκV + 2

(∑
1≤i≤j

γX,i +
∑

1≤r<s≤j

γr,s

)

and so
κX,i − κX,i−1 = κV + 2γX,i + 2

∑
1≤`<i

γ`,i (4.23)

as an operator on X ⊗ V ⊗k. Therefore

(κX,i+1−κX,i)− si(κX,i − κX,i−1)si

= κV + 2γX,i+1 + 2
∑

1≤`<i+1

γ`,i+1 − si

(
κV + 2γX,i + 2

∑
1≤`<i

γ`,i

)
si

= κV + 2γX,i+1 + 2
∑

1≤`<i+1

γ`,i+1 −

(
κV + 2γX,i+1 + 2

∑
1≤`<i

γ`,i+1

)
= 2γi,i+1.

This means that to show (4.1), it only remains to be checked that

si = Φ′(tsi) = Φ′(xi+1 − tsixitsi)
= 1

2

(
(κM,i+1 − κM,i) + 2cxi+1 − si(κM,i − κM,i−1 + 2cxi )si

)
= γi,i+1 + cxi+1 − cxi

=

{
γi,i+1 when g = gln,

γi,i+1 + 1
n

when g = sln,

as operators on M ⊗N ⊗ V ⊗k (the check for Φ′(tsi) = Φ′(yi+1 − tsiyitsi) is the same).
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The decomposition of V ⊗ V is

V ⊗ V = L
( )

⊕ L
( )

,

where if v1, . . . , vn is a basis for V , then

L
( )

= spanC{vi ⊗ vj + vj ⊗ vi | 1 ≤ i, j ≤ n}, and

L

( )
= spanC{vi ⊗ vj − vj ⊗ vi | 1 ≤ i, j ≤ n}.

It follows from this decomposition and Lemma 2.12 that the actions of s1 and γ are
given by

g = gln

L
( )

L

( )
s1 1 −1
γ 1 −1

g = sln

L
( )

L

( )
s1 1 −1
γ 1− 1

n
−1− 1

n

so (4.1) is satisfied.
Next we check (x1 − a)(x1 + p) = 0. By (4.23), we have

Φ′(x1) = 1
2
κV + γM,1 + cx1 .

The module M ⊗ V decomposes as

M ⊗ V = L

(
p

a )
⊕ L

(
p

a )
. (4.24)

Case 1: g = gln
By Theorem 2.11,

κV = 〈ω1, ω1 + 2δ〉 − (n− 1)|ω1| = 1 + (n− 1)− (n− 1) = n, (4.25)

so 1
2
κV + cx1 = 0. By Lemma 2.12 and the decomposition in (4.24), γM,1 = a or

−p, so Φ′(x1 − a)(x1 + p) = 0 as desired.

Case 2: g = sln
By Theorem 2.11,

κV = 〈ω1, ω1 + 2ρ〉 = n− 1

n
, (4.26)

so 1
2
κV +cx1 = ap

n
. By Lemma 2.12 and the decomposition in (4.24), γM,1 =

(
a− ap

n

)
or
(
−p− ap

n

)
so Φ′(x1 − a)(x1 + p) = 0 as desired.

The relation (y1 − b)(y1 + q) = 0 follows analogously, and therefore (4.2) is satisfied.
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4.2 Bratteli diagram and seminormal bases

Recall from Example 2.7, if (ap) and (bq) are rectangular partitions then P((ap), (bq))
is the set of partitions µ for which L(µ) appears as a submodule of L((ap)) ⊗ L((bq)).
Define P1((ap), (bq)) to be the set of partitions which are obtained by adding a box to
an element of P((ap), (bq)), and define Pi((ap), (bq)) to be the set of partitions which are
obtained by adding a box to an element of Pi−1((ap), (bq)).

Definition 4.7. Define the Bratteli diagram for M ⊗N ⊗ V ⊗k as a ranked graph, with
ranks −1, 0, 1, . . . , k, constructed as follows:

Vertices: The vertices are labeled by partitions.

level -1: On level -1, place one vertex, labeled by (ap).

level 0: On level 0, place one vertex for each partition in P((ap), (bq)).

level i: On level i, i = 1, . . . k, place one vertex for each partition in Pi((ap), (bq)).

Edges: The edges will connect two vertices only if the vertices are in adjacent levels.

Connect the vertex on level −1 to each of the vertices on level 0 with one
edge.

Connect each vertex on level i to a vertex on level i− 1 if the vertex on level
i can be obtained by adding a box to the corresponding vertex on level i− 1.

For example, let k = 1, a, p > 2, and b = q = 2. The corresponding Bratteli diagram
in given in Figure 4.8.



49

Figure 4.8 (Bratteli diagram).

a

p

�� �� �� ��   ##

1

��

��

��

2

������������������

��88888888888888

��

��

3

����������������

��88888888888888

��

��

4

����������������

��88888888888888

��

��

5

����������������

�� ��88888888888888

��

��

6

��

��

��

5 7 8 10 12 15

1 2 3 11 14 17

4 6 9 13 16 18

The partitions on levels 0 and 1 are numbered in lexicographical order.

Consider sequences of partitions T = (λ = T (0), T (1), . . . , T (k) = µ) where T (i) is
obtained from T (i−1) by adding a box. Identify each such T with the the µ/λ-tableau,
as defined in Definition 2.3, built by placing the integer i in the box added at the ith

step. For example,

// // //

is identified with the filling

3

1 2

.
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We call a tableau standard if each label appears exactly once. Therefore, we have a
bijection

sequences of partitions
T = (λ = T (0), T (1), . . . T (k) = µ)

where T (i)/T (i−1) is a box

↔ {
standard µ/λ-tableaux

}
. (4.27)

Throughout the remainder of this exposition, unless otherwise stated, we assume tableaux
to be standard and often think of them as sequences T = (λ = T (0), T (1), . . . T (k) = µ)
of partitions where T (i) is obtained from T (i−1) by adding a box.

Identify downward-moving paths in the Bratteli diagram from level 0 to level i with
µ/λ-tableaux where µ ∈ Pi((ap), (bq)), λ ∈ P((ap), (bq)), and T (j) is the node at level j
on the path. We already know from Section 2.3 that the irreducible g-modules appearing
in M ⊗N ⊗ V ⊗k are indexed by nodes on level k of the Bratteli diagram. Futhermore,
we know from Theorem 2.16 that his implies that the irreducible Endg(M ⊗N ⊗ V ⊗k)-
modules appearing are also indexed by nodes on level k of the Bratteli diagram. For each
µ ∈ Pk((ap), (bq)), let Lµ be the irreducible Endg(M ⊗N ⊗ V ⊗k)-module corresponding
to µ. Our next goal is to show that the basis of Lµ is indexed by µ/λ-tableaux, and that
one such basis consists of highest weight vectors of weight µ.

Let µ ∈ h∗, and recall from (2.1) that the µ-weight space of a finite-dimensional
g-module U is

Uµ = {u ∈ U | hu = µ(h)u for all h ∈ h}.
If u ∈ Uµ and φ ∈ Endg(U), then

h(φu) = φhu = φµ(h)u = µ(h)(φu),

so φu ∈ Uµ, and thus Uµ is a Endg(U)-module. By Theorem 2.16, U decomposes as

U =
⊕
µ

L(µ)⊗ Lµ as a (g-Endg(U))-bimodule,

where L(µ) is the irreducible highest weight g-module of weight µ and Lµ is the cor-
responding irreducible Endg(U)-module. Since (L(µ) ⊗ Lµ)µ is the span of all highest
weight vectors of weight µ in U , it is a Endg(U)-module. It also has dimension the
multiplicity of L(µ), i.e. the dimension of Lµ. Therefore,

(L(µ)⊗ Lµ)µ ∼= Lµ.

Recall from Lemma 2.17 that there is a natural chain of inclusions

Endg(M) ↪→ Endg(M ⊗N) ↪→ Endg(M ⊗N ⊗ V ) ↪→ . . . ↪→ End(M ⊗N ⊗ V ⊗k).

As a g-module,

M ⊗N =
⊕

λ∈P((ap),(bq))

L(λ).
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Therefore for each λ ∈ P((ap), (bq)), Lλ is one-dimensional and isomorphic to the
Endg(M ⊗ N)-module generated by the (unique up to scaling) highest weight vector
vλ of L(λ). Next,

M ⊗N ⊗ V =

 ⊕
λ∈P((ap),(bq))

L(λ)

⊗ V
=

⊕
λ∈P((ap),(bq))

(L(λ)⊗ V )

=
⊕

λ∈P((ap),(bq))

⊕
µ∈λ+

L(µ)

 .

So, for each λ ∈ P((ap), (bq)), there is exactly one copy of L(µ) in M ⊗N ⊗ V for every
µ/λ-tableau (a path of length one). Since Lµ is isomorphic to the µ-weight space of
L(µ) ⊗ Lµ, Lµ then has a basis indexed by µ/λ-tableaux (with λ ∈ P((ap), (bq)) and
µ ∈ Pi((ap), (bq))). Specifically, v(λ,µ) is the (unique up to scaling) highest weight vector
of the copy of L(µ) coming from L(λ)⊗ V .

Inductively, if L(µ) ⊗ Lµ is a nontrivial isotypic component of M ⊗ N ⊗ V ⊗k, then
Lµ has basis

v
(z)
T indexed by µ/λ-tableaux T = (λ = T (0), T (1), . . . T (k) = µ), (4.28)

with λ ∈ P((ap), (bq)) (the notation will be made more transparent when we show how

v
(z)
T corresponds to the set of generators z1, . . . , zk in Hext

k ). Specifically, v(z) is the
(unique up to scaling) vector for which

v
(z)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊆M ⊗N ⊗ V ⊗k, i = 0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ M ⊗ N ⊗ V ⊗i. This
basis is exactly indexed by the paths in the Bratteli diagram from level 0 (and therefore
from level -1) to µ.

Another basis can be constructed by considering the chain

Endg(M) ↪→ Endg(M ⊗ V ) ↪→ . . . ↪→ Endg(M ⊗ V ⊗k) ↪→ End(M ⊗N ⊗ V ⊗k),

where the last containment is given by the maps

End(M ⊗ V ⊗k) φ 7→φ⊗idN−−−−−−→ Endg(M ⊗ V ⊗k ⊗N)
∼−→ Endg(M ⊗N ⊗ V ⊗k).

By similar induction, this chain admits a basis of each Lµ

v
(x)
T labeled by sequences T = ((ap) = T (0), T (1), . . . , T (k), µ), (4.29)
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where ((ap) = T (0), T (1), . . . , T (k)) is a tableau, and LT (k)
is a nontrivial component of

Res
Endg(M⊗N⊗V ⊗k)

Endg(M⊗V ⊗k)
(Lµ).

Specifically, v
(x)
T is a vector for which

v
(x)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊗N ⊆M ⊗ V ⊗k ⊗N ∼= M ⊗N ⊗ V ⊗k, i = 0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆M ⊗ V ⊗i.
Similarly, the chain

Endg(N) ↪→ Endg(N ⊗ V ) ↪→ . . . ↪→ Endg(N ⊗ V ⊗k) ↪→ End(M ⊗N ⊗ V ⊗k),

admits a basis

v
(y)
T labeled by sequences T = ((bq) = T (0), T (1), . . . , T (k), µ), (4.30)

where ((bq) = T (0), T (1), . . . , T (k)) is a tableau, and LT (k)
is a nontrivial component of

Res
Endg(M⊗N⊗V ⊗k)

Endg(N⊗V ⊗k)
(Lµ).

Specifically, v
(y)
T is a vector for which

v
(y)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊗M ⊆ N ⊗ V ⊗k ⊗M ∼= M ⊗N ⊗ V ⊗k, i = 0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ N ⊗ V ⊗i.

Theorem 4.9. If Φ′ is the representation in Theorem 4.6, then for each Lµ ⊆ M ⊗
N ⊗ V ⊗k,

1. if v
(x)
T is as in (4.29), Φ′(xi) acts by

Φ′(xi)v
(x)
T = c(T (i)/T (i−1))v

(x)
T , i = 1, . . . k,

2. if v
(y)
T is as in (4.30), Φ′(yi) acts by

Φ′(yi)v
(y)
T = c(T (i)/T (i−1))v

(y)
T , i = 1, . . . k,

and

3. if v
(z)
T is as in (4.28), Φ′(zi) acts by

Φ′(zi)v
(z)
T = c(T (i)/T (i−1))v

(x)
T , i = 1, . . . k,
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where if T (i) and T (i−1) differ by a box in column j and row `, then

c(T (i)/T (i−1)) = j − `

is the content of the box added.

Proof. We can rewrite

Φ(xi) = 1
2
(κM,i − κM,i−1) = γM⊗V ⊗i−1,V + 1

2
κV , (4.31)

Φ(yi) = 1
2
(κN,i − κN,i−1) = γN⊗V ⊗i−1,V + 1

2
κV , (4.32)

Φ(zi) = 1
2
(κM⊗N,i − κM⊗N,i−1 + κV ) = γM⊗N⊗V ⊗i−1,V + 1

2
κV . (4.33)

Case 1: g = gln. By Theorem 2.11,

κV = 〈ω1, ω1 + 2δ〉 − (n− 1)|ω1| = 1 + (n− 1)− (n− 1) = n. (4.34)

1. If v
(x)
T is as in (4.29), then

v
(x)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊗N ⊆M ⊗ V ⊗k ⊗N, i=0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆M⊗V ⊗i. Therefore

Φ′(xi)v
(x)
T =

(
1
2
(κM,i − κM,i−1)− 1

2
n
)
· v(x)

T

=
(
γL(T (i−1)),V + 1

2
κV − 1

2
n
)
· v(x)

T , by (4.31),

= (c(T (i)/T (i−1)) + 1
2
n− 1

2
n)v

(x)
T , by (4.34) and

Theorem 2.12,

= c(T (i)/T (i−1))v
(x)
T .

2. If v
(y)
T is as in (4.30), then

v
(y)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊗M ⊆ N ⊗ V ⊗k ⊗M, i=0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ N⊗V ⊗i. Therefore

Φ′(yi)v
(y)
T =

(
1
2
(κN,i − κN,i−1)− 1

2
n
)
· v(y)

T

=
(
γL(T (i−1)),V + 1

2
κV − 1

2
n
)
· v(y)

T , by (4.32),

= (c(T (i)/T (i−1)) + 1
2
n− 1

2
n)v

(y)
T , by (4.34) and

Theorem 2.12,

= c(T (i)/T (i−1))v
(y)
T .
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3. If v
(z)
T is as in (4.28), then

v
(z)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊆M ⊗N ⊗ V ⊗k, i=0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ M ⊗ N ⊗ V ⊗i.
Therefore

Φ′(zi) · v(z)
T =

(
1
2
(κM⊗N,i − κM⊗N,i−1 + κV )− n

)
· v(z)

T

=
(
γL(T (i−1)),V + κV − n

)
v

(z)
T , by (4.33),

=
(
c(T (i)/T (i−1)) + n− n

)
v

(z)
T , by (4.34) and

Theorem 2.12,

= c(T (i)/T (i−1))v
(z)
T .

Case 1: g = sln. By Theorem 2.11,

κV = 〈ω1, ω1 + 2ρ〉 = n− 1

n
. (4.35)

1. If v
(x)
T is as in (4.29), then

v
(x)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊗N ⊆M ⊗ V ⊗k ⊗N, i=0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆M ⊗ V ⊗i. Since

|T (i−1)| = ap+ i− 1,

we have

(γL(T (i−1)),V + 1
2
κV )v

(x)
T =

(
c(T (i)/T (i−1))− ap+ i− 1

n
+

1

2

(
n− 1

n

))
v

(x)
T

by (4.35) and Theorem 2.12. Therefore

Φ′(xi)v
(x)
T =

(
1
2
(κM,i − κM,i−1) +

ap+ i− 1

n
− 1

2

(
n+

1

n

))
· v(x)

T

=

(
γL(T (i−1)),V + 1

2
κV +

ap+ i− 1

n
− 1

2

(
n+

1

n

))
· v(x)

T , by (4.31),

= c(T (i)/T (i−1))v
(x)
T .

2. If v
(y)
T is as in (4.30), then

v
(y)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊗M ⊆ N ⊗ V ⊗k ⊗M, i=0, . . . , k,



55

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ N ⊗ V ⊗i. Since

|T (i−1)| = bq + i− 1

we have

(γL(T (i−1)),V + 1
2
κV )v

(y)
T =

(
c(T (i)/T (i−1))− bq + i− 1

n
+

1

2

(
n+

1

n

))
v

(y)
T

by (4.35) and Theorem 2.12. Therefore

Φ′(yi)v
(y)
T =

(
1
2
(κN,i − κN,i−1) +

bq + i− 1

n
− 1

2

(
n+

1

n

))
· v(y)

T

=

(
γL(T (i−1)),V + 1

2
κV +

bq + i− 1

n
− 1

2

(
n+

1

n

))
· v(y)

T , by (4.32),

= c(T (i)/T (i−1))v
(y)
T .

3. If v
(z)
T is as in (4.28), then

v
(z)
T ∈ vT (i) ⊗ V ⊗(k−i) ⊆M ⊗N ⊗ V ⊗k, i=0, . . . , k,

where vT (i) is a highest weight vector of weight T (i) in L(T (i)) ⊆ M ⊗ N ⊗ V ⊗i.
Since

|T (i−1)| = ap+ bq + i− 1

we have

(γL(T (i−1)),V + 1
2
κV )v

(z)
T =

(
c(T (i)/T (i−1))− ap+ bq + i− 1

n
+ n− 1

n

)
v

(z)
T

by (4.35) and Theorem 2.12. Therefore

Φ′(zi)v
(z)
T =

(
1
2
(κM⊗N,i − κM⊗N,i−1 + κV ) +

ap+ bq + i

n
− n

)
· v(z)

T

=

(
γL(T (i−1)),V + 1

2
κV +

ap+ bq + i

n
− n

)
· v(z)

T , by (4.33),

= c(T (i)/T (i−1))v
(z)
T .

Example 4.10. To illustrate, we apply Theorem 4.9 to the example where g = gln,
a, p > 2, b = q = 2, and k = 1. Figure 4.11 is the Bratteli diagram in 4.8 with edges
labeled by functions of box contents. The edges connecting level −1 to level 0 are labeled
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by the action of γM,N as given in Lemma 2.15. The edges connecting level 0 to level 1 are
labeled by the content of the box added. In general, we would label the edges connecting
level i to level i+ 1, i = 1, 2, . . . , k − 1 by the content of the box added.

By Theorem 4.9, if Φ′ satisfies

cxi = cyi = 1
2
czi = −1

2
n,

then the descending paths in this diagram from (ap) to λ ∈ P1((ap), (bq)) index the basis
of Lλ in (4.28), and Φ′(z1) and Φ′(z0) act on those basis elements by the corresponding
edge labels. Therefore, there are eighteen distinct isotypic components of M ⊗ N ⊗ V ,
six of which correspond to 2-dimensional Hext

1 -modules and twelve of which correspond
to 1-dimensional Hext

1 -modules.

Figure 4.11 (Isotypic components of M ⊗N ⊗ V ).
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Theorem 4.15 will provide explicit formulas for x1, but we can already ascertain the
eigenvalues of x1 and y1. Recall the relations (x1− a)(x1 + p) = 0 = (y1− b)(y1− q) and
x1 + y1 = z1. So on any given one- or two-dimensional module, x1 has eigenvalues from
the set {a,−p} and y1 has the eigenvalues from the set {2,−2}. Furthermore, the sum
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of the values z1 is equal to the sum of the eigenvalues of x1 and y1. On two-dimensional
irreducible modules, x1 and y1 must not act diagonally on this choice of basis, so must
have two distinct eigenvalues (there is one way to achieve this); in fact, we can see
that the sum of the values on each two-dimensional Hext

k -module is a − p, as expected.
On the one-dimensional components, we can see, case-by-case that there is one way to
chose one value from {a,−p} and one value from {2,−2} which sum to the value of z1,
determining the action of x1 and y1.

Notice that in Figure 4.8, each of the partitions in P1((ap), (bq)) comes from exactly
one or two partitions in P((ap), (bq)). This will happen in general.

Lemma 4.12. If µ ∈ P1((ap), (bq)), then there are exactly one or two λ ∈ P((ap), (bq))
for which λ ⊆ µ.

Proof. Recall that P((ap), (bq)) is the set of partitions λ with height ≤ p+ q such that

λq+1 = λq+2 = · · · = λp = a,
λq ≥ max(a, b),

λi + λp+q−i+1 = a+ b, i = 1, . . . , q.
(4.36)

Again, a useful visualization of these partitions is as follows.

ν ′

ν

a b

p q

q

b

a > b :

ν is a partition in a b× q box
ν ′ is the 180◦ rotation of (bq)/ν

ν ′

ν

b a

p q

q

a

a < b :

ν is a partition in a a× q box
ν ′ is the 180◦ rotation of (aq)/ν

We have discussed that this means if you remove a box from λ ∈ P((ap), (bq)) in position
(i, j), then a box must be added to position (a+ b+ 1− i, p+ q + 1− j) to get another
partition in P((ap), (bq)). So now, consider a partition µ ∈ P1((ap), (bq)). To make
things just a bit easier, assume, in addition to having p ≥ q, that if p = q, we choose
a ≥ b. By moving through the criteria in (4.36) and considering addable boxes for a
partition which meets these criteria, we can see that this partition falls into one of the
following categories.

1. µ has height p+ q+ 1: In this case, exactly one box can be removed to a partition
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which satisfies (4.36), the box in position (1, p+ q+ 1). This partition µ looks like

ν ′

ν

a > b :

or

ν ′

ν

a < b :

For example

if (ap) = , (bq) = , and µ = , then µ came from λ = .

2. µq+1 = a+1: In this case, there is exactly one box which can be removed to obtain
a partition which satisfies (4.36), the box in position (a+ 1, q + 1). This partition
µ looks like

ν ′

ν

a > b :

or

ν ′

ν

a < b :

For example,

if (ap) = , (bq) = , and µ = , then µ came from λ = .

3. µ1 = a+ b+ 1: Again, there is exactly one box which can be removed to obtain a
partition which satisfies (4.36), the box in position (a+ b+ 1, 1). This partition µ
looks like

ν ′

ν

a > b :

or

ν ′

ν

a < b :
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For example,

if (ap) = , (bq) = , and µ = , then µ came from λ = .

4. µp+1 = b + 1: This is similar to the case above, but is a little more complex. We
can only see µp+1 = b + 1 when a > b and µq = a. So the only removable box is
the one in position (b+ 1, p+ 1). This partition µ looks like

ν ′

ν

a > b :

or

ν ′

ν
@

@
@

@
@

@
@

@

a < b :

For example,

if (ap) = , (bq) = , and µ = , then µ came from λ = .

5. µj + µp+q−j+1 = a+ b+ 1 for some 1 ≤ j ≤ p, but µj < a+ b+ 1 and µp+q−j+1 <
min(a, b) + 1: This is the case which will yield two partitions. One is the partition
in which we remove the box in position (µj, j); the other is the partition in which
we remove the box in position (a+ b+ 1−µj, p+ q+ 1− j). This partition µ looks
like

x

y

a > b :

or

x

y

a < b :

where the boxes marked x and y are corner boxes, one of x or y has position (i, j),
and the other has position (a+ b+ 1− µj, p+ q + 1− j). For example,

if (ap) = , (bq) = , and µ = ,

then µ came from λ = or λ = .
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The following lemma specifies the contents of the boxes being removed in cases 1-5
in the previous lemma.

Lemma 4.13. Suppose µ ∈ P1((ap), (bq)) and λ ∈ P((ap), (bq)) differ by a box. Then

1. there is exactly one such λ if and only if c(µ/λ) = −p− q, a− q, a+ b, or b− p,
and

2. if c(µ/λ) 6= −p−q, a−q, a+b, or b−p, then there is exactly one λ′ ∈ P((ap), (bq))
distinct from λ which differs from µ by a box, and

c(µ/λ′) = a− p+ b− q − c(µ/λ).

Proof. If µ ∈ P1((ap), (bq)) satisfies cases 1-4 in Lemma 4.12, and B is the unique
removable box, then

c(B) = i− j = −p− q, a− q, a+ b, or b− p.

The final case yielded two partitions which differ by the movement of one box. As
we saw in Remark 2.14, if a box in position (i, j) in λ ∈ P((ap), (bq)) can be moved to
get another partition in P((ap), (bq)), then that box must satisfy either

(1) max(a, b) < i ≤ a+ b and 0 < j ≤ q, or

(2) 0 < i ≤ min(a, b) and p < j ≤ p+ q.

If (i, j) satisfies (1), then

max(a, b)− q < i− j < a+ b− q.

So since p ≥ q,

−p− q < i− j, a− q < i− j, b− p < i− j, and i− j < a+ b.

If (i, j) satisfies (2), then

−p− q < i− j < min(a, b)− p.

So, similarly,

−p− q < i− j, i− j < a− q, i− j < b− p and i− j < a+ b.

Thus, if there are two partitions in P((ap), (bq)) which can be obtained by removing
a box from µ, then the contents of those boxes are distinct from −p − q, a − q, a +
b, and b− p.
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4.3 Seminormal Representations

Recall, a, b, p, q are non-negative integers with q ≤ p. Throughout this section, we
consider the sets of tableaux

Tλ =
{
T = (T (0), . . . , T (k) = λ) | T (0) ∈ P((ap), (bq)), T (i) ∈ Pi((ap), (bq))

}
. (4.37)

The box added to T (i) to get T (i−1) is bi = T (i)/T (i−1). Define

cT (0) = abq + 2
∑
B∈Bµ

(
c(B)− 1

2
(a− p+ b− q)

)
,

cT (i) = c(T (i)/T (i−1))− 1
2
(a− p+ b− q),

where Bµ if the set of boxes in µ in rows p + 1 and below as described in Lemma 2.15.
We can think of the values cT (1), . . . , cT (k) as shifted contents.

Lemma 4.14. Given the information

cT (1), . . . , cT (k), and T (k)

the tableau T is determined.

Proof. This can be shown by induction on k. The key observation is that the value cT (i),
i > 0, determines the diagonal on which T (i)/T (i−1) lies. In any given partition, there is
at most one removable box on any diagonal. So cT (k) and T (k) determines T (k−1). By
iterating, cT (i) and T (i) determines T (i−1), so we can recover T (k−1), T (k−2), . . . , T (0).

Two consecutive boxes bi and bi+1 are in the same row or column if and only if
c(bi) = c(bi+1)± 1. So for any i for which cT (i) 6= cT (i+ 1)± 1, we can define

siT = (T (0), T (1), . . . , T (i+1), T (i), . . . , T (k)) (4.38)

as the tableau constructed from T by switching the order of adding the ith and (i+ 1)th

boxes. Notice that if cT (i) 6= cT (i + 1) ± 1, then siT is the only tableau which varies
from T only at the ith position; otherwise, if cT (i) = cT (i+ 1)± 1, then there is no such
tableau.

Similarly, for any µ ∈ P1((ap), (bq)), there are exactly one or two partitions ν ∈
P((ap), (bq)) which differ from µ by a box (see Lemma 4.12). In other words, there are
exactly one or two ν ∈ P((ap), (bq)) which could be the first step in a tableau with
a given shifted content list cT (2), . . . , cT (k). Lemma 4.13 tells us that this difference
is determined by cT (1); i.e. there is one when cT (1) = 1

2
(±(a + p) ± (b + q)), and

there are two otherwise (remember to shift the values given in Lemma 4.13). So if
cT (1) 6= 1

2
(±(a+ p)± (b+ q)) define

s0T = (s0T
(0), T (1), . . . , T (k)), (4.39)
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where s0T
(0) is the unique partition built by moving T (1)/T (0) to its complementary

position (see Remark 2.8). Recall by 4.13,

c(T (1)/s0T
(0)) = a− p+ b− q − 2c(T (1)/T (0)).

So
cs0T (1) = −cT (1). (4.40)

Theorem 4.15. Fix some λ ∈ Pk((ap), (bq)), and define

L(ap),(bq)
λ = spanC{ vT | T ∈ Tλ },

as a vector space with basis indexed by all tableaux from any µ ∈ P((ap), (bq)) to λ (Tλ
is defined in (4.37)). Define an action of Hext

k by

wi · vT = cT (i)vT , for 0 ≤ i ≤ k

tsi · vT = [ti]T,TvT + [ti]T,siTvsiT , for 1 ≤ i ≤ k − 1

x1 · vT = [x1]T,TvT + [x1]T,s0Tvs0T

where [ti]T,siT = 0 if and only if cT (i) = cT (i + 1) ± 1, and [x1]T,s0T = 0 if and only if

cT (1) = 1
2
(±(a + p) ± (b + q)). Then L(ap),(bq)

λ is a simple Hext
k -module with respect to

this action if

1. [ti]T,T = 1/(cT (i+ 1)− cT (i))

2. [x1]T,T =
(a− p)cT (1) + c2

T (1) +
(

(a+p)+(b+q)
2

)(
(a+p)−(b+q)

2

)
2cT (1)

3. Commutation:

[ti]s0T,sis0T [x1]T,s0T = [ti]T,siT [x1]siT,s0siT for i > 1,

4. Involutions:
[ti]T,siT [ti]siT,T = 1− ([ti]T,T )2

5. Quadratic relation:

[x1]T,s0T [x1]s0T,T =
− 1

(2cT (1))2

(
cT (1) + (a+p)+(b+q)

2

)(
cT (1)− (a+p)−(b+q)

2

)
·
(
cT (1)− (a+p)+(b+q)

2

)(
cT (1) + (a+p)−(b+q)

2

)
6. Braid relations:

[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT = [ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siT

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T
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Before we provide a proof of this theorem, we will give a nice example of such a
seminormal representation.

Corollary 4.16. Define an action of Hext
k on L(ap),(bq)

λ by

wi · vT = cT (i)vT , for 0 ≤ i ≤ k

tsi · vT = [ti]T,TvT + [ti]T,siTvsiT , for 1 ≤ i ≤ k − 1

x1 · vT = [x1]T,TvT + [x1]T,s0Tvs0T

and

[ti]T,S =


√

1− [ti]2T,T , if S 6= T

1/(cT (i+ 1)− cT (i)), if S = T .

[x1]T,S =



√√√√√ − 1
(2cT (1))2

(
cT (1) + (a+p)+(b+q)

2

)(
cT (1)− (a+p)−(b+q)

2

)
·
(
cT (1)− (a+p)+(b+q)

2

)(
cT (1) + (a+p)−(b+q)

2

) , if S 6= T

(a− p)cT (1) + c2
T (1) +

(
(a+p)+(b+q)

2

)(
(a+p)−(b+q)

2

)
2cT (1)

if S = T .

then L(ap),(bq)
λ is a simple Hext

k -module.

Proof. The values for [ti]T,T and [x1]T,T are pulled directly from Theorem 4.15, so we
need only check criteria 3-6: Commutation, Quadratic relation, and Braid relations. We
will verify these using the fact that [x1]T,S and [ti]T,S for S 6= T are functions of shifted
contents cT (j).

Commutation: For j 6= i± 1, cT (i) = csjT (i), cT (i+ 1) = csjT (i+ 1), cT (j) = csiT (j),
and cT (j + 1) = csiT (j + 1), so

[ti]sjT,sisjT = [ti]T,siT and [tj]T,sjT = [tj]siT,sjsiT .

Similarly, for i > 1, cT (i) = cs0T (i) and cT (i+ 1) = cs0T (i+ 1), so

[ti]s0T,sis0T = [ti]T,siT ,

and cT (1) = csiT (1), so
[x1]T,s0T = [x1]siT,s0siT .

Thus criteria 3 is satisfied.
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Quadratic Relation: By equation (4.40),

[x1]T,s0T = [x1]T,s0T ,

so criteria 4 is satisfied.

Braid relations: For the first braid relation, let A = cT (i), B = cT (i + 1), and
C = cT (i+ 2). Either both sides of the equality

[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT = [ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siT

are zero, or the six tableaux involved sit in a subgraph of the Bratteli diagram depicted
as follows.

T (i)

A
B

C

T (i+1)

B
C A C A

B

T (i+2)

C
B

A

T (i+3)

This encodes the fact that for whichever of these S exist, their shifted contents are given
by the following table:

S → T siT si+1T sisi+1T si+1siT sisi+1siT
cS(i) A B A C B C

cS(i+ 1) B A C A C B
cS(i+ 2) C C B B A A
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So

[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT = [ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siT

since

[ti]T,siT =

√
1−

(
1

B−A

)2

[ti+1]siT,si+1siT =

√
1−

(
1

C−A

)2

[ti]si+1siT,sisi+1siT =

√
1−

(
1

C−B

)2

[ti+1]T,si+1T =

√
1−

(
1

C−B

)2

[ti]si+1T,sisi+1T =

√
1−

(
1

C−A

)2

[ti+1]sisi+1T,sisi+1siT =

√
1−

(
1

B−A

)2
.

For the second braid relation, let A = cT (1), and B = cT (2). So either both sides of the
equality

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T

are zero, or the eight tableaux involved sit in a subgraph of the Bratteli diagram depicted
as follows.

(ap)

T (0)

A
B−A B−B A−B −A

T (1)

B
A

−A −B

T (2)
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This encodes the fact that for whichever of these S exist, their shifted contents are given
by the following table:

S → T s0T s1T s0s1T s1s0T s0s1s0T s1s0s1T s0s1s0s1T
cS(1) A −A B −B B −B A −A
cS(2) B B A A −A −A −B −B

Therefore,

[x1]s1T,s0s1T = [x1]s1s0T,s0s1s0T ,

[x1]s1s0s1T,s0s1s0s1T = [x1]T,s0T ,

[t1]T,s1T = [t1]s0s1s0T,s1s0s1s0T , and

[t1]s0s1T,s1s0s1T = [t1]s0T,s1s0T ,

and so

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T .

Thus criteria 6 is satisfied.

Proof of Theorem 4.15. We prove Theorem 4.15 in two parts. In Part 1, we will check
that the relations in the presentation of Hext

k given in Theorem 4.3 hold, showing that

L(ap),(bq)
λ is a Hext

k -module. In Part 2, we will verify that L(ap),(bq)
λ is simple.

Part 1: L(ap),(bq)
λ is a Hext

k -module. By (4.12), the elements w0, w1, . . . wk generate a
commutative subalgebra of Hext

k , so we can begin by fixing the diagonal action as stated
above,

w0 · vT =

(
abq + 2

∑
B∈Bλ

(
c(B)− 1

2
(a− p+ b− q)

))
vT

wi · vT = cT (i)vT , for 1 ≤ i ≤ k.

Now write
tsivT =

∑
S∈Tλ

[ti]T,SvS and x1vT =
∑
S∈Tλ

[x1]T,SvS,

where Tλ is the set of tableaux (4.37) and [ti]T,S, [x1]T,S ∈ C.
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Claim 1: Relations relations (4.4), and (4.9), (4.13) are satisfied if

tsivT = [ti]T,TvT + [ti]T,siTvsiT , for i = 1, . . . , k,

[ti]T,T =
1

cT (i+ 1)− cT (i)
and [ti]T,S[ti]S,T = 1− ([ti]T,T )2.

Proof: The first commutation relation (4.9), tsiwj = wjtsi for j 6= i, i+ 1, implies

tsiwj · vT =
∑
S∈Tλ

cT (j)[ti]T,SvS

= wjtsi · vT =
∑
S∈Tλ

cS(j)[ti]T,SvS.

So for each S, either

[ti]T,S = 0 or cT (j) = cS(j) for all j 6= i, i+ 1. (4.41)

The first twisting relation (4.13), together with relation (4.4), reqire

tsiwi − wi+1tsi = −1 = witsi − tsiwi+1,

i.e.,

(tsiwi − wi+1tsi) · vT =
∑
S∈Tλ

(cT (i)− cS(i+ 1))[ti]T,SvS

= −vT ,

= (witsi − tsiwi+1) · vT =
∑
S∈Tλ

(cS(i)− cT (i+ 1))[ti]T,SvS.

So

[ti]T,T =
1

cT (i+ 1)− cT (i)
(4.42)

and for S 6= T , either

cS(i+ 1) = cT (i) and cS(i) = cT (i+ 1) or [ti]T,S = 0. (4.43)

By Lemma 4.14, equations (4.41) and (4.43) tell us

tsivT = [ti]T,TvT + [ti]T,siTvsiT , for i = 1, . . . , k,

where [ti]T,siT = 0 if cT (i) = cT (i + 1) ± 1. Finally, he involution relation (4.4),
t2si = 1, implies

[ti]T,T = −[ti]siT,siT and [ti]T,S[ti]S,T = 1− ([ti]T,T )2.

The first is implied by [ti]T,T = 1
cT (i+1)−cT (i)

, but the second places a new condition
on coefficients. This concludes the proof of Claim 1. �
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Claim 2: Relation (4.10) is satisfied if

x1vT = [x1]T,TvT+[x1]T,s0Tvs0T , where [x1]T,s0T = 0 if cT (1) = ±(a+ p)± (b+ q).

Furthermore, (4.8), (4.14), and (4.15) are additionally satisfied if

[x1]T,T =
(a− p)cT (1) + c2

T (1) +
(

(a+p)+(b+q)
2

)(
(a+p)−(b+q)

2

)
2cT (1)

and

[x1]T,s0T [x1]s0T,T =
− 1

(2cT (1))2

(
cT (1) + (a+p)+(b+q)

2

)(
cT (1)− (a+p)−(b+q)

2

)
·
(
cT (1)− (a+p)+(b+q)

2

)(
cT (1) + (a+p)−(b+q)

2

)
.

Proof: The relation x1wi = wix1 for i > 1 implies

x1wivT =
∑
S∈Tλ

cT (i)[x1]T,SvS

= wix1vT =
∑
S∈Tλ

cS(i)[x1]T,SvS

So by Lemmas 4.12 and 4.14,

x1vT = [x1]T,TvT + [x1]T,s0Tvs0T , (4.44)

where [x1]T,s0T = 0 if cT (1) = ±(a+ p)± (b+ q).

Now let K =
(
a+p+b+q

2

) (
a+p−(b+q)

2

)
, so the third twisting relation (4.15),

x1w1 = −w1x1 + (a− p)w1 + w2
1 +K,

says

(x1w1 + w1x1)vT = (cT (1) + cT (1))[x1]T,TvT + (cT (1) + cs0T (1))[x1]T,s0Tvs0T

= 2cT (1)[x1]T,TvT

=
(
(a− p)w1 + w2

1 +K
)
vT =

(
(a− p)cT (1) + (cT (1))2 +K

)
vT

So

[x1]T,T =
((a− p)cT (1) + (cT (1))2 +K)

2cT (1)
. (4.45)

If S = s0T exists, then the quadratic relation (4.8), (x1 − a)(x1 + p) = 0, implies

x2
1vT = ([x1]2T,T + [x1]T,S[x1]S,T )vT

+ ([x1]T,T [x1]T,S + [x1]T,S[x1]S,S)vS

= (a− p)x1 + ap = ((a− p)[x1]T,T + ap)vT + (a− p)[x1]T,SvS.
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We already could conclude ([x1]T,T [x1]T,S + [x1]T,S[x1]S,S) = (a − p)[x1]T,S from
(4.45), so this simply tells us that

[x1]T,S[x1]S,T = −[x1]2T,T + (a− p)[x1]T,T + ap

= −
(

((a− p)cT (1) + c2
T (1) +K)

2cT (1)

)2

+ (a− p)
(

((a− p)cT (1) + c2
T (1) +K)

2cT (1)

)
+ ap

=

(
(a− p)cT (1) + c2

T (1) +K

2cT (1)

)(
(a− p)cT (1)− (c2

T (1) +K)

2cT (1)

)
+ ap

=
(a− p)2c2

T (1)− (c2
T (1) +K)2 + 4c2

T (1)ap

4c2
T (1)

= −c
4
T (1)− ((a− p)2 − 2K + 4ap)c2

T (1) +K2

4c2
T (1)

= −
c4
T (1)− 1

2
((a+ p)2 − (b+ q)2)c2

T (1) +
(

1
4
((a+ p)2 − (b+ q)2)

)2

4c2
T (1)

= − 1

4c2
T (1)

(
cT (1) +

(a+ p) + (b+ q)

2

)(
cT (1)− (a+ p)− (b+ q)

2

)
(
cT (1)− (a+ p) + (b+ q)

2

)(
cT (1) +

(a+ p)− (b+ q)

2

)
.

Finally, the second twisting relation (4.14), x1(w0 + w1) = (w0 + w1)x1, implies

x1(w0 + w1)vT = (cT (0) + cT (1))[x1]T,TvT + (cT (0) + cT (1))[x1]T,s0Tvs0T

= (w0 + w1)x1vT = (cT (0) + cT (1))[x1]T,TvT + (cs0T (0) + cs0T (1))[x1]T,s0Tvs0T .

So we require

[x1]T,s0T = [x1]T,s0T = 0 or cT (0) + cT (1) = cs0T (0) + cs0T (1).

Recall from (4.40) that if vs0T exists, then cs0T (1) = −cT (1). Therefore we need

[x1]T,s0T = [x1]T,s0T = 0 or cT (1) = 1
2
(cs0T (0)− cT (0)).

But this is just a consequence of the construction in Lemmas 2.13 and 2.15. This
concludes the proof of Claim 2.�

Claim 3: Relations (4.5) and (4.11) are satisfied if

[ti]sjT,sisjT [tj]T,sjT = [ti]T,siT [tj]siT,sjsiT for j 6= i± 1,
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and
[ti]s0T,sis0T [x1]T,s0T = [ti]T,siT [x1]siT,s0siT for i > 1,

respectively.

Proof: For j 6= i± 1, relation (4.5) implies

tsitsj = [ti]T,T [tj]T,TvT + [ti]T,siT [tj]T,TvsiT

+ [ti]sjT,sjT [tj]T,sjTvsjT + [ti]sjT,sisjT [tj]T,sjTvsisjT

= tsj tsi = [ti]T,T [tj]T,TvT + [ti]T,siT [tj]siT,siTvsiT

+ [ti]T,T [tj]T,siTvsjT + [ti]T,siT [tj]siT,sjsiTvsjsiT .

If siT and sjT exist, we already know [tj]T,T = [tj]siT,siT and [ti]sjT,sjT = [ti]T,T
because cT (j) = csiT (j) and cT (i) = csjT (i) for j 6= i± 1. However, since sisjT =
sjsiT , we gain the requirement

[ti]sjT,sisjT [tj]T,sjT = [ti]T,siT [tj]siT,sjsiT .

Similarly, for i > 1, relation (4.11) implies

tsix1vT = [ti]T,T [x1]T,TvT + [ti]s0T,s0T [x1]T,s0Tvs0T

+ [ti]T,siT [x1]T,TvsiT + [ti]s0T,sis0T [x1]T,s0Tvsis0T

= x1tsivT = [ti]T,T [x1]T,TvT + [ti]T,T [x1]T,s0Tvs0T

+ [ti]T,siT [x1]siT,siTvsiT + [ti]T,siT [x1]siT,s0siTvsis0T

since s0siT = sis0T for i > 1. If s0T and siT exists, we already require that

[ti]s0T,s0T = [ti]T,T and[x1]T,T = [x1]siT,siT

since cT (i) = cs0T (i), cT (i + 1) = cs0T (i + 1), and cT (1) = csiT (1). However, given
s0T , siT, and s0siT exist, we gain the requirement

[ti]s0T,sis0T [x1]T,s0T = [ti]T,siT [x1]siT,s0siT , (4.46)

concluding the proof of Claim 3. �

Claim 4: If

[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT

=[ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siT

then the braid relation (4.6)

tsitsi+1
tsivT = tsi+1

tsitsi+1
vT
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is satisfied.

Proof: If vS exists for S = siT , si+1T , sisi+1T , si+1siT , sisi+1siT , then

tsitsi+1
tsivT = tsitsi+1

([ti]T,TvT + [ti]T,siTvsiT )

= tsi

(
[ti]T,T

(
[ti+1]T,TvT + [ti+1]T,si+1Tvsi+1T

)
+ [ti]T,siT

(
[ti+1]siT,siTvsiT + [ti+1]siT,si+1siTvsi+1siT

) )
= [ti]T,T [ti+1]T,T ([ti]T,TvT + [ti]T,siTvsiT )

+ [ti]T,T [ti+1]T,si+1T

(
[ti]si+1T,si+1Tvsi+1T + [ti]si+1T,sisi+1Tvsisi+1T

)
+ [ti]T,siT [ti+1]siT,siT ([ti]siT,siTvsiT + [ti]siT,sisiTvsisiT )

+ [ti]T,siT [ti+1]siT,si+1siT(
[ti]si+1siT,si+1siTvsi+1siT + [ti]si+1siT,sisi+1siTvsisi+1siT

)
=
(
[ti]

2
T,T [ti+1]T,T + [ti]T,siT [ti+1]siT,siT [ti]siT,T

)
vT

+ ([ti]T,T [ti+1]T,T [ti]T,siT + [ti]T,siT [ti+1]siT,siT [ti]siT,siT ) vsiT

+
(
[ti]T,T [ti+1]T,si+1T [ti]si+1T,si+1T

)
vsi+1T

+
(
[ti]T,T [ti+1]T,si+1T [ti]si+1T,sisi+1T

)
vsisi+1T

+
(
[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,si+1siT

)
vsi+1siT

+
(
[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT

)
vsisi+1siT

because sisiT = T . Similarly,

tsi+1
tsitsi+1

vT =
(
[ti+1]2T,T [ti]T,T + [ti+1]T,si+1T [ti]si+1T,si+1T [ti+1]si+1T,T

)
vT

+
(
[ti+1]T,T [ti]T,T [ti+1]T,si+1T

+ [ti+1]T,si+1T [ti]si+1T,si+1T [ti+1]si+1T,si+1T

)
vsi+1T

+ [ti+1]T,T [ti]T,siT [ti+1]siT,siTvsiT

+ [ti+1]T,T [ti]T,siT [ti+1]siT,si+1siTvsi+1siT

+ [ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1Tvsisi+1T

+ [ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siTvsisi+1siT .

Notice that if one of the above vS does not exist, the result is the same, as whenever
S is undefined the coefficient on vS is 0. So, to check the identity tsitsi+1

tsivT =
tsi+1

tsitsi+1
vT , we show that each coefficient in tsitsi+1

tsivT − tsi+1
tsitsi+1

vT is 0.

Let A = cT (i), B = cT (i + 1), and C = cT (i + 2). By definition, for whichever of
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these S exist, their shifted contents are given by the following table.

S → T siT si+1T sisi+1T si+1siT sisi+1siT
cS(i) A B A C B C

cS(i+ 1) B A C A C B
cS(i+ 2) C C B B A A

So, in the expansion of tsitsi+1
tsivT − tsi+1

tsitsi+1
vT , the coefficient on vS is given

by the following.

S = T :(
[ti]

2
T,T [ti+1]T,T + [ti]T,siT [ti+1]siT,siT [ti]siT,T

)
−
(
[ti+1]2T,T [ti]T,T + [ti+1]T,si+1T [ti]si+1T,si+1T [ti+1]si+1T,T

)
= [ti]T,T [ti+1]T,T ([ti]T,T − [ti+1]T,T ) + ([ti]T,siT [ti]siT,T )[ti+1]siT,siT

− ([ti+1]T,si+1T [ti+1]si+1T,T )[ti]si+1T,si+1T

=
(

1
B−A

) (
1

C−B

) (
1

B−A −
1

C−B

)
+
(

1− 1
(B−A)2

) (
1

C−A

)
−
(

1− 1
(C−B)2

) (
1

C−A

)
=
(

1
(C−B)(C−A)(B−A)

+ 1
C−A

)
−
(

1
(C−B)(C−A)(B−A)

+ 1
C−A

)
= 0

S = siT :

[ti]T,T [ti+1]T,T [ti]T,siT + [ti]T,siT [ti+1]siT,siT [ti]siT,siT − [ti+1]T,T [ti]T,siT [ti+1]siT,siT

= [ti]T,siT ([ti]T,T [ti+1]T,T + [ti+1]siT,siT [ti]siT,siT − [ti+1]T,T [ti+1]siT,siT )

= [ti]T,siT
(

1
B−A

1
C−B + 1

C−A
1

B−A −
1

C−B
1

C−A

)
= 0

S = si+1T :

[ti]T,T [ti+1]T,si+1T [ti]si+1T,si+1T

−
(
[ti+1]T,T [ti]T,T [ti+1]T,si+1T + [ti+1]T,si+1T [ti]si+1T,si+1T [ti+1]si+1T,si+1T

)
= [ti+1]T,si+1T

(
[ti]T,T [ti]si+1T,si+1T − [ti+1]T,T [ti]T,T

− [ti]si+1T,si+1T [ti+1]si+1T,si+1T

)
= [ti+1]T,si+1T

((
1

B−A

)(
1

C−A

)
−
(

1
C−B

)(
1

B−A

)
−
(

1
C−A

)(
1

B−C

))
= 0
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S = sisi+1T :

[ti]T,T [ti+1]T,si+1T [ti]si+1T,sisi+1T

−[ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1T

= [ti+1]T,si+1T [ti]si+1T,sisi+1T

(
[ti]T,T − [ti+1]sisi+1T,sisi+1T

)
= [ti+1]T,si+1T [ti]si+1T,sisi+1T

((
1

B−A

)
−
(

1
B−A

))
= 0

S = si+1siT :

[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,si+1siT

−[ti+1]T,T [ti]T,siT [ti+1]siT,si+1siT

= [ti]T,siT [ti+1]siT,si+1siT

(
[ti]si+1siT,si+1siT − [ti+1]T,T

)
= [ti]T,siT [ti+1]siT,si+1siT

((
1

C−B

)
−
(

1
C−B

))
= 0

S = sisi+1siT : The expression

[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT

−[ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siT

cannot be reduced using the determined values.

Therefore, if
[ti]T,siT [ti+1]siT,si+1siT [ti]si+1siT,sisi+1siT

= [ti+1]T,si+1T [ti]si+1T,sisi+1T [ti+1]sisi+1T,sisi+1siT

then the braid relation

tsitsi+1
tsivT = tsi+1

tsitsi+1
vT

is satisfied, concluding the proof of Claim 4. �

Claim 5: If

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T

then the braid relation (4.4)

(x1ts1x1ts1 + x1ts1)vT = (ts1x1ts1x1 + ts1x1)vT
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is satisfied.

Proof: Let aT = [x1]T,T , bT = [x1]T,s0T , dT = [t1]T,T , eT = [t1]T,s1T .

x1ts1vT = x1(dTvT + eTvs1T )

= aTdTvT + bTdTvs0T + as1T eTvs1T + bs1T eTvs0s1T

So

x1ts1x1ts1vT

= aTdTx1ts1vT + bTdTx1ts1vs0T

+ as1T eTx1ts1vs1T + bs1T eTx1ts1vs0s1T

= aTdT (aTdTvT + bTdTvs0T + as1T eTvs1T + bs1T eTvs0s1T )

+ bTdT (as0Tds0Tvs0T + bs0Tds0TvT + as1s0T es0Tvs1s0T + bs1s0T es0Tvs0s1s0T )

+ as1T eT (as1Tds1Tvs1T + bs1Tds1Tvs0s1T + aT es1TvT + bT es1Tvs0T )

+ bs1T eT (as0s1Tds0s1Tvs0s1T + bs0s1Tds0s1Tvs1T

+ as1s0s1T es0s1Tvs1s0s1T + bs1s0s1T es0s1Tvs0s1s0s1T )

= (a2
Td

2
T + bT bs0TdTds0T + aTas1T eT es1T )vT

+ (aT bTd
2
T + as0T bTdTds0T + as1T bT eT es1T )vs0T

+ (aTas1TdT eT + a2
s1T
ds1T eT + bs1T bs0s1Tds0s1T eT )vs1T

+ (aT bs1TdT eT + as1T bs1Tds1T eT + as0s1T bs1T eTds0s1T )vs0s1T

+ (as1s0T bTdT es0T )vs1s0T

+ (bs1s0T bTdT es0T )vs0s1s0T

+ (as1s0s1T bs1T eT es0s1T )vs1s0s1T

+ (bs1T bs1s0s1T eT es0s1T )vs0s1s0s1T
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and

(x1ts1x1ts1 + x1ts1)vT

= (a2
Td

2
T + bT bs0TdTds0T + aTas1T eT es1T + aTdT )vT

+ (aT bTd
2
T + as0T bTdTds0T + as1T bT eT es1T + bTdT )vs0T

+ (aTas1TdT eT + a2
s1T
ds1T eT + bs1T bs0s1Tds0s1T eT + as1T eT )vs1T

+ (aT bs1TdT eT + as1T bs1Tds1T eT + as0s1T bs1T eTds0s1T + bs1T eT )vs0s1T

+ (as1s0T bTdT es0T )vs1s0T

+ (bs1s0T bTdT es0T )vs0s1s0T

+ (as1s0s1T bs1T eT es0s1T )vs1s0s1T

+ (bs1T bs1s0s1T eT es0s1T )vs0s1s0s1T

Similarly,

ts1x1vT = ts1(aTvT + bTvs0T )

= aTdTvT + bTds0Tvs0T + aT eTvs1T + bT es0Tvs1s0T .

So, since s0s1s0s1T = s1s0s1s0T ,

ts1x1ts1x1vT

= aTdT ts1x1vT + bTds0T ts1x1vs0T + aT eT ts1x1vs1T + bT es0T ts1x1vs1s0T

= aTdT (aTdTvT + bTds0Tvs0T + aT eTvs1T + bT es0Tvs1s0T )

+ bTds0T (as0Tds0Tvs0T + bs0TdTvT + as0T es0Tvs1s0T + bs0T eTvs1T )

+ aT eT (as1Tds1Tvs1T + bs1Tds0s1Tvs0s1T + as1T es1TvT + bs1T es0s1Tvs1s0s1T )

+ bT es0T (as1s0Tds1s0Tvs1s0T + bs1s0Tds0s1s0Tvs0s1s0T

+ as1s0T es1s0Tvs0T + bs1s0T es0s1s0Tvs1s0s1s0T )

= (a2
Td

2
T + bT bs0TdTds0T + aTas1T eT es1T )vT

+ (aT bTdTds0T + as0T bTd
2
s0T

+ as1s0T bT es0T es1s0T )vs0T

+ (a2
TdT eT + bT bs0Tds0T eT + aTas1Tds1T eT )vs1T

+ (aT bs1Tds0s1T eT )vs0s1T

+ (aT bTdT es0T + as0T bTds0T es0T + as1s0T bTds1s0T es0T )vs1s0T

+ (bT bs1s0Tds0s1s0T es0T )vs0s1s0T

+ (aT bs1T eT es0s1T )vs1s0s1T

+ (bT bs1s0T es0T es0s1s0T )vs0s1s0s1T
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and

(ts1x1ts1x1 + ts1x1)vT

= (a2
Td

2
T + bT bs0TdTds0T + aTas1T eT es1T + aTdT )vT

+ (aT bTdTds0T + as0T bTd
2
s0T

+ as1s0T bT es0T es1s0T + bTds0T )vs0T

+ (a2
TdT eT + bT bs0Tds0T eT + aTas1Tds1T eT + aT eT )vs1T

+ (aT bs1Tds0s1T eT )vs0s1T

+ (aT bTdT es0T + as0T bTds0T es0T + as1s0T bTds1s0T es0T + bT es0T )vs1s0T

+ (bT bs1s0Tds0s1s0T es0T )vs0s1s0T

+ (aT bs1T eT es0s1T )vs1s0s1T

+ (bT bs1s0T es0T es0s1s0T )vs0s1s0s1T

Let A = cT (1), B = cT (2). By definition, for whichever of these S exist, their
shifted contents are given by the following table.

S → T s0T s1T s0s1T s1s0T s0s1s0T s1s0s1T s0s1s0s1T
cS(1) A −A B −B B −B A −A
cS(2) B B A A −A −A −B −B

Thus the values of aS and dS are given by

S → T s0T s1T s0s1T
aS aT −aT + (a− p) as1T −as1T + (a− p)
dS

1
B−A

1
B+A

−dT ds0T

S → s1s0T s0s1s0T s1s0s1T s0s1s0s1T
aS as1T −as1T + (a− p) aT −aT + (a− p)
dS −ds0T dT −ds0T −dT

Furthermore recall that bT bs0T = −a2
T +(a−p)aT +ap and es1T eT = 1−d2

T . So the
coefficients on vS in x1x2−x2x1 are determined by the following eight calculations.

S = T :

a2
Td

2
T + bT bs0TdTds0T + aTas1T eT es1T + aTdT

−(a2
Td

2
T + bT bs0TdTds0T + aTas1T eT es1T + aTdT )

= 0
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S = s0T :

aT bTd
2
T + as0T bTdTds0T + as1T bT eT es1T + bTdT

−(aT bTdTds0T + as0T bTd
2
s0T

+ as1s0T bT es0T es1s0T + bTds0T )

= bT
(
(aTdT + as0Tds0T + 1)(dT − ds0T )

+ as1T eT es1T − as1s0T es0T es1s0T
)

= bT
(
(aTdT + (−aT + (a− p))ds0T + 1)(dT − ds0T )

+ as1T (1− d2
T )− as1T (1− d2

s0T
)
)

= bT (dT − ds0T )
(
aT (dT − ds0T ) + (a− p)ds0T + 1− as1T (dT + ds0T )

)
= bT

(
2A

(B − A)(B + A)

)
((

(a− p)A+ A2 +K

2A

)(
2A

(B − A)(B + A)

)
+ (a− p)

(
1

B + A

)
+ 1

−
(

(a− p)B +B2 +K

2B

)(
2B

(B − A)(B + A)

))

= bT

(
2A

(B − A)(B + A)2

)
((

(a− p)A+ A2 +K

(B − A)

)
+ (a− p)

+B + A−
(

(a− p)B +B2 +K

(B − A)

))
= 0
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S = s1T :

aTas1TdT eT + a2
s1T
ds1T eT + bs1T bs0s1Tds0s1T eT + as1T eT

−(a2
TdT eT + bT bs0Tds0T eT + aTas1Tds1T eT + aT eT )

= eT
(
(aTdT + as1Tds1T + 1)(as1T − aT )

+ (−a2
s1T

+ (a− p)as1T + ap)ds0s1T

− (−a2
T + (a− p)aT + ap)ds0T

)
= eT

(
((aT − as1T )dT + 1)(as1T − aT )

+ (−a2
s1T

+ (a− p)as1T + ap+ a2
T − (a− p)aT − ap)ds0T

)
= eT (as1T − aT )(

(aT − as1T )dT + 1− (as1T + aT )ds0T + (a− p)ds0T
)

= eT (as1T − aT )((
(a− p)A+ A2 +K

2A

)(
2A

(B − A)(B + A)

)
−
(

(a− p)B +B2 +K

2B

)(
2B

(B − A)(B + A)

)
+ 1 + (a− p) 1

B + A

)

=
eT (as1T − aT )

B + A((
(a− p)A+ A2 +K

(B − A)

)
−
(

(a− p)B +B2 +K

(B − A)

)
+B + A+ (a− p)

)
= 0
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S = s0s1T :

aT bs1TdT eT + as1T bs1Tds1T eT + as0s1T bs1T eTds0s1T

+ bs1T eT − aT bs1Tds0s1T eT
= bs1T eT

(
aTdT − as1TdT

+ (−as1T + (a− p))ds0T + 1− aTds0T
)

= bs1T eT (aT (dT − ds0T )− as1T (dT + ds0T ) + (a− p)ds0T + 1)

= 0

(same as above)

S = s1s0T :

(as1s0T bTdT es0T )

−(aT bTdT es0T + as0T bTds0T es0T + as1s0T bTds1s0T es0T + bT es0T )

= bT es0T (as1s0TdT − aTdT − as0Tds0T − as1s0Tds1s0T − 1)

= bT es0T (as1TdT − aTdT − (−aT + (a− p))ds0T + as1Tds0T − 1)

= bT es0T (as1T (dT + ds0T )− aT (dT − ds0T )− (a− p)ds0T − 1)

= 0.

(same as above)

S = s0s1s0T :

bT bs1s0TdT es0T − bT bs1s0Tds0s1s0T es0T = 0

because ds0s1s0T = dT .

S = s1s0s1T :

as1s0s1T bs1T eT es0s1T − aT bs1T eT es0s1T = 0

because as1s0s1T = aT .

S = s0s1s0s1T : The expression

bs1T bs1s0s1T eT es0s1T − bT bs1s0T es0T es0s1s0T
cannot be simplified from the determined values.

Therefore, if

[x1]s1T,s0s1T [x1]s1s0s1T,s0s1s0s1T [t1]T,s1T [t1]s0s1T,s1s0s1T

= [x1]T,s0T [x1]s1s0T,s0s1s0T [t1]s0T,s1s0T [t1]s0s1s0T,s1s0s1s0T

then the braid relation

(x1ts1x1ts1 + x1ts1)vT = (ts1x1ts1x1 + ts1x1)vT

is satisfied, thus concluding the proof of Claim 5. �

This concludes Part 1, showing that L(ap),(bq)
λ is a Hext

k -module. �
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Part 2: L(ap),(bq)
λ is simple.

We will first show that any nontrivial submodule of L(ap),(bq)
λ contains some basis element

vT , T ∈ Tλ. We will then prove that any basis element vT generates L(ap),(bq)
λ , and

therefore conclude that L(ap),(bq)
λ contains no nontrivial proper submodules.

Claim 1: If 0 6= v ∈ L(ap),(bq)
λ , then Hext

k v contains some element of the basis vT ,
T ∈ Tλ.
Proof. For any S ∈ Tλ, let

WS = (w1 − cS(1))2 + (w2 − cS(2))2 + · · ·+ (wk − cS(k))2.

By Lemma 4.14,

WSvT =

(
k∑
i=1

(cT (i)− cS(i))2

)
vT = 0 if and only if T = S.

Therefore, if

PrT =
∏

S ∈ Tλ
S 6= T

(
WS∑k

i=1(cT (i)− cS(i))2

)

then
PrTvS = δSTvT .

Write
v =

∑
S∈Tλ

dSvS, dS ∈ C.

Since v 6= 0, there is some dT 6= 0, and so vT = 1
dT

PrTv ∈ Hext
k v, concluding the

proof of Claim 1. �

We proceed for the remainder of this proof to show that for any basis vector vT ,

Hext
k vT = L(ap),(bq)

λ .

If cT (1) 6= ±1
2
((a + p) ± (b + q)), then [x1]T,s0T 6= 0. Define the operator σ0 on the

basis {vT}T∈Tλ of L(ap),(bq)
λ by

σ0vT =

{
0 if cT (1) = ±1

2
((a+ p)± (b+ q)),

1
[x1]T,s0T

(x1 − [x1]T,T ) vT otherwise,
(4.47)
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and extend linearly. Though σ0 is not formally an element of Hext
k , it defines an action

of Hext
k on L(ap),(bq)

λ , i.e. σ0vT ∈ Hext
k vT . Therefore if vs0T exists, then

σ0vT =
1

[x1]T,s0T
(x1 − [x1]T,T ) vT

=
1

[x1]T,s0T
([x1]T,TvT + [x1]T,s0Tvs0T − [x1]T,TvT )

= vs0T , (4.48)

and so vs0T ∈ Hext
k vT .

If cT (i + 1) 6= cT (i) ± 1, then [ti]T,siT 6= 0. Define the operator σi, i = 1, . . . , k, on

the basis {vT}T∈Tλ of L(ap),(bq)
λ by

σivT =

{
0 if cT (i+ 1) = cT (i)± 1,

1
[ti]T,siT

(tsi − [ti]T,T ) vT otherwise
(4.49)

and extend linearly. Again, σi is not formally an element of Hext
k , but rather defines an

action of Hext
k on L(ap),(bq)

λ . So if vsiT exists, we have

σivT =
1

[ti]T,siT
(tsi − [ti]T,T ) vT

=
1

[ti]T,siT
([ti]T,TvT + [ti]T,siTvsiT − [ti]T,TvT )

= vsiT , (4.50)

and so vsiT ∈ Hext
k vT .

Recall from (4.27) that we can view every tableau either as a sequence of partitions,
as we have been doing, or as a skew shape filled with integers 1, . . . , k with strictly
decreasing rows and columns: the sequence from µ to λ corresponds to the filling of λ/µ
where the ith box added in the sequence is filled with i in the skew shape. Viewing T as
a standard filling now, consider the placement of labels i and i+ 1. If they are adjacent
(in row or column), then cT (i + 1) = cT (i) ± 1, and so siT does not exist. However, if
labels i and i + 1 are nonadjacent, then siT is gotten from T by switching i and i + 1.
For example,

s2

3

1 2

=

2

1 3

.

Define the tableau T row as the filling of λ/T (0) built by placing values left to right,
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top to bottom, consecutively. For example,
3

1 2


row

=


2

1 3


row

=


1

2 3


row

=

3

1 2

Claim 2: For any tableau T ∈ Tλ and any submodule U ⊆ L(ap),(bq)
λ ,

vT ∈ U if and only if vT row ∈ U.

Proof. For any T , the following process allows us to construct T row by applying a
series of si moves, 1 ≤ i ≤ k, to T .

1. Reading left to right, top to bottom, find the first box which has a differ-
ent filling from T row. Let j be the filling in this box and let i be the box
immediately before it.

2. Notice j − 1 is not placed in any boxes north (east or west) or directly west
of j, since those boxes are filled with 1, . . . , i. Therefore, j − 1 and j can be
switched by applying sj−1.

3. If sj−1T = T row, we are done. Otherwise, begin again at step 1 with sj−1T .
Since 1 ≤ i < j − 1 < j ≤ k for any j, this process terminates in no more
than k! steps.

Let w = si` . . . si2si1 , 1 ≤ ij ≤ k, be the word generated by this process (where si1
is the first transposition applied, and so on). In the example above, this process
proceeds as follows:

T

1

2 3
s1−→

2

1 3
s2−→ T row

3

1 2

So w = s2s1 and s2s1T = T row.

If wT = si` . . . si2si1T = T row, then

σi` . . . σi2σi1vT = vT row

and so vT row ∈ Hext
k vT . We can apply the same process to find w−1T row =

si1si2 . . . si`T
row = T. Thus

σi1σi2 . . . σi`vT row = vT

and so vT ∈ Hext
k vT row , thus concluding the proof of Claim 2. �
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Recall from Section 2.4.1 that if µ ∈ P((ap), (bq)), then Bµ is the set of boxes in µ in
rows p+ 1 and below. Let Bλµ be the set of boxes (i, j) in Bµ for which box (a+ b+ 1−
i, p + q + 1 − j) is in λ. The criteria in (2.17) imply that these form a skew shape and
the shape obtained by moving each of these boxes (i, j) ∈ Bλµ to their complementary
position (a + b + 1 − i, p + q + 1 − j) gives another partition in P((ap), (bq)). Let λmax

be this partition. For example, if

λ = and T (0) =

then Bλ
T (0) = {(1, p+ 2)} and λmax =

(4.51)

Since each of the boxes in the complementary positions are in λ, the shape obtained
by moving all boxes in Bλµ up is also in λ, and therefore there is a tableau

S = (λmax = S(0), . . . , S(k) = λ)

from λmax to λ. Let
T λ = Srow (4.52)

so T λ is the unique tableau in Tλ with T (0) highest in lexicographical order (see Definition
2.9) and with fillings reading left to right, top to bottom. From the example in (4.51),

T λ =

1

2
3 4 5

.

Claim 3: For any tableau T ∈ Tλ and submodule U ⊆ L(ap),(bq)
λ ,

vT ∈ U if and only if vTλ ∈ U.

Proof. The following process allows us to construct T λ from T through a series of
si moves, 0 ≤ i ≤ k:

0. Use the process in Claim 2 to move T to T row.

1. Reading left to right, top to bottom, find the last box (i, j) in Bλ
T (0) .

2. The box in position (a+ b+ 1− i, p+ q + 1− j) is filled with a 1. Therefore,
we can construct a new tableau

S = (S(0), . . . , S(k) = λ) ∈ Tλ
where S(0) is built from T (0) by moving box (a + b + 1 − i, p + q + 1 − j) to
(i, j), and S(i) = T (i) for i = 1, . . . , k. The resulting filling will have a 1 in
box (i, j) and 2, . . . , k identical to T . This new tableau S is equal to s0T (see
the description of (4.39)).
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3. Use the process in Claim 2 to move to (s0T )row.

4. If (s0T )row = T λ, then we are done. If not, repeat step 1 with (s0T )row. There
are at most min(a, b)× q boxes in Bλ

T (0) , so this process terminates in at most
min(a, b)× q steps.

Let w = si` . . . si2si1 , 0 ≤ ij ≤ k, be the word generated by this process (where si1
is the first transposition applied, and so on). For example, if

T =

3 4

1
2 5

this process proceeds as follows:

T
3 4

1
2 5

s2−→

2 4

1
3 5

s1−→

1 4

2
3 5

s3−→

1 3

2
4 5

s2−→

1 2

3
4 5∗

s0−→

∗ 2

3
1 4 5

s1−→

1

3
2 4 5

s2−→
T λ

1

2
3 4 5

So w = s2s1s0s2s3s1s2, and wT = T λ.

If wT = si` . . . si2si1T = T λ, then

σi` . . . σi2σi1vT = vTλ

and so vTλ ∈ Hext
k vT . We can apply the same process to find w−1T λ = si1si2 . . . si`T

λ =
T. Thus

σi1σi2 . . . σi`vTλ = vT

and so vT ∈ Hext
k vTλ , thus concluding the proof of Claim 3. �

By Claim 1, any nonzero submodule U ⊆ L(ap),(bq)
λ contains some basis vector vT . By

Claim 3, U therefore contains vTλ , and consequently contains all basis vectors vT of
L(ap),(bq)
λ . Thus, U = L(ap),(bq)

λ and so L(ap),(bq)
λ is simple.

This concludes Part 2, showing that L(ap),(bq)
λ is simple, and therefore completes the proof

of Theorem 4.15.
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Remark 4.17. We have shown slightly more than was stated in Theorem 4.15. Namely,
if L(ap),(bq)

λ is a Hext
k -module with basis indexed by T ∈ Tλ and wi · vT = cT (i)vT for

0 = 1, . . . , k, then

1. tsi · vT = [ti]T,TvT + [ti]T,siTvsiT and x1 · vT = [x1]T,TvT + [x1]T,s0Tvs0T , where
[ti]T,siT = 0 if and only if cT (i) = cT (i + 1) ± 1, and [x1]T,s0T = 0 if and only if
cT (1) = 1

2
(±(a+ p)± (b+ q)),

2. [x1]T,S and [ti]T,S satisfy items (1)-(6) of Theorem 4.15, and

3. L(ap),(bq)
λ is simple as an Hext

k -module.

What is more is that the proof that L(ap),(bq)
λ is simple (Part 2) relies only on the action

of Hk, and so Res
Hext
k
Hk

(
L(ap),(bq)
λ

)
is simple.

Corollary 4.18. In the setting of Theorem 4.9,

Res
Endg(M⊗N⊗V ⊗k)

Φ′(Hext
k )

(Lµ) and Res
Endg(M⊗N⊗V ⊗k)

Φ′(Hk) (Lµ)

are simple Hext
k - and Hk-modules, respectively.

Proof. Any simple Endg(M ⊗N ⊗V ⊗k)-module Lµ ⊆M ⊗N ⊗V ⊗k has basis {vzT | T ∈
Tµ}, and by Theorem 4.9, wi acts via Φ′ by wi·vzT = cT (i)vzT . The restatement of Theorem
4.15 in Remark 4.17 implies Lµ is simple as both a Hext

k -module and a Hk-module.
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Chapter 5

Future Work

5.1 Connections to type C algebras

The degenerate two-boundary Hecke algebra Hk is strikingly similar to the graded Hecke
algebra of type C, denoted H. This observation suggests the possibility of studying
representations of type C Hecke algebras using Schur-Weyl duality techniques.

A first step to understanding the similarities between these two algebras is to in-
vestigate the center of Hk. The action of central elements is a primary tool in the
classification of irreducible representations, and the theory for H is well developed. A
preliminary characterization of the center of Hk shows it to have similar structure to
the center of H—it contains a ring of polynomials symmetric with respect to an action
of the type C Weyl group. It remains to be determined whether this subring forms
the entire center. We expect that the center will be fully determined through a better
understanding of the basis of Hext

k .
The next step will be to determine the parallels between the representation theory

of H and that of Hk. I have preliminarily compared the Schur-Weyl duality results for
Hk to the previous combinatorial approach via the analysis of intertwining operators
in type C (see [Ra]). The calibrated representations (those for which a large abelian
subgroup acts semisimply) of the graded Hecke algebra of type C are indexed by skew
shapes which can be recognized in the combinatorial structure in Sections 4.2 and 4.3.
Furthermore, the dimensions of these representations align accordingly in generic cases.
With further study of H, I will be able to describe the correspondence between these
combinatorial structures in detail.

As a culmination, my goal is to form a precise statement about how we are able
to draw valuable information about H from Hk. In the quantized version, preliminary
work has shown there to be an isomorphism between the affine Hecke algebra of type
C and the two-boundary Hecke algebra. In [Lu], Lusztig studies the correspondence
between the affine algebras and their graded versions. From this study, we expect an
analogous isomorphism between the graded Hecke algebra of type C and the degenerate
two-boundary Hecke algebra. The presentation of Hk in Corollary 4.4 and the following
remark nearly grasp such an isomorphism. We can also see that the representation
theory is strikingly similar. One contribution I may make through this investigation
would be to provide an alternate definition of the graded Hecke algebra of type C which
clarifies the isomorphism between it and the affine Hecke algebra of type C as explored
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in [Lu].

5.2 Centralizers in type B, C, and D

The graded Birman-Murakami-Wenzl algebra (otherwise known as the degenerate affine

Wenzl algebra) W(1)
k was defined by Nazarov in [Naz] to capture the action of Jucys-

Murphy operators on the irreducible representations of Brauer algebras. A consequence
of Nazarov’s work is that a quotient of W(1)

k centralizes the action of the orthogonal
and symplectic groups on tensor spaces of the form M ⊗ V ⊗k, where M = L(λ) and
V = L(ω1). In work with Ram and Virk, we have defined the degenerate one-boundary

braid group G(1)
k and shown that W(1)

k is a quotient of G(1)
k (paper in progress).

I would like to do an analogous study of the centralizer of the action of g on M ⊗
N ⊗ V ⊗k when g = son(C) or sp2n(C) (the Lie algebras associated to the orthogonal
and symplectic groups). We expect the centralizer of the action of g on M ⊗N ⊗ V ⊗k
to be a quotient of the degenerate two-boundary braid group Gk as defined in Section 3.
I will define the degenerate two-boundary Birman-Murakami-Wenzl algebra Wk to be
the analogous quotient of Gk when g = son(C) or sp2n(C) to Hext

k when g = gln(C) or

sln(C). The structure of Gk is largely based on the structure of the three images of G(1)
k

it contains—one corresponding to M , one corresponding to N , and one corresponding to
M ⊗N . Similarly, Wk contains three images of W(1)

k . The structure and representation

theory of W(1)
k is described in [AMR]. One hopes that the construction of Wk can be

done by understanding how the three images ofW(1)
k twist together, and combining that

with the known structure of W(1)
k . This approach is completely analogous to that of the

analysis of the Hecke algebras done here.
Once the degenerate two-boundary BMW algebra is defined, my next goal will be

to explicitly construct the irreducible representations of Wk using combinatorial tools.
The decomposition of M ⊗ N when M and N are simple modules corresponding to
rectangular partitions is made precise in [Ok], so the decomposition of M ⊗N ⊗ V ⊗k is
well controlled. We expect the irreducible modules of Wk to be indexed by a particular
class of partitions and to have a basis whose elements are indexed by certain up-down
tableaux. Both the type of partitions and of up-down tableaux will be given by the
decomposition of M ⊗N ⊗ V ⊗k. The formulas for the action of Wk will be in a similar
form to the formulas for the action of Hext

k given Section 4.3 and the formulas for the

action of W(1)
k in [AMR]. This approach also parallels the analysis of the quantized

version of W(1)
k done in [OR].

Next, I will study of the center of Wk. In work with Ram and Virk, we thoroughly
study the center of the graded BMW algebra W(1)

k , and its quantized version, the affine
BMW algebra. Each of these algebras is defined with a choice of an infinite family
of parameters awkwardly subject to admissibility conditions. By studying the centers
of W(1)

k and the affine BMW algebra, we define two algebras which do not depend
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on a choice of parameters, but which specialize to W(1)
k and the affine BMW algebra,

respectively. A priori, Wk should depend on a pair of infinite families of parameters
subject to admissibility conditions. This leads to the question: Is there an algebra
which does not depend on a choice of parameters, but which specializes to Wk for any
admissible choice of parameters? A proper study of the center of Wk should lead to the
definition of such an algebra.

5.3 Non-calibrated representations

In a paper of Orellana and Ram [OR], they construct a functor from quantum group
Uqg modules to affine braid group modules. This functor takes finite dimensional Uqg-
modules to “calibrated” modules, Verma modules to “standard” modules, and irre-
ducible modules to irreducible modules (under appropriate conditions). The affine and
cyclotomic Hecke and Birman-Murakami-Wenzl modules are then described as quotients
of the affine braid group. They recover representations of these algebras by considering
the cases when g is type sln, son and sp2n. Herein, I construct many calibrated mod-
ules for Hext

k (those for which the ring C[w0, w1, . . . , wk] acts semisimply) by mapping
Hext
k into Endg(M ⊗ N ⊗ V ⊗k), where M , N , and V are finite dimensional. I hope to

construct a similar functor from the set of pairs of g-modules M and N to irreducible
Gk-modules. This will allow me to better understand the representation theory of Gk,
Hext
k , and Wk. I should then be able to describe the combinatorial structure of not only

calibrated modules for these three algebras, but standard modules as well. The results
should parallel the formulas given in [OR].

5.4 Full centralizers

For small examples, I have found that the image of Hext
k in Endg(M⊗N⊗V ⊗k) recovers

the entire centralizer. The fact that this happens as often as it does is remarkable. The
beauty of the representation Φ′ is that when it surjects, it provides a construction of the
full centralizer that relies on the use of very simple operators. When Φ′ is not surjective,
we can see through an analysis of the decomposition of M ⊗ N ⊗ V ⊗k that the image
of Hext

k differs from the full centralizer only by a commutative subalgebra—a portion of
image of the center of g acting on M ⊗N not contained in the image of Hext

k .
In my treatment of the decomposition of M ⊗ N , I describe a partial order on

P((ap), (bq)). This partial order captures an inductive process for constructing each
partition in P((ap), (bq)) by moving successive boxes. I hope to use this inductive process
to construct and control projections onto each component of M ⊗ N , thus calculating
the full centralizer of the g-action on M ⊗N ⊗ V ⊗k.

In the study of the degenerate two-boundary BMW algebra, we expect similar phe-
nomena. I hope to harness similar tools to extend quotients of Wk to full centralizers in
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non-generic cases.
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