An Algebraic Approach to Voting Theory

Zajj Daugherty

Advisor: Michael Orrison Harvey Mudd College Mathematics

2 May 2005

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction to Voting Theory Algebraic Methods Results

Overview

1 Introduction to Voting Theory

Collecting Data Tallying Data Comparing Methods

2 Algebraic Methods

Tally Methods as Linear Maps Relating Maps

3 Results

Full Rankings Partial Rankings

Asking for votes

A	A	В	В	С	C
В	С	A	С	A	В
С	В		A	В	A

Partial Rankings

Ex. Top 3 from 5 candidates

В	В	В	С	С	С	D	D	A D E	E	E	
DE	ED	CD	DE	BE	BD	CE	BE	ВС	CD	BD	ВС

Asking for votes

Full Rankings Ex. 3 candidates

Α	Α	В	В	С	С
В	С	Α	С	Α	В
С	В	С	Α	В	Α

Partial Rankings

Ex. Top 3 from 5 candidates

B C	B C	B E	C B	C D	C E	D B	D C	A D E	E B	E C	E D
	ED										

Asking for votes

A	A	В	В	С	С
В	С	A	С	A	В
С	В	С	A	В	A

Partial Rankings

Ex. Top 3 from 5 candidates

B C	B E	C B	D	С	D B	С	D E	В	A E C BD	E D
							:			

Positional methods

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Tallying votes

Positional methods

• Weighting vector

Tallying votes

Positional methods

- Weighting vector
 - Plurality

$$\mathbf{w} = [1, 0, 0]$$

Tallying votes

Positional methods

- Weighting vector
 - Plurality

$$\mathbf{w} = [1, 0, 0]$$

Anti-plurality

$$\mathbf{w} = [1, 1, 0]$$

・ロン ・回り ・ヨン ・ヨン

Tallying votes

Positional methods

- Weighting vector
 - Plurality

$$w = [1, 0, 0]$$

Anti-plurality

$$w = [1, 1, 0]$$

Borda Count

$$w = [2, 1, 0]$$

Tallying votes

Positional methods

- Weighting vector
 - Plurality

$$w = [1, 0, 0]$$

Anti-plurality

$$\mathbf{w} = [1, 1, 0]$$

Borda Count

$$w = [2, 1, 0]$$

$$w = [1, 1/2, 0]$$

・ロト ・回ト ・ヨト ・ヨト

harvey.mudd.college

Tallying votes

Positional methods

- Weighting vector
 - Plurality

Anti-plurality

$$\mathbf{w} = [1, 1, 0]$$

Borda Count

$$w = [2, 1, 0]$$

$$w = [1, 1/2, 0]$$

In general

$$w = [1, t, 0], \quad 0 \le t \le 1$$

Introduction to Voting Theory Algebraic Methods Results Collecting Data Tallying Data Comparing Methods

Tallying votes

Pairwise (Condorcet) method

A wins over B if A > B more times than B > A.

Pairwise (Condorcet) method

A wins over B if A > B more times than B > A.

Condorcet winner

Pairwise (Condorcet) method

A wins over B if A > B more times than B > A.

- Condorcet winner
- Condorcet criterion

Pairwise (Condorcet) method

A wins over B if A > B more times than B > A.

- Condorcet winner
- Condorcet criterion
- Cyclic preferences

Comparing methods

Example

Α	A C B	В	В	С	С
В	С	Α	С	Α	В
С	В	С	Α	В	Α
10	25	5	25	5	20

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparing methods

Example

Α	Α	В	В	С	С
В	С	Α	С	Α	В
С	A C B	С	Α	В	Α
10	25	5	25	5	20

Positional tally: $\mathbf{w} = [1, 0, 0]$ "Plurality"

Comparing methods

Example

Α	Α	В	В	С	С
В	С	Α	С	Α	В
С	A C B	С	Α	В	Α
10	25	5	25	5	20

Positional tally:
$$\mathbf{w} = [1, 0, 0]$$
 "Plurality"

A: 10 + 25 = 35 B: 5 + 25 = 30 C: 5 + 20 = 25

Comparing methods

Example

Α	A C B	В	В	С	С
В	С	Α	С	Α	В
С	В	С	A	В	A
10	25	5	25	5	20

Positional tally:
$$\mathbf{w} = [1, 0, 0]$$
 "Plurality"
 $A: 10 + 25 = 35$ $B: 5 + 25 = 30$ $C: 5 + 20 =$

Pairwise Tally

a.r.t. harvey-mudd-college

25

Comparing methods

Example

Α	A C B	В	В	С	С
В	С	Α	С	Α	В
С	В	С	Α	В	Α
10	25	5	25	5	20

Positional tally:
$$\mathbf{w} = [1, 0, 0]$$
 "Plurality"

A: 10 + 25 = 35 B: 5 + 25 = 30 C: 5 + 20 = 25

Pairwise Tally

B > A 50:40 C > A 50:40 C > B 50:40

イロト イヨト イヨト イヨト

udd.college

Comparing methods

Example

Α	A C B	В	В	С	С
В	С	Α	С	Α	В
С	В	С	Α	В	Α
10	25	5	25	5	20

Positional tally:
$$\mathbf{w} = [1, 0, 0]$$
 "Plurality"
 $A: 10 + 25 = 35$ $B: 5 + 25 = 30$ $C: 5 + 20 = 25$

Pairwise Tally

B > A 50:40 C > A 50:40 C > B 50:40

Pos: A > B > C vs. Pairws: C > B > A

Comparing methods

Example

A B	A C B	B A	B C	C A	C B
10	25	5	25	5	20

Positional tally:
$$\mathbf{w} = [1, 0, 0]$$
 "Plurality"

A: 10 + 25 = 35 B: 5 + 25 = 30 C: 5 + 20 = 25

Pairwise Tally

B > A 50:40 C > A 50:40 C > B 50:40

 Pos: A > B > C
 vs.
 Pairws: C > B > A
 a.r.t.

 An Algebraic Approach to Voting Theory

Comparing methods

Example

	Α	Α	В	В	С	С		
	В	C B	Α	С	Α	В		
	С	В	С	Α	В	Α		
(10,	25,	5,	25,	5,	20)	

Positional tally:
$$\mathbf{w} = [1, 0, 0]$$
 "Plurality"

A: 10+25 = 35 B: 5+25 = 30 C: 5+20 = 25

Pairwise Tally

B > A 50:40 C > A 50:40 C > B 50:40

Introduction to Voting Theory Algebraic Methods Results Collecting Data Tallying Data Comparing Methods

What is fair?

What is fair?

Kenneth Arrow

• Four criteria:

What is fair?

Kenneth Arrow

- Four criteria:
 - **Universality:** the procedure should provide a full ranking for all possible sets of data.

Kenneth Arrow

- Four criteria:
 - **Universality:** the procedure should provide a full ranking for all possible sets of data.
 - Independence of Irrelevant Alternatives: any ranking of a subset of candidates will be unaffected by changes in rankings of other candidates.

What is fair?

Kenneth Arrow

- Four criteria:
 - **Universality:** the procedure should provide a full ranking for all possible sets of data.
 - Independence of Irrelevant Alternatives: any ranking of a subset of candidates will be unaffected by changes in rankings of other candidates.
 - Citizen's Sovereignty: all possible outcomes are achievable.

Kenneth Arrow

- Four criteria:
 - **Universality:** the procedure should provide a full ranking for all possible sets of data.
 - Independence of Irrelevant Alternatives: any ranking of a subset of candidates will be unaffected by changes in rankings of other candidates.
 - Citizen's Sovereignty: all possible outcomes are achievable.
 - Non-dictatorship: outcome dictated by more than one vote.

Kenneth Arrow

- Four criteria:
 - **Universality:** the procedure should provide a full ranking for all possible sets of data.
 - Independence of Irrelevant Alternatives: any ranking of a subset of candidates will be unaffected by changes in rankings of other candidates.
 - Citizen's Sovereignty: all possible outcomes are achievable.
 - Non-dictatorship: outcome dictated by more than one vote.
- There is no 'ideal' system.

Introduction to Voting Theory Algebraic Methods Results Collecting Data Tallying Data Comparing Methods

What is fair?

Donald Saari

Donald Saari

• Geometric tools to compare pairwise and positional tallies for full rankings

Donald Saari

- Geometric tools to compare pairwise and positional tallies for full rankings
- Voting profiles as vectors

$$\mathbf{p} = (p_1, \ldots, p_{n!})$$

Donald Saari

- Geometric tools to compare pairwise and positional tallies for full rankings
- Voting profiles as vectors

$$\mathbf{p}=(p_1,\ldots,p_{n!})$$

Breaking down the profile space

Donald Saari

- Geometric tools to compare pairwise and positional tallies for full rankings
- Voting profiles as vectors

$$\mathbf{p}=(p_1,\ldots,p_{n!})$$

- Breaking down the profile space
- Borda Count minimizes conflicts

Positional Method

$$w = [1, t, 0], \qquad 0 \le t \le 1$$

Pairwise Method

$$P = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} A > B \\ A > C \\ B > A \\ B > C \\ C > A \\ C > B \end{pmatrix}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Positional Method

 $w = [1, t, 0], \qquad 0 \le t \le 1$

Pairwise Method

$$P = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{vmatrix} A > B \\ A > C \\ B > A \\ B > C \\ C > A \\ C > B \end{vmatrix}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Positional Method

 $\mathbf{w} = [1, t, 0], \qquad 0 \leq t \leq 1$

$$T_{\mathbf{w}} = \begin{pmatrix} 1 & 1 & t & 0 & t & 0 \\ t & 0 & 1 & 1 & 0 & t \\ 0 & t & 0 & t & 1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$$

Pairwise Method

$$P = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{vmatrix} A > B \\ A > C \\ B > A \\ B > C \\ C > A \\ C > B \end{vmatrix}$$

C > B > A

Positional Method

 $\mathbf{w} = [1, t, 0], \qquad 0 \leq t \leq 1$

Pairwise Method

$$P = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{vmatrix} A > B \\ A > C \\ B > A \\ B > C \\ C > A \\ C > B \end{vmatrix}$$

A > B > C

C > B > A

Positional Method

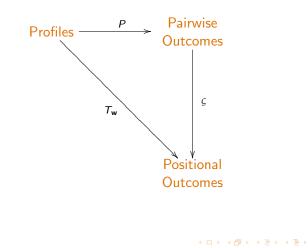
 $w = [1, t, 0], \qquad 0 \le t \le 1$

Pairwise Method

$$P = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} A > B \\ A > C \\ B > A \\ B > C \\ C > A \\ C > B \end{pmatrix}$$

Tally Methods as Linear Maps Relating Maps

Relating Tally Maps



harvey-mudd-college

Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

$U \cong W_1 \oplus W_2 \oplus W_3 \oplus Y_1 \oplus Z_1$ $V \cong W_4 \oplus W_5 \oplus Y_2 \oplus Y_3.$

Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

$$U \cong W_1 \oplus W_2 \oplus W_3 \oplus Y_1 \oplus Z_1$$
$$V \cong W_4 \oplus W_5 \oplus Y_2 \oplus Y_3.$$

$w_1 \mapsto w_4$

Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

$$U \cong W_1 \oplus W_2 \oplus W_3 \oplus Y_1 \oplus Z_1$$
$$V \cong W_4 \oplus W_5 \oplus Y_2 \oplus Y_3.$$

Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

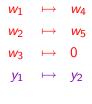
$$U \cong W_1 \oplus W_2 \oplus W_3 \oplus Y_1 \oplus Z_1$$
$$V \cong W_4 \oplus W_5 \oplus Y_2 \oplus Y_3.$$

・ロン ・回り ・ヨン ・ヨン

Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

$$U \cong W_1 \oplus W_2 \oplus W_3 \oplus Y_1 \oplus Z_1$$
$$V \cong W_4 \oplus W_5 \oplus Y_2 \oplus Y_3.$$



・ロン ・回 と ・ ヨ と ・ ヨ と

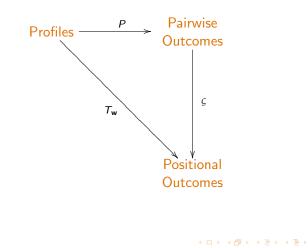
Theorem

All pairwise and positional maps are $\mathbb{Q}S_n$ -module homomorphisms.

$$U \cong W_1 \oplus W_2 \oplus W_3 \oplus Y_1 \oplus Z_1$$
$$V \cong W_4 \oplus W_5 \oplus Y_2 \oplus Y_3.$$

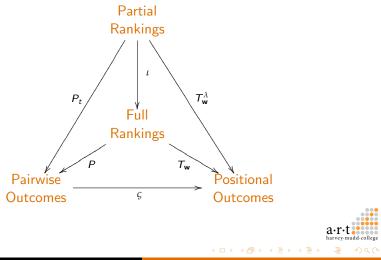
Tally Methods as Linear Maps Relating Maps

Relating Tally Maps



harvey-mudd-college

More Comparisons



Full Rankings Partial Rankings

Results

Full Rankings:

Full Rankings Partial Rankings

Results

Full Rankings:

• Recovery of Saari's results

Results

Full Rankings:

- Recovery of Saari's results
- Borda Count uniquely allows our maps to commute

Results

Full Rankings:

- Recovery of Saari's results
- Borda Count uniquely allows our maps to commute
- Tools for a new perspective

Results

For rankings of top k from n candidates, two cases:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

A B C D F

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

$$\begin{array}{cccc}
A & 1 \\
B & 3/4 \\
\hline
C & 2/4 \\
\hline
D & 1/4 \\
E & 0
\end{array}$$

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

Α	1	1
В	3/4	3/4
С	2/4	2/4
D	1/4	1/8
Ε	0	1/8

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

Α	1	1	7/8
В	3/4	3/4	5/8
С	2/4	2/4	3/8
D	1/4	1/8	0
Ε	0	1/8	0

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

Α	1	1	7/8	1
В	3/4	3/4	5/8	5/7
С	2/4	2/4	3/8	3/7
D	1/4	1/8	0	0
Ε	0	1/8	0	0

Results

For rankings of top k from n candidates, two cases:

• If pairwise map gives tying candidates each 1/2 point, a particular scaled linear modification of the Borda Count works uniquely.

Α	1	1	7/8	1
В	3/4	3/4	5/8	5/7
С	2/4	2/4	3/8	3/7
D	1/4	1/8	0	0
Ε	0	1/8	0	0

 If pairwise map gives tying candidates each something besides 1/2 point, there may be more freedom in our choice of positional method.

Thanks to ...

Harvey Mudd College Mathematics Department

Reed Institute for Decision Science, Claremont McKenna

Professor Michael Orrison

Fellow thesis students

for more information: http://www.math.hmc.edu/~zajj/thesis/

