MATH 113: DISCRETE STRUCTURES FRIDAY WEEK 1 HANDOUT

Cartesian products. Given sets A, B we define $A \times B$, the Cartesian product of A and B, to be the set of ordered pairs (a, b) where $a \in A$ and $b \in B$. In set constructor notation, this becomes

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Problem 1. If $|A|=m$ and $|B|=n$, what is $|A \times B|$?
Functions. A function $f: A \rightarrow B$ (with domain A and codomain B) is a subset $f \subseteq A \times B$ such that for every $a \in A$ there is precisely one term of the form $(a, b) \in f$; we write $b=f(a)$ or $f: a \mapsto b$ when $(a, b) \in f$.
Problem 2. Reconcile this definition of "function" with your preconceptions. How would you write the function $f(x)=x^{2}$ as a subset of $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$?
Problem 3. Which of the following subsets of $\{1,2,3\} \times\{a, b, c, d\}$ are functions?
(a) $\{(1, a),(2, b),(3, d)\}$
(b) $\{(2, d),(3, c)\}$
(c) $\{(1, b),(2, c),(3, a),(2, d)\}$
(d) $\{(1, a),(2, a),(3, a)\}$

Problem 4. Functions $f: A \rightarrow B$ and $g: A \rightarrow B$ are equal if they are equal as subsets of $A \times B$. Check that this condition is equivalent to $f(a)=g(a)$ for all $a \in A$.
Problem 5. Suppose $|A|=m,|B|=n$. How many functions $A \rightarrow B$ are there?
Injections, surjections, and bijections. A function $f: A \rightarrow B$ is injective if $f(a)=f\left(a^{\prime}\right)$ implies $a=a^{\prime}$. A function is surjective if for every $b \in B$ there exists $a \in A$ such that $f(a)=b$. A function is bijective if it is both injective and surjective.
Problem 6. Suppose $|A|=m,|B|=n$. How many injective functions $A \rightarrow B$ are there? (Make sure your answer makes sense when $m>n$.)

Schröder-Bernstein. The Schröder-Berstein theorem states that if there are injective functions f : $A \rightarrow B$ and $g: B \rightarrow A$, then there exists a bijective function $h: A \rightarrow B$.

Problem 7. Prove the Schröder-Bernstein theorem in the special case in which both A and B are finite sets ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ When A and B are infinite, the proof is more difficult and fairly subtle. If this sort of thing interests you, I encourage you to look up and understand a proof.

