MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE WEDNESDAY 12 DECEMBER

Complete five of the following problems based on your peers' final presentations.
Problem $1(\mathrm{JR})$. Let $G=K_{4}$, the Klein four group with matrix representation

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\right\} .
$$

Use Noether's theorem to determine the fixed field $K(x, y)^{G}$.
Problem 2 (Zichen). Let $\alpha \neq 0,1$ be an algebraic number. Use the Lindemann-Weierstrass theorem to prove that $e^{\alpha}, \log \alpha, \sin \alpha$, and $\cos \alpha$ are transcendental.

Problem 3 (Alex). Prove that if the n-gon is neusis constructible and $p=2^{u} 3^{v}+1$ is an Pierpont prime not equal to 3 , then p^{2} does not divide n. You may assume that
(a) if the n-gon is neusis constructible and d divides n, then the d-gon is neusis constructible; and
(b) for $\alpha \in \mathbb{C}, \alpha$ is neusis-constructible if and only if there exist subfields $\mathbb{Q}=F_{0} \subseteq F_{1} \subseteq \ldots \subseteq$ $F_{n} \subseteq \mathbb{C}$ such that $\alpha \in F_{n}$, and $\left[F_{i}: F_{i-1}\right]=2$ or $\left[F_{i}: F_{i-1}\right]=3$ for $1 \leq i \leq n$.

Problem 4 (Pallavi). A Pieront prime is a prime $p>3$ of the form $p=2^{k} 3^{l}+1$. Prove that a regular n-gon can be constructed using origami if $n=2^{a} 3^{b} p_{1} \cdots p_{s}$, where $a, b \geq 0$ and $p_{1} \cdots p_{s}$ are distinct Pierpont primes.

Problem 5 (Tristan). Let $L=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots\right)$ where $\left\{p_{1}, p_{2} \ldots\right\}$ is the set of all primes. What is the Galois group of L / F ?

Problem 6 (Nick). Let G be an Abelian group and M a G-module on which G acts trivially. Show that $H^{1}(G, M) \cong \operatorname{Hom}(G, M)$. [See the Google Drive folder of final papers for a longer text from Nick treating this problem.]

Problem 7 (Miles). Explain why we can find the Heisenberg group p_{+}^{1+2} as a subgroup of AGL $_{1}\left(\mathbb{F}_{p}\right)$) $\mathrm{AGL}_{1}\left(\mathbb{F}_{p}\right)$ for $p>2$ prime. (Hint: Look at Proposition 2.0.6 of Miles's paper, and think of p_{+}^{1+2} as the semidirect product $\mathbb{Z} / p \mathbb{Z}^{2} \rtimes \mathbb{Z} / p \mathbb{Z}$ with action given by $x \cdot(a, b)=(a, b+a x)$.)

Problem 8 (Max).
Problem 9 (Caroline). Prove that 2 is ramified in $\mathbb{Z}[i]$.
Problem 10 (Anton). Let the vertices of an octahedron in \mathbb{R}^{3} be $(\pm 1, \pm 1, \pm 1) \subset S^{2}$. By steriographic projection onto $\widehat{\mathbb{C}}$, we see that these correspond to $0, \pm 1, \pm i, \infty$. Let $r_{1}, r_{2}, r_{3} \in \operatorname{Rot}\left(S^{2}\right)$, where r_{1} is the rotation taking $(0,0,1)$ to $(0,0,-1), r_{2}$ is the rotation taking $(1,0,0)$ to $(0,1,0)$, and r_{3} is the rotation taking $(0,0,1)$ to $(1,0,0)$. Find $\gamma_{1}, \gamma_{2}, \gamma_{3} \in G L(2, \mathbb{C})$ such that $\left[\gamma_{1}\right],\left[\gamma_{2}\right],\left[\gamma_{3}\right] \in P G L(2, \mathbb{C})$ correspond to these rotations. Justify your claim.

Problem 11 (Genya). We have seen one covering space of the circle, namely $p: \mathbb{R} \rightarrow S^{1}$ given by $p(r)=(\cos 2 \pi r, \sin 2 \pi r)$, which corresponds to "wrapping" the real line around the circle. Thinking of S^{1} as $\left\{z \in \mathbb{C}||z|=1\} \subset \mathbb{C}\right.$ show that the squaring map makes S^{1} into a covering space of itself.

Problem 12 (Torin). Consider the polynomial $f=x^{5}+15 x+12 \in \mathbb{Q}[x]$. Assume that $\theta_{f}(y)$ has a root in \mathbb{Q}. Then use the discriminant of f and Proposition 5.4 (in Torin's paper) to find the Galois group of f over \mathbb{Q}. Finally, use Theorem 4.1 (in Torin's paper) to determine if f is solvable by radicals.
Problem 13 (Livia). Let F be a field with characteristic 0 , and let $g \in F\left[t_{1}, \ldots, t_{n}\right]$ be nonzero. For each $i=1, \ldots, n$, pick a nonnegative integer N_{i} such that the highest power of t_{i} appearing in g is at most N_{i}, and let

$$
A=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{Z}, 0 \leq a_{i} \leq N_{i}\right\} .
$$

Prove that there is $\left(a_{1}, \ldots, a_{n}\right) \in A$ such that $g\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

