MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 9

Problem 1. Suppose *F* has characteristic 0 and $L = F(\gamma)$ where $\gamma^m \in F$. Suppose further that *F* contains a primitive *m*-th root of unity, ζ . This type of extension appeared in our proof of Galois's theorem, and we have already seen that L/F is Galois.

(a) Let $\sigma \in \text{Gal}(L/F)$. Show there is a unique integer $0 \le \ell \le m - 1$ such that $\sigma(\gamma) = \zeta^{\ell} \gamma$.

(b) Show that $\sigma \mapsto [\ell]$ defines an injective homomorphism $\operatorname{Gal}(L/F) \to \mathbb{Z}/m\mathbb{Z}$.

(c) Conclude that $\operatorname{Gal}(L/F)$ is cyclic of order dividing m.

Problem 2. Prove that A_n is generated by 3-cycles when $n \ge 3$.

Problem 3. Let *F* be a subfield of \mathbb{R} . Let *a* be an element of *F* and let $K = F(\sqrt[n]{a})$ where $\sqrt[n]{a}$ denotes a real *n*-th root of *a*. Prove that if *L* is any Galois extension of *F* contained in *K*, then $[L:F] \leq 2$.