MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 8

Problem 1. Let L denote the splitting field of $x^{4}-4 x^{2}+2$ over \mathbb{Q}, so that $L=\mathbb{Q}(\sqrt{2+\sqrt{2}})$. We have previously shown that $\operatorname{Gal}(L / \mathbb{Q}) \cong C_{4}$. Determine all the subgroups of $\operatorname{Gal}(L / \mathbb{Q})$ and the corresponding subextensions of L / \mathbb{Q}.
Problem 2. Let $\zeta=\zeta_{7}=e^{2 \pi i / 7}$, and consider the extension $L=\mathbb{Q}(\zeta) / \mathbb{Q}$. We have previously seen that L is the splitting field of $m_{\zeta, \mathbb{Q}}=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$. Let \mathbb{F}_{7}^{\times}be the multiplicative group of nonzero congruences classes in $\mathbb{F}_{7}=\mathbb{Z} / 7 \mathbb{Z}$.
(a) Show that $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to \mathbb{F}_{7}^{\times}. (Consider the action of $\operatorname{Gal}(L / \mathbb{Q})$ on $\left\{\zeta^{i} \mid i=\right.$ $1, \ldots, 6\}$.)
(b) Let $H=\langle-1\rangle \leq \mathbb{F}_{7}^{\times}$. Prove that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$ is the fixed field of the subgroup of $\operatorname{Gal}(L / \mathbb{Q})$ corresponding to H.
(c) Show that the minimal polynomial of $\zeta+\zeta^{-1}$ over \mathbb{Q} is $x^{3}+x^{2}-2 x-1$.
(d) Show that the splitting field of $x^{3}+x^{2}-2 x-1$ over \mathbb{Q} is a Galois extension of degree 3 with Galois group isomorphic to C_{3}.
Problem 3. Let p be prime and consider the extension $L=\mathbb{Q}\left(\zeta_{p}, \sqrt[p]{2}\right) / \mathbb{Q}$. We have shown that $\operatorname{Gal}(L / \mathbb{Q}) \cong \operatorname{AGL}_{1}\left(\mathbb{F}_{p}\right)$. The group $\mathrm{AGL}_{1}\left(\mathbb{F}_{p}\right)$ has subgroups

$$
T=\left\{\gamma_{1, b} \mid b \in \mathbb{F}_{p}\right\} \quad \text { and } \quad D=\left\{\gamma_{a, 0} \mid a \in \mathbb{F}_{p}^{\times}\right\},
$$

where $\gamma_{a, b}(u)=a u+b, u \in \mathbb{F}_{p}$. Let T^{\prime} and D^{\prime} be the corresponding subgroups of $\operatorname{Gal}(L / \mathbb{Q})$.
(a) Show that $L^{T^{\prime}}=\mathbb{Q}\left(\zeta_{p}\right)$.
(b) What is the fixed field of D^{\prime} ? What are the conjugates of this fixed field.

Problem 4. Compute the Galois groups of the following cubic polynomials:
(a) $x^{3}-4 x+2$ over \mathbb{Q}.
(b) $x^{3}-4 x+2$ over $\mathbb{Q}(\sqrt{37})$.
(c) $x^{3}-t$ over $\mathbb{C}(t), t$ a variable.
(d) $x^{3}-t$ over $\mathbb{Q}(t), t$ a variable.

Problem 5. Consider the groups A_{4} and Σ_{4}.
(a) Show that $\{e,(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of Σ_{4}.
(b) Show that A_{4} and Σ_{4} are solvable.

Problem 6 (Bonus). Exercise 7 in Cox §8.1.

