MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 8

Problem 1. Let *L* denote the splitting field of $x^4 - 4x^2 + 2$ over \mathbb{Q} , so that $L = \mathbb{Q}(\sqrt{2+\sqrt{2}})$. We have previously shown that $\operatorname{Gal}(L/\mathbb{Q}) \cong C_4$. Determine all the subgroups of $\operatorname{Gal}(L/\mathbb{Q})$ and the corresponding subextensions of L/\mathbb{Q} .

Problem 2. Let $\zeta = \zeta_7 = e^{2\pi i/7}$, and consider the extension $L = \mathbb{Q}(\zeta)/\mathbb{Q}$. We have previously seen that *L* is the splitting field of $m_{\zeta,\mathbb{Q}} = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. Let \mathbb{F}_7^{\times} be the multiplicative group of nonzero congruences classes in $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$.

- (a) Show that $\operatorname{Gal}(L/\mathbb{Q})$ is isomorphic to \mathbb{F}_7^{\times} . (Consider the action of $\operatorname{Gal}(L/\mathbb{Q})$ on $\{\zeta^i \mid i = 1, \ldots, 6\}$.)
- (b) Let $H = \langle -1 \rangle \leq \mathbb{F}_7^{\times}$. Prove that $\mathbb{Q}(\zeta + \zeta^{-1})$ is the fixed field of the subgroup of $\operatorname{Gal}(L/\mathbb{Q})$ corresponding to H.
- (c) Show that the minimal polynomial of $\zeta + \zeta^{-1}$ over \mathbb{Q} is $x^3 + x^2 2x 1$.
- (d) Show that the splitting field of $x^3 + x^2 2x 1$ over \mathbb{Q} is a Galois extension of degree 3 with Galois group isomorphic to C_3 .

Problem 3. Let *p* be prime and consider the extension $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})/\mathbb{Q}$. We have shown that $\operatorname{Gal}(L/\mathbb{Q}) \cong \operatorname{AGL}_1(\mathbb{F}_p)$. The group $\operatorname{AGL}_1(\mathbb{F}_p)$ has subgroups

$$T = \{\gamma_{1,b} \mid b \in \mathbb{F}_p\} \quad \text{and} \quad D = \{\gamma_{a,0} \mid a \in \mathbb{F}_p^{\times}\},\$$

where $\gamma_{a,b}(u) = au + b$, $u \in \mathbb{F}_p$. Let T' and D' be the corresponding subgroups of $\operatorname{Gal}(L/\mathbb{Q})$.

- (a) Show that $L^{T'} = \mathbb{Q}(\zeta_p)$.
- (b) What is the fixed field of D'? What are the conjugates of this fixed field.

Problem 4. Compute the Galois groups of the following cubic polynomials:

(a) x³ - 4x + 2 over Q.
(b) x³ - 4x + 2 over Q(√37).
(c) x³ - t over C(t), t a variable.
(d) x³ - t over Q(t), t a variable.

Problem 5. Consider the groups A_4 and Σ_4 .

(a) Show that $\{e, (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of Σ_4 .

(b) Show that A_4 and Σ_4 are solvable.

Problem 6 (Bonus). Exercise 7 in Cox §8.1.