MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 6

Problem 1. Let *H* and *N* be groups and let $\varphi : H \to \operatorname{Aut}(N)$ be a homomorphism. Define an action of *H* on *N* via $h \cdot n = \varphi(h)(n)$. Let $N \rtimes H$ denote the set $N \times H$ equipped with the operation $(n, h)(n', h') = (n(h \cdot n'), hh')$.

- (a) Prove that $N \rtimes H$ is a group.
- (b) Prove that the map $N \rtimes H \to H$ defined by $(n, h) \mapsto h$ is a surjective group homomorphism with kernel $N \times \{e\}$.
- (c) Prove that $n \mapsto (n, e)$ defines an isomorphism $N \cong N \times \{e\}$ (where $N \times \{e\}$ inherits its group structure from $N \rtimes H$).

Problem 2. Let $p \ge 3$ be prime, and let $G = \mathbb{F}_p \rtimes \mathbb{F}_p^{\times}$ be the semidirect product described in class.

- (a) Show that *G* is nonabelian.
- (b) Show that $\mathbb{F}_p \times \mathbb{F}_p^{\times}$ is an extension¹ of \mathbb{F}_p by \mathbb{F}_p^{\times} which is not isomorphic to *G*.

Problem 3. Let $L = \mathbb{Q}(\sqrt{2+\sqrt{2}})$. You have previously shown that $f = x^4 - 4x^2 + 2$ is the minimal polynomial of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} and that *L* is the splitting field of *f*. Show that $\operatorname{Gal}(L/\mathbb{Q}) \cong C_4$.

Problem 4. Construct the Galois closure of $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$.

Problem 5. Suppose that L/K and K/F are field extensions and that the induced extension L/F is Galois. Show that for $\sigma \in \text{Gal}(L/F)$,

 $K = \sigma K \iff \operatorname{Gal}(L/K) = \sigma \operatorname{Gal}(L/K)\sigma^{-1}.$

¹A group *G* is an extension of *H* by *N* if there exists a surjective homomorphism $G \to H$ with kernel isomorphic to *N*.