MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 3

Throughout, F is a field.
Problem 1. Let $f \in F[x]$ be irreducible and suppose $g \in F[x]$ is not in the ideal (f). Show that there are polynomials $A, B \in F[x]$ such that $A f+B g=1$. Prove that $B+(f)$ is the multiplicative inverse of $g+(f)$ in $L=F[x] /(f)$.
Problem 2. For $f=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \in \mathbb{C}[x]$, define $\bar{f}:=\overline{a_{0}} x^{n}+\overline{a_{1}} x^{n-1}+\cdots+\overline{a_{0}}$. Prove that $\overline{f g}=\bar{f} \bar{g}$ for $f, g \in \mathbb{C}[x]$. Also prove that if $\alpha \in \mathbb{C}$ and $\bar{f}(\alpha)=0$, then $f(\bar{\alpha})=0$.
Problem 3. Prove that the Fundamental Theorem of Algebra is equivalent to the assertion that every nonconstant polynomial in $\mathbb{R}[x]$ is a product of linear and quadratic factors with real coefficients.

Problem 4. (a) For a field extension L / F and $\alpha \in L$ show that the multiplication-by- α map α : $L \rightarrow L$ is an F-linear transformation.
(b) Let $L=\mathbb{Q}(\sqrt{D})$ for some squarefree integer D. Show that L has ordered basis $1, \sqrt{D}$ over \mathbb{Q}.
(c) Let $\alpha=a+b \sqrt{D}, a, b \in \mathbb{Q}$. Determine the matrix for $\alpha \cdot$ with respect to the ordered basis 1 , \sqrt{D}.
(d) Prove that the map $a+b \sqrt{D} \mapsto$ the matrix for $(a+b \sqrt{D})$. with respect to $1, \sqrt{D}$ induces a ring isomorphism beween L and its image in $M_{2 \times 2}(\mathbb{Q})$.
Problem 5. (a) Prove that $x^{3}-3$ is irreducible over $\mathbb{Q}(\sqrt{2})$.
(b) Show that $x^{4}-10 x^{2}+1$ is not irreducible over $\mathbb{Q}(\sqrt{3})$. (Recall that we asserted, without proof, that this polynomial was the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}, and in particular is irreducible over \mathbb{Q}.)
Problem 6. Determine, with proof, the minimal polynomial of $1+\sqrt{-2}$ over \mathbb{Q}.

