MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 2

Throughout, F is a field.
Problem 1. Show that the polynomial

$$
\left(x_{1}+x_{2}-x_{3}-x_{4}\right)\left(x_{1}+x_{3}-x_{2}-x_{4}\right)\left(x_{1}+x_{4}-x_{2}-x_{3}\right)
$$

is symmetric in $F\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and use the algorithm presented in class to express it as a polynomial in $\sigma_{1}, \sigma_{2}, \sigma_{3}$, and σ_{4}.
Problem 2. Express $\sum_{i \neq j} x_{i}^{2} x_{j} \in F\left[x_{1}, \ldots, x_{n}\right]$ in terms of elementary symmetric polynomials.
Problem 3. Read about Newton's identities on p. 38 of the text. Use them to solve Exercise 18 on p. 42 of the text.

Problem 4. Let $f \in F[x]$ be monic and assume that $f=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ in some field L containing F. Prove that $\Delta(f) \neq 0$ if and only the α_{i} are distinct. This shows that f has distinct roots if and only if its discriminant is nonzero.

Problem 5. Recall from class that $\sqrt{\Delta}$ can be expressed by the determinant of the Vandermonde matrix. Use this (and the fact that $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ for any square matrix A) to prove that

$$
\Delta=\operatorname{det}\left(\begin{array}{ccccc}
p_{0} & p_{1} & p_{2} & \cdots & p_{n-1} \\
p_{1} & p_{2} & p_{3} & \cdots & p_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{n-1} & p_{n} & p_{n+1} & \cdots & p_{2 n-2}
\end{array}\right)
$$

where $p_{i}=x_{1}^{i}+\cdots+x_{n}^{i}$ is the sum of i-th powers of the variables.
Problem 6. Suppose that $\varphi: F \rightarrow L$ is a ring homomorphism and F and L are both fields. Prove that φ is injective and induces an isomorphism $F \cong \varphi(F)$.

Problem 7 (Bonus). Implement an algorithm in sage which expresses symmetric polynomials in terms of the σ_{i}. Follow the instructions athttps://doc.sagemath.org/html/en/developer/ in order to add the function to the official distribution of sage.

