MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 9

Problem 1. The Möbius function is defined for positive integers n by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{s} & \text { if } n=p_{1} \cdots p_{s} \text { for distinct primes } p_{1}, \ldots, p_{s} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that

$$
\sum_{d \mid n} \mu(n / d)=0
$$

when $n>1$.
Problem 2. Let μ be the Möbius function defined above. Prove that

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

Problem 3. Compute $\Phi_{105}(x)$ by hand, either from the definition or using the formula from Problem 2.

Problem 4. Prove that an angle of measure $\pi / 3$ cannot be trisected. [Hint: Let $x=\cos (\pi / 9)$ and use the triple angle formula to express $1 / 2=\cos (\pi / 3)$ in terms of x.]

