Lecture Notes from Math 412, Fall 2018

Kyle Ormsby

November 13, 2018

Contents

Week 1, Monday 3
Week 1, Wednesday 6
Week 1, Friday 8
Week 2, Wednesday 10
Week 2, Friday 12
Week 3, Monday 15
Week 3, Wednesday 18
Week 3, Friday 21
Week 4, Monday 23
Week 4, Wednesday 25
Week 4, Friday 29
Week 5, Monday 32
Week 5, Wednesday 34
Week 5, Friday 37
Week 6, Monday 39
Week 6, Wednesday 42
Week 6, Friday 45
Week 7, Monday 48
Week 7, Friday 51
Week 8, Monday 53
Week 8, Wednesday 57
Week 9, Monday 61
Week 9, Wednesday 63
Week 9, Friday 66
Week 10, Monday 69
Week 10, Wednesday 72
Week 10, Friday 75
Week 11, Monday 77
Week 11, Wednesday 80
Week 11, Friday 84

Galois Born 1811

- Published at aga 18
- Cursed out examiner at Écela 中olytechnigu- (demised entry)
- Expelled from Écore Normals for political editorial
- Joined a Roublican artillery unit of thu National Guat that was then disbanded for plotting a coup.
- Imprisoned for six months after political protest
- Killed in a dual. Final words to his younger brother: "Don't cry, Alfred! I need all my convagu to die at twenty!
- Mathematical testament written right before death outfinide his work. "Ash Jacobi or Gauss to publicly give their opinion. not as to the truth, but as to the importance \& these theorems. Later, there will be, I hope, some people who will find it to their advantage to decipher all this mess." Indeed - us!
Main idea Translate propertius of alyubrare solutions to polynomial equations into properties of the Galois group of automorphisms of the splitting field.
2.1 Polynomials of several variables

Variables $x_{1}, x_{2}, \ldots, x_{n}$
For F a field, $F\left[x_{1}, \ldots, x_{n}\right]=\left\{\right.$ polynomials in $x_{y} \ldots, x_{n}$ with coefficients in F.
Monomial : $\quad x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}, \quad a_{i} \in \mathbb{N}$
Term: $c x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$, $\quad \in F$
Polynomial: sum of terms

Math 412 Week 1, Monday
The degree of a term $c x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ is $a_{1}+\cdots+a_{n}(c \neq 0)$.
The degree deg (f) of a polynomial f is the maximal degree of its terns $(f \neq 0)$. Define $\operatorname{deg}(D)=-\infty$.
Check $\operatorname{deg}\left(f_{g}\right)=\operatorname{dg}(f)+\operatorname{deg}(g)$.
Think Pair Share Why does this imply that $F\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain? (No zero diwsors.)
Then $F\left[x_{1}, \ldots, x_{n}\right]$ is a unique factorization domain.
Rok But for $n>1, F\left[x_{1}, \ldots, x_{n}\right]$ is not a TID!
Them F a field, R an F-algebra (commutative ring containing F). Then for any set function $f:\left\{x_{1}, \ldots, x_{n}\right\} \longrightarrow R$ there is a unique ring homomorphism $g: F\left[x_{1}, \ldots, x_{n}\right] \rightarrow R$ such that

Run. g is evaluation at $f\left(x_{1}\right), \ldots, f\left(x_{m}\right)$:

$$
g: h\left(x_{1}, \ldots, x_{n}\right) \longmapsto h\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

- Say that $F\left[x_{1}, \ldots, x_{n}\right]$ is the free F-algebra on $\left\{x_{1}, \ldots, x_{n}\right\}$.

Deon x_{1}, \ldots, x_{n} variables over a field F. The elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n} \in F\left[x_{1}, \ldots, x_{n}\right]$ are

$$
\begin{aligned}
& \sigma_{1}:=x_{1}+\cdots+x_{n} \\
& \sigma_{2}:=\sum_{1 \leq i<j \leq n} x_{i} x_{j} \\
& \sigma_{3}:=\sum_{1 \leq i<j<k \leq n} x_{i} x_{j} x_{k} \\
& \vdots \\
& \sigma_{r}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{i_{r}} \leqslant n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \\
& \vdots \\
& \sigma_{n}:=x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

Prop $\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=x^{n}-r_{1} x^{n-1}+\sigma_{2} x^{n-2}-\cdots+(-1)^{n} \sigma_{n}$
ie. $\prod_{i=1}^{n}\left(x-x_{i}\right)=\sum_{i=0}^{n}(-1)^{i} \sigma_{i} x^{n-i}$ where e $\sigma_{0}^{i=}=1$.
If When multiplying out $\prod_{i=1}^{n}\left(x-x_{i}\right)$, we get an x^{n-i} form when we take $x-i$ x's and $i x_{i}^{\prime}$, each of which comes with a (-1) coefficient. Thus the coefficient of x^{n-i} is

$$
\sum_{i \leq j_{1}<_{j 2} \cdots \cdots j_{i} j_{i n}^{j_{n}} x_{j_{2}} \cdots x_{j_{i}}=(-1)^{i} \sigma_{i} ~ . ~ . ~} .
$$

Cor If $f=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1}, x+a_{n} \in F[x]$ has roofs $\alpha_{1}, \ldots, \alpha_{n}$ $\in L 2 F$, then $a_{r}=(-1)^{r} \sigma_{r}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Symmetric Polynomials

$$
S^{G}:=\{5 \in 5 \mid g \cdot 5=5\} \text { is the G -fixed ant of } S \text {. }
$$

(or G-invariants)
$\Sigma_{n}=S_{n}=$ permutations of $\{1,2, \ldots, n\}=$ symmetric group on n letters $\Sigma_{n} 巴 F\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables:

$$
\sigma \cdot f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(n)}, \ldots, x_{\left(x_{n}\right)}\right)
$$

Moral Exercise Chart that this is an action: e.f=f, $(\sigma r) f=r(f f)$.
PPS $\sigma \cdot(f+g)=\sigma f+\sigma g, \quad \sigma \cdot(f g)=(\sigma f)(\sigma g)$
and thus $F\left[x_{1}, \ldots, x_{n}\right]^{\sum_{n}}$ is a ring.
Them $F\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}}=F\left[r_{1}, \ldots, \sigma_{n}\right], i, \ldots$ every symmetric polynomial is a polynomial in elementary symmetric polynomials. (and the suppression
eng. $x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y)=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}$. is unique).
Our proof uses graded lexicographic monomial order:

$$
\begin{aligned}
x_{1}^{a_{1} \cdots x_{n}^{a_{n}}<x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}} \Leftrightarrow & a_{1}+\cdots+a_{n}<b_{1}+\cdots+b_{n} \\
& \text { or } \sum a_{i}=\sum b_{i}+a_{1} s b_{1} \\
& \text { or } \sum a_{i}=\sum b_{i}, a_{1}=b_{1}, \& a_{2}<b_{2} \\
& \text { or } \sum a_{i}=\sum b_{i}, a_{1}=b_{1}, a_{2}=b_{2}, 4 a_{3}<b \\
& \text { or } \cdots
\end{aligned}
$$

$r \cdot g=x_{1}^{4} x_{2}^{2} x_{3}\left\langle x_{1}^{2} x_{2}^{3} x_{3}^{3}, \quad x_{1}^{4} x_{2}^{2} x_{3}\right\rangle x_{1}^{4} x_{2} x_{3}^{2}$.
TPS Fix a monomial $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$. Show that $\left\{x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}<x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right\}$ is finite.
Defy the (graded lexicographic) |reading term of $f \neq O \in F\left[x_{3}, \ldots, x_{0}\right.$ is the term of f with largest monomial in the grlex order.
Pf of The Take $f_{x_{0}} \in F\left[x_{1}, \ldots, x_{n}\right]^{\tau_{-}}$with leading term $c x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$. By symmetry, $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{n}$ (cheek that!).

The discriminant
For $n \geqslant 2$ variables x_{1}, \ldots, x_{n} on a field F, the discriminant

$$
\text { is } \begin{aligned}
\Delta: & =\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2} \in F\left[x_{1}, \ldots, x_{n}\right] . \\
& =\left(\prod_{\substack{i \neq j \\
1 \leq i, j \leq n}}\left(x_{i}-x_{j}\right)\right) \cdot(-1)^{\left(\frac{n}{2}\right)} \in F\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}} .
\end{aligned}
$$

Taking square root:

$$
\sqrt{\Delta}=\prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right) \in F\left[x_{1}, \ldots, x_{n}\right]
$$

Prop For $\sigma \in \sum_{n}, \quad \sigma \cdot \sqrt{\Delta}=\operatorname{sgn}(\sigma) \sqrt{\Delta}$ pf How!
Now define the discriminant of a polynomial $f=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} 6 F[x]$. Let $\tilde{f}=x^{n}-r_{1} x^{n-1}+\sigma_{2} x^{n-2}+\cdots+(-1)^{n} \sigma_{n} \in F\left[x_{1} x_{1}, \ldots, x_{n}\right]$.
Thar $\tilde{f} \mapsto f$ under the map taking r_{i} to $(-1)^{i} a_{i}$ (evaluation on $\left.F^{-}\left[x, \sigma_{1}, \ldots, \sigma_{r}\right]\right)$,
Defer $\Delta(f)=\Delta\left(-a_{1}, a_{2}, \ldots,(-1)^{n} a_{n}\right)$ where $\Delta=\Delta\left(\sigma_{1}, \ldots, \sigma_{r}\right)$.

$$
\Delta(f):=1 \text { if } f \text { has degree } 1
$$

\cdots.

$$
\begin{aligned}
\text { 9. } & f=x^{2}+b x+c \\
& \Delta=x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}=\sigma_{1}^{2}-4 \sigma_{2} \\
\Rightarrow & \Delta(f)=b^{2}-4 c .
\end{aligned}
$$

Prop If $f \in F[x]$ manic of $\operatorname{lig} n \geqslant 2$ hes roofs $\alpha_{11} \ldots, \alpha_{n}$ in $L \supseteq F$, then $\Delta(f)=\prod_{1 \& i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
If Consider the evaluation map $x_{i} \mapsto \alpha_{i}$; than $\Delta \mapsto \prod\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
If $\Delta=\Delta\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, than $x_{i} \mapsto \alpha_{i}$ tater Δ to If $\Delta=\Delta\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, then $x_{i} \mapsto \alpha_{i}$ tater Δ to

$$
\Delta\left(\sigma_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \ldots, \sigma_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=\Delta\left(-a_{1}, a_{2}, \ldots,(-1)^{n} a_{n}\right)=\Delta(f)
$$

Week 1, Friday
Note Let $R=F\left[x_{1}, \ldots, x_{n}\right]$ and $A_{n}=\operatorname{ker}\left(\Sigma_{g n}\right) \leqslant \Sigma_{n}$ denote the alternating grip. Then $R^{\sum_{n}} \subseteq R^{A_{n}} \subseteq R$ and \sqrt{A} is an example of an elearnt of $R^{A_{n}}, R^{E_{n}}$. In fact, $R^{A_{n}}=R^{\Gamma_{n}}[\sqrt{\Delta}] /\left((\sqrt{\Delta})^{2}-\Delta\right)=F\left[\sigma_{1}, \ldots, \sigma_{n}, \sqrt{\Delta}\right] /\left(\Delta^{2}-\Delta\right)$.
Well prover a function field wesson of this in Ch.7.
Pop $\sqrt{\Delta}=\operatorname{det}\left(\begin{array}{ccccc}1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \cdots & x_{1}^{n-1} \\ 1 & x_{1} & x_{3}^{2} & \cdots & x_{1}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}\end{array}\right) \cdot(-1)^{n(n-1) / 2}$
If call the matrix in question V. By the Lexonz (permutation) expansion of dat V,

$$
\operatorname{det} V=\sum_{\sigma \in \sum_{m}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{\sigma(i)}^{i-1}
$$

Thus each term has degree $0+1+\cdots+(n-2)=\frac{n(n-1)}{2}$. If we set x_{j} equal to $x_{i} y_{i}$) \vee has two identical rows and thus O determinant. Thus $x_{j}-x_{i}$ is a factor of dot V.
Hence set $V=g \cdot \sqrt{\Delta}$ for some polynomial g. Clearly $\sqrt{\Delta}$ is homogeneous of clegren $\frac{n(n-1)}{2}$ so g is constant. The $\sigma=e$ contribution t d et v is $x_{2} x_{3}^{2} \cdots x_{n}^{n-1}$ which equals the summand of $\sqrt{\Delta}$ goren by mulfiplyity a tl first terms in $\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{4}-x_{7}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)$... Hence $g=1$ and $\sqrt{\Delta}=d t V$.
(1) As written, proof neglects the sign - spot the mistake!

Existence of Roots
Twa perspectives on \mathbb{C} :
Hamilton: $\mathbb{C}=\mathbb{R}^{2}$ with $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$
Cauchy: $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$. Mult'n law derives from taking remainder of $(a+b x)(c+d x)$ upon division by $x^{2}+1$. Field bc $\left(x^{2}+1\right)=[\mathcal{R}[x]$ is a maximal ideal:
Prop. If F is s field and $f \in F[x]$ is nonconstant, then TFAE (a) The poly f i irreducible sour F.
(b) The ideal $(f)=\{f g!g \in F[x]\}$ is maximal.
(c) The quotient ring $F[x] /(f)$ is a field.

If $(b) \Leftrightarrow(c)$ is standard.
$(a) \Rightarrow(b)$. Suppon tired, $(f) \subseteq I^{\text {ideal }} \subseteq F[x]$. Since $F[x]$ is a PID, $I=(g)$ for rome $g \in F[x]$. Thew $f \in(g)$ implies $f=$ gh for some $h \in F[x]$. Since f is irrud g or h must be constant. If g constant, $I=F[x]$. If 4 constant, $I=(f)$. $(b) \Rightarrow(a)$. Suppose (f) maxi and let $f=g h$. Then $(f) \subseteq(g)$ is $(g)=(f)+F[x]$. The former implims L constant, the latter g constant. Thus f irreg. Since $x^{2}+1 \mathrm{irred} / \mathbb{R}$ (IPS: Why ?) we deduce $\left(x^{2}+1\right)$ max' L so $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field.
Defy Given a ring homomorphism of fields $\varphi: F \rightarrow L$, say L is c field extension of F via φ. Us wally identify F with its image $\varphi(F) \subseteq L$, and write $F \subseteq L$.
$H W$ φ is injective inducing $F \cong \varphi(F)$.
Notation Write L / F when L is a field extension of F.

Prop If $f \in F[x]$ is irreducible, then throes exists L / F and $\alpha \in L$ s.t. $f(\alpha)=0$.

Pf Let $L=F[x] /(f) \stackrel{\varphi}{\longleftarrow} F$. Set $\alpha=x+(f)$.
$a+(f) \longleftarrow a$
suppose $f=a_{0} x^{n}+\cdots+a_{n} w / a_{i} \in F$. Then

$$
\begin{aligned}
f(\alpha) & =\left(a_{0}+(f)\right)(x+(f))^{n}+\cdots+\left(a_{n}+(f)\right) \\
& =a_{0} x^{n}+\cdots+a_{n}+(f) \\
& =f+(f)=0+(f) .
\end{aligned}
$$

Revel $\alpha \in L$ is a root of $f \in L[x]$ iff $x-\alpha$ is a factor of f in $[[x]$ A field L contains all roots of f means f factors

$$
f=a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n} \in L$. Whin this happens, se say f st its completely over L.
Them lat $f \in F[x]$ be a poly of degree $n>0$. Then $\exists L / F$ sit. f splits completely over L.
If by induction on $n=b_{2}(f)$. If $n=1, f=a_{0} x+a_{1}, a_{0} \neq 0, a_{0}, \alpha_{1} \in F$. Thun $L=F, \alpha_{1}=-a_{1} / a_{0} \Rightarrow f=a_{0}\left(x-\alpha_{1}\right)$.
Now suppose $\operatorname{abg}(f)=n>1 \&$ them is true for $n-l$. Since $F[x]$ is UFD, f has an irreg divisor $\left.f_{1}.\right\} F_{1} / F$ and $\alpha, \in F$, s.6. $f_{1}\left(\alpha_{1}\right)=0 \Rightarrow f\left(\alpha_{1}\right)=0$ in F_{1}. Thus $f=\left(\alpha-\alpha_{1}\right) g$ for somas $g \in F_{1}[x]$ of dy $n-1$. Applying the induction hypothesis to z gives L / p_{1} and $\alpha_{2}, \ldots, \alpha_{n} \in L$ s.t. $g=a_{0}\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$. Thus $f: a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ so f splits completely over L.

Fundamental Theorem of Algebra. Every nonconstant $f \in \mathbb{C}[x]$ splits completely our \mathcal{F}, ie. $f=a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for some $a_{0}, \alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$ with $a_{0} \neq 0$.
Prop TFAE:
(a) Evary nonconst $f \in \mathbb{C}[k]$ has at least one root in \mathbb{C}
(b) Every nomonst $f \in \mathbb{C}[$) splits completely over \mathbb{C}.
(c) Every noncount $f \in \mathbb{R}[x]$ has at bast on n root in \mathbb{C}.
sketch $(a) \Rightarrow(b)$ by induction on degree.
$(b) \Rightarrow(c)$ is trivial since $\mathbb{R} \subseteq \mathbb{C}$.
For $(c) \Rightarrow(a)$, take $f=a_{0} t^{m}+\cdots+a_{n} \in \mathbb{C}\left[C_{0}\right]$. We must show that f hes a root in \mathbb{C} whin $n>0, a_{0} \neq 0$. Define n $\bar{f}=\bar{a}_{0} x^{n}+\cdots+\bar{a}_{n}$. Chuck $\bar{f} \bar{g}=\overline{f_{g}}$. Hence $\overline{f \bar{f}}=\bar{f} \bar{f}=\overline{f f}=f \bar{f} \Rightarrow f \bar{f} \in \mathbb{R}[x]$. By hypoth si, $\exists \alpha \in \mathbb{C}$ sit. $(f \bar{f})(\alpha)=0$. But thin $f(\alpha) \bar{f}(\alpha)=0$ so $f(\alpha)=0$ or $f(\alpha)=0$. In the former cases, $\alpha \in \mathbb{C}$ is a root of f; in the latter, $\bar{\alpha} \in \mathbb{C}$ is a root of f (chuck!). Prop Every $f \in \mathbb{R}[x]$ of odd degrees has at least one root in \mathbb{R}. Sketch WLOG, $f: x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ with n odd, $a_{1}, \ldots, a_{n} \in \mathbb{R}$. For $x \geqslant 0, f(x)>0$. For $x \ll 0, f(x)<0$. Thus, by the intermediate value theorem (Math 112 !), f has a rout. Lemma Every quadratic polynomial in $\mathbb{C}[x]$ splits completely our \mathbb{C}.
If The roots of $f=a x^{2}+b x+c$ with $a \neq 0$ ard $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. $b^{2}-4 a c=r e^{\theta \theta}$ for some $r \geqslant 0 \in \mathbb{R}$. Hance $\sqrt{b^{2}-4 a c}=\sqrt{r} e^{i \theta / 2} \in \mathbb{C}$ since \sqrt{r} exists logain by IVT). Hence s the roots of f are in G.

阬 of FTA If suffices to show that every $f \in \mathbb{R}[x]$ of $d y y n 0$ has at least one root in \mathbb{C}. Write n as $n=2^{m} h, k$ oud, $m \geq 0$. We proceed by induction on u. If $m=0, \operatorname{deg}(f)=h$ odd, sowers dow by the Prop.
Now suppose $x_{x} x_{i n} m>0$ and every $f \in \mathbb{R}[x]$ of degree 2^{m-1}. (odd) has at least one root in \mathbb{C}. $\exists L / \mathbb{C}$ s.t. f splits completely over L with rots $\alpha_{1}, \ldots, \alpha_{n} \in L$.
Clever idea (Laplace): set $g_{\lambda}(x)=\prod_{1 \leq i<j \leq n}\left(x-\left(\alpha_{i}+\alpha_{j}\right)+\lambda \alpha_{i} \alpha_{j}\right)$ where $\lambda \in \mathbb{R} . \quad \operatorname{dgg}\left(g_{\lambda}\right)=\frac{1}{2} n(n-1)$.
Claim $g_{\lambda} \in \mathbb{R}[x]$.
Justification Consider $G_{\lambda}(x)=\prod_{1 \leq i ; j \leq n}\left(x-\left(x_{i}+x_{j}\right)+\lambda x_{i} x_{j}\right)$
G_{λ} is fixed by transpositions and hence by Σ_{n}. If follows that there are symmetric polynomials $p_{i}\left(x_{1}, \ldots, x_{n}\right)$ s.t. $G_{\lambda}(x)=\sum_{i=0}^{\frac{1}{n}(n-1)} p_{i}\left(x_{1}, \ldots, x_{n}\right) x^{i}$. Since $\lambda \in \mathbb{R}, p_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
By $\operatorname{Cor} 2.2 .5, p_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R} \operatorname{since}_{\substack{\text { inch }}} \alpha_{1}, \ldots, \alpha_{n}$ ard then roots of $f \in \mathbb{R}[x]$. Thus $g_{\lambda}(x)=\sum_{i=0}^{i=n} p_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) x^{i} \in \mathbb{R}[x]$.
Now $d y\left(g_{\lambda}\right)=\frac{1}{2} n(n-1)=\frac{1}{2} 2^{m} k\left(2^{m} k-1\right)=2^{m-1} k\left(2^{m} k-1\right)$
Thus the induction hypothesis applies and g_{λ} odd has a not in \mathbb{C}. These roots are $\alpha_{i}+\alpha_{j}-\lambda \alpha_{i} \alpha_{j}$, so for each $\lambda \in \mathbb{R}$ we can find a pair i, j with $1 \leq i<j \leq n$ rit. $\alpha_{i}+\alpha_{j}-\lambda \alpha_{i} \alpha_{j} \in \mathbb{C}$.
By the infinite \rightarrow finite pigeonhale principle, $\exists \lambda \not \lambda \mu \in \mathbb{R}$ and $1 \leq i<j \leq n$ s.t. $\alpha_{i}+\alpha_{j}-\lambda \alpha_{i} \alpha_{j} \in \mathbb{C}$ and $\alpha_{i}+\alpha_{j}-\mu \alpha_{i} \alpha_{j} \in \mathbb{C}$.

Subtracting, $(\mu-\lambda) \alpha_{i} \alpha_{j} \in \mathbb{C} \Rightarrow \alpha_{i} \alpha_{j} \in \mathbb{C} \Rightarrow \alpha_{i}+\alpha_{j} \in \mathbb{C}$.
Now consider the quadratic polynomial

$$
\left(x-\alpha_{i}\right)\left(x-\alpha_{j}\right)=x^{2}-\left(\alpha_{i}+\alpha_{j}\right)+\alpha_{i} \alpha_{j}
$$

This has coifs in \mathbb{C} and hence roots in \mathbb{C}, so $\alpha_{i}, \alpha_{j} \in \mathbb{C}$.

Elements of Extension Fields
Defer Extension $L / F, \alpha \in L$. Then α is algebraic over F if there n is a nonconstant polynomial $f \in F[x]$ sit. $f(\alpha)=0$. If α is not algebraic over F; the α is transcendental ore F.
l.g. $\cdot \sqrt{2} \in \mathbb{R}$ is a lgubraic our Q since $\sqrt{2}$ is a root of $x^{2}-2 \in \mathbb{Q}[x]$

- $I_{n}=e^{2 \pi i / n} \in \mathbb{C}$ is algebraic over \mathbb{Q} since ifs a root of $x^{n}-1 \in \mathbb{Q}[x]$.
- π, e ara transcendental over $Q \mathbb{D}$ [hard!]
- $\sqrt{2}+\sqrt{3}$ is a root of $(x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3})$ $=x^{4}-10 x^{2}+1$ so is algebrate over \&Q.
- Next Monday: If $\alpha, \beta \in L$ are alg var F, then so are $\alpha+\beta$, $\alpha \beta, \frac{1}{\alpha}$. Thus $[\alpha \in L / \alpha a \lg / F \mid$ is a subfield of L.
Lemme If $\alpha \in L$ alg $/ F$, then \exists ! noncombat manic $p-l y p \in F[x]$ se.
(c) $p(\alpha)=0$, and
(b) if $f \in F[x]$ with $f(\alpha)=0$, then $p \mid f$.

Diff Sech p is called the minimal polynomial of α over F.
if of Lemma Among nonconstant $f \in F[x]$ i/ α as a root, there is (at (aust) om with minimal degree. Dividing by leading corf, call this p. Clearly $p(\alpha)=0$. Nos supper $f(\alpha)=0$.
Than $f=q p+r$ for som $q, r \in F[x]$ with $r=0$ or $\operatorname{deg}(r)<d a g(q)$. Evalin at α gores $D=f(\alpha)=q(\alpha) p(\alpha)+r(\alpha)=r(\alpha)$.
by minimality of d g (p), we conclude $r=0$.
Usaquemes: $\frac{5 y}{F}$ suppose \tilde{p} also satisfies (a), (b). We got $p|\tilde{p}+\tilde{p}| p$. Since both are monica. $p=\tilde{p}$.
Prop $\ll l$ alg $/ F, p=\min$ poly of α / F. If $f \in F[\kappa]$ is a noncounstai manic polynomial, then $f=p$ iff f is a poly of min'l degree with
$f(x)=0$ if f is irros $/ F$ with $f(x)=0$. $f(x)=0$ inf f is erse $/ F$ with $f(x)=0$.

Pf First equer is in the prof of the lemmen Now show min poly is irred: if $n+t$, one of its factors has lower degree $+\alpha$ as root, contradleting firrt criterion. Noun supposer $f(x)=0$ with f irrsal. Them p If $\Rightarrow p=f$ since both monic, fireed. D
L.g. $\cdot P_{\sqrt{2}, 2}=x^{2}-2$

$$
p_{\sqrt{2}+\sqrt{3}, Q}=x^{4}-10 x^{2}+1
$$

$P_{S_{n}, Q}=\Phi_{n}, n$ the cyclatomic poly $\{$ degreen $\phi(n)=$ \#divison of n. (1 本 $<n$)
Agkoining elts Given $\alpha_{1}, \ldots, \alpha_{n} \in L$, difine $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]:=$

$$
\left\{h\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid h \in F\left[x_{1}, \ldots, x_{n}\right]\right\}, \quad F\left(\alpha_{1}, \ldots, \alpha_{n}\right):=\operatorname{Frac}\left(F\left[\alpha_{n}, \ldots, \alpha_{n}\right]\right)
$$

Lumas $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the smaulest subfield of L containing F and $\alpha_{1}, \ldots, \alpha_{n}$.
If Must show that if $K / F, \alpha_{1}, \ldots, \alpha_{n} \in K$, then $F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subseteq K$.
Obvious since $F\left[\alpha_{1}, \ldots, \alpha_{n}\right] \subseteq K+K$ is a field. a
Cor $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=F\left(\alpha_{1}, \ldots, \alpha_{r}\right)\left(\alpha_{r+t}, \ldots, \alpha_{n}\right)$. $\quad[$
Lemme $L / F, \alpha \in L$ alg over F with nin poly $p \in[x]$. Thin J ! ring iso $F[\alpha] \cong F[*] /(p)$ whi.h if th identity on $F \quad u / \alpha \mapsto x+(p)$. If Tak $\varphi: F[x] \rightarrow L$ whoch has image $F[\alpha]$. Renains if show $\operatorname{kur}(\varphi)=(\varphi)$. Sinex $p(\alpha)=0$, $p \in \operatorname{ker} \varphi$ so $(p) \subseteq \operatorname{ker} \varphi$. If $f \in$ hur $\varphi, f(\alpha)=0$ so $p \mid f$ so fer $\varphi \leq(p)$.
Uniqueness: ring hom defirud on $F[\alpha]$ is determinud by its valeus on F, e.

Pop $L / F, \alpha \in L$. Them α is algebraic over F iff $F[\alpha]=F(\alpha)$.
If Lemma $+F[k] /(p)$ a field for p irred gives \Rightarrow. (\Leftrightarrow) Assume $\alpha \neq 0$. Then $\frac{1}{\alpha} \in F(\alpha)=F[\alpha]$ implies $\frac{1}{\alpha}=a_{0}+a_{1} \alpha+\cdots+a_{m} \alpha^{m}$.
forsomin $a_{j} \in F$. Thus $0=-1+a_{0} \alpha+a_{1} \alpha^{2}+\cdots+a_{m} \alpha^{m+1}$ so $\alpha a \lg / F$. \square
Prop $F \subseteq L \exists \alpha_{1}, \ldots, \alpha_{n}$ alg $/ F$. Thin $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. PI by induction on n. \square

Ir reducible Polynomials
Gauss's Lemme Suppose $f \in \mathbb{Z}[x]$ nosconstant and f ugh where g, h e $\mathbb{R}[x]$. Thin $\exists \delta \in \mathbb{Q}^{x}$ sit. $\tilde{g}=\delta g, \tilde{h}=\sigma^{-1} h \in \mathbb{E}[x]$ land thus

Pf p. 529
Cor If $f \in \mathbb{Z}[5]$ has pristine eyre and is reducible owe Q, then $f=$ gie where $g, h \in \mathbb{Z}[x]$ have degrees $\leqslant d^{2} g(f)$.
Algorithm for irreducibility of $f \in \mathbb{E}[x]$:

- Whoa, assume $f(0), f(1), \ldots, f(n-1) \neq 0$.
- Fie integer odin.
- Fix divisors $a_{0}, \ldots, a_{d} \in \mathbb{Z}$ of $f(0), \ldots, f(d) \in \mathbb{Z}$.
- Construct $g \in \mathbb{Q}(x)$ of degree $\leq d$ st. $g(i)=a_{i}$ for $i=0, \ldots, d$ (Lagrangeinterpolation)
- Accept g if t has degree d and integer caffs: reject it d / w. ob the for all $0<d<n, a_{0}\left|f(0), \ldots, a_{d}\right| P(d)$ to gel a set of "accepted" $g \in \mathbb{Z}[x\}$.
Prop This set is finite, and f is irred/(Q) iff it is not divisible by any of the polynomial in this set.
Pf Each $f(i)$ has fin many divisors, and g is uniquely determined by a_{0}, \ldots, a_{d}, so we get only finitely many g this way. Remains to show f reducible of some accepted g divides f. $(\leftrightarrow) \checkmark$.
$(\Rightarrow) \mathrm{By}$ th corollary, figh where $g, h \in \mathbb{Z}[k]$, i has degree d, odin. For $0 \leq i \leq d$, at $a_{i}=g(i) \mid f(i)$. Lagrang interpolation gives $\tilde{g} \in \mathbb{Q}[x]$ with $\operatorname{dog}(\tilde{j}) \leq d, \tilde{g}(i)=a$: Thin $\operatorname{deg}(g-\tilde{g}) \leq d$ and $(g-\tilde{y})(i)=0$ for $0 \leq i \leq d$ ($(+1$ row t) So $9-\frac{1}{-1}=0 \Rightarrow q=\frac{\text { g }}{}$ is in fur list.

The [Eisenstein criterion] Let $\left.f: a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z} L_{k}\right], a_{n} \neq 0, n>0$. If there ss a prime p rit. $p+a_{n}, p \mid a_{n-1}, \ldots p l a_{0}$, and $p 4 a_{0}$, thin f is irreducible oar \mathbb{Q}.
Pf Suppon for O is of the above form k reducible over Q. Thun $f=g h$ for $g, h \in \mathbb{Z}[x]$ of degree $<n$. Write $\bar{C}): \mathbb{Z}[x] \rightarrow \mathbb{F}_{p}[x]$ for the mod p reduction map- Then $\bar{a}_{n} x^{n}=\bar{g} \bar{h}$ $\Rightarrow \bar{g}=\bar{a} x^{r}, \bar{h}=\bar{b} x^{s}$ for $\bar{a} \bar{b}=\bar{a}_{n}, r+s=n$.
TPS Why does plan imply $r>0, s>0$?
Thun $\bar{g}=\bar{a} x^{r}$ for $r>0 \Rightarrow p$ drowders constant torr if g. and similarly for $L \Rightarrow p^{2} / a_{0}$ 是. D e.g. $x^{n}+p x+p, n \geqslant 2, p$ prime irene / /2

Prop $\underline{\Phi}_{p}:=x^{p-1}+x^{p-2}+\cdots+1, p$ prime is irrud $/ \mathbb{Q}$. Pf $\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{x}$ and $(x+1)^{p}=x^{p}+\binom{p}{1} x^{p-1}+\cdots+\binom{p}{p} x+1$ so $\Phi_{p}(x+1)=x^{p-1}+\binom{p}{1} x^{p-2}+\cdots+\binom{p}{p-1}$. By prime divisibility properties of binomial coeffis, this satisfies the Eisenstein criterion, so $\Phi_{p}(x+1)$ is irred. Then reducibility of $\Phi_{p}(x)$ could contradict this.
Prop For p prime, $f=x^{P}-a \in F[x]$ is irsud $/ F$ of f has no roots in F.阬 $(\overrightarrow{40})$.
(\#) Assume f reducible. Talus L/F for which f splits completely $f=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{p}\right), \alpha_{i} \in L . W \omega G_{1} \alpha_{1} \neq 0$. Sit $\zeta_{i}=\frac{\alpha_{i}}{\alpha_{1}}$, Kisp. Thin $\alpha_{i}^{p} \Rightarrow 3_{i}^{p}=1$, so $\alpha_{i}=\zeta_{i} \alpha_{1}$ with द ai a pith root of unity: $f=\left(x-\zeta_{1} \alpha_{1}\right)\left(x-\zeta_{2} \alpha_{1}\right) \cdots\left(x-\zeta_{p} \alpha_{1}\right)$.
Suppose $f=g h, g, h \in F[x]$ monitor with degrees $r, s<p$.

By unique fact's + relabeling, $g=\left(x-3, \alpha_{1}\right) \cdots\left(x-\xi_{r} \alpha_{p}\right)$.
Since the constant term of g is in $F_{1} \underbrace{\zeta_{1} \cdots \zeta_{r}}_{3} \alpha_{1}^{r} \in F$ Note $3^{p}=1$.
Since $O<r<p, p$ prime, $\exists m, n \in \mathbb{s} t, m r+n p=1$. Thin $3^{m} \alpha_{1}=3^{m} \alpha_{1}^{m r+n p}=(\underbrace{3 \alpha_{1}^{r}}_{\in F})^{m} \underbrace{\left(\alpha_{1}^{p}\right.}_{\alpha \in F})^{n} \in F$. Thus $\left(3^{m} \alpha_{1}\right)^{p}=B^{p})^{m} \alpha_{1} p$ $=a \Rightarrow 3^{m} \alpha_{1}$ is a roof of $f: x^{P-a}$ lying in F.

Degree
For any field ext $L / F, L$ is an F－vector space．
Defer The degree of $L / F: s[L: F]:=\operatorname{dim}_{F} L$ ．
Call L / F a finite extension if $[L: F\}<\infty$ ．
en．$[\mathbb{C}: \mathbb{R}]=2$
－$[\mathbb{R}(\sqrt{D}): \mathbb{R}]=2$ for $D_{\text {most a a square in }} \mathbb{R}$ ．
－$[L: F]=1$ ifs $L=F$ ．
Prop $\alpha \in L / F$ ．
（a）α is alg $/ F$ iff $[F(\alpha): F]<\infty$ ．
（6）Let a be all $/ F$ ．If $n=$ degree of min poly of α / F ，then $1, \alpha, \ldots, \alpha^{n-1}$ form e basis of $F(\alpha)$ over F ．Thus $[F(\alpha): F]=n$ ．
P除 Find suppose α aby $/ F \omega$（min poly $p, n=\operatorname{drg}(p)$ ．Since $F(\alpha)=F[\alpha]$ ， every elf of $F(\alpha)$ is of the form $g(\alpha)$ for some $g \subset F[x]$ ．
By th division aljorithun，$g=q p^{+}\left(a_{\Delta}+a_{1} x+\cdots+a_{n, 1} x^{n-1}\right)$ w）$q \in F[x], a_{i} \in F$ ．Eval＇n at $x=\alpha$ gives

$$
g(\alpha)=a_{0}+\cdots \neq a_{n-1} \alpha^{n-1}
$$

Hence $1, \ldots, \alpha^{n-1}$ span $F(\alpha)$ our F ．Linear independence follows from minimality of $\operatorname{deg}(p)$ ．Thus $[F(\alpha): \bar{F}]=n<\infty$ ．
Now sempose $[F(\alpha): F]=n<\infty$ ．Than $1, \alpha, \ldots, \alpha^{n}$ ara lin dep oven F ．Hence $子 a_{i} \in F$ sst．$a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0$ ．
\Rightarrow－Since s min poly of $\sqrt{2}+\sqrt{3} / 2$ is $x^{4}-10 x^{2}+1$ ，
$[Q(\sqrt{2}+\sqrt{3}): Q]=4$ and every elf of $Q(\sqrt{2}+\sqrt{3})$ can be written uniquely in the form $a+b(\sqrt{2}+\sqrt{3})+c(\sqrt{2}+\sqrt{3})^{2}+d(\sqrt{2}+\sqrt{3})^{3}$ ， $a, b, c, d \in \infty$ ．

Tours
Thm Supporn we heve fields $F \subseteq K \subseteq L$.
(a) If $[K: F]=$ or $[L: K]: \infty$, thin $[L: F]=\infty$.
(b) If $[K: F]<\infty$ and $[l: K]<\infty$, thin $[l: F]=[l: K][K: F]$.

Diagramnaatically:

If (a) Suppose $[L: F]=N$ and let $\gamma_{1}, \ldots, \gamma_{N}$ be a basir of L / F.
Than K is an Fresebspace of L, hence is finite domil $/ F$, in. $[k: F]<\infty$. Taken $\alpha \in L$. Thun $\alpha=\sum_{i=1}^{N} a_{1} \gamma_{i}$ with $a_{i} \in F \subseteq K$, ${ }_{\text {s }} L$ is spanned by $\gamma_{1}, \ldots, \gamma_{N}$ ar $\circ K-v_{s} \Rightarrow[L: K] \leq n<\infty$.
(b) ut $m=[K: F], n=[L: K]$, and pich basus $\alpha_{L}, \ldots, \alpha_{m}$ of K / F, $\beta_{1}, \ldots, \beta_{n}$ of L / K. Show $\left\{\alpha_{i} \beta_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ are a basis of $L / F: \quad$ For $\gamma \in L, \gamma=\sum_{j=1}^{n} b_{j} \beta_{j}, b_{j} \in K, b_{j}=\sum_{j=1}^{m} a_{i j} \alpha_{i}, a_{i j} \in F$.
Thus $\gamma=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} \alpha_{i \beta_{j}}$ so $\left\{\alpha_{i \beta}\right\} \operatorname{span} L / F_{F}$.
TBS Linuar independence?
\cdots … $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=[Q(\sqrt{2}, \sqrt{3}) ; \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): Q]=2.2=4$.
Basis $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ of $Q(\sqrt{2}, \sqrt{3}) / \mathbb{R}$.
Nobe If we belime $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): Q 2]=4$, thin

\because Lut $\omega=a^{2 \pi i / 3} \quad, \quad(\omega, \sqrt[3]{2})$

Algebraic Extensions
Def A field ut L / F is algebra finery element if L is algebraic our F.
Lemma Suppose L/F is finite. Them
(a) L / F is algebraic.
(b) If $\alpha \in L$, then $\operatorname{deg}\left(m_{\alpha, F}\right) \mid[L: F]$.
if For $\alpha \in L, F \subseteq F(\alpha) \leq L$ and the tower than gives $[F(\alpha)=F]$ finite, divider [ぃF]. Wa have alrody seem $[F(\alpha): F]$ fiat $\Leftrightarrow \alpha$ alg $/ F$.
Note Thurs are alg ext who ch ore not finite.
The Let L / F be a field eau. Thun $[L: F]<\infty$ iff $\exists \alpha_{1}, \ldots, \alpha_{m} \in L$ r.t. each α : is alg $/ F$, and $L: F\left(\alpha_{\left.1, \ldots, \alpha_{n}\right)}\right)$
If Jupon $[L: F]<\alpha$ and tale $\alpha_{1}, \ldots, \alpha_{m} \in L$ a basin of L over F. The $L=\left\{a_{1} \alpha_{1}+\cdots+a_{m} \alpha_{m}\left(a_{i} \in F\right\} \subseteq F\left(\alpha_{v} \ldots, \alpha_{m}\right) \in L\right.$ so $L=F\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and Lemma shivs earth $\alpha_{i} \operatorname{alg} / F$.
Now suppose $L=F\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ with sch α_{i} a $g(F$.
Let $L_{0}=F, L_{i}=F\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ for $1 \leq i \leq m$. Gut $F=L_{0} \in L_{1} \subseteq \cdots \leq L_{m}=L_{\text {. }}$.
 $\left[L_{i}: L_{i-1}\right]<\infty$. Thus $[L: F]=\left[L_{m}: L_{m n}\right] \ldots\left[L_{1}: L_{0}\right]<\infty$. Prop Let L / F bee a field extr. If $\alpha \beta G L$ alg $/ F$, than $\alpha+p, \alpha \beta$ ard alg /F as well.
If By the the, $F(\alpha, \beta) / F$ is a finite vern, hance algebras \square
Cor For any $L / F, M=\{\alpha \in L \mid \alpha$ alg $/ F\}$ is a subfield of L containing. F.

Than let $F \subseteq K \leq L$ ．If $\alpha \in L$ olg $/ K$ and K alg $/ F$ ，thm $\alpha \operatorname{alg} / F$ ．
陆 Let α be a rot of $f=\beta_{0} x^{n}+\cdots+\beta_{0} \in K[x]$ whra $\beta_{n}, \ldots, \beta_{0} \in K$ ， not all 0 ．Each β_{1} alg $/ F_{\text {，}}$ so $M=F\left(\beta_{n}, \ldots, \beta_{0}\right)$ o is a finite eofor of F ．kobe $f \in M[x]$ ，so α alg $/ M$ ，so $M(\alpha) / M$ is finitu．Thin $[M(\alpha): F]:[M(\alpha): M][M: F \mid<\infty$ ， $1-\alpha$ aly $/ F$ ．
2．g．Every cpx soln of $x^{11}-(\sqrt{2}+\sqrt{5}) x^{5}+3 \sqrt[4]{12} x^{3}+(1+3 i) x$ $+\sqrt[5]{17}=0$ is an algebras mumber．
cor L／K／F with L／R ary，K／F alg，them L／亻 algabrair．
Befn The algebrai $\#_{1} \bar{Q}=\{z \in \mathbb{C} / z$ aly／$\alpha\}$ ．
Thm The filld \bar{X} is algebraically clond．
陆 It siffiry to show every nonconstant poly in $\bar{Q}[0]$ has a root a \bar{Q} ．Given inth f_{1} it has a root $\alpha \in \mathbb{C}$ ． This α alg／ \bar{Q} since its $=$ root of $f+\bar{Q}[x]$ ．
By the corsllary，$\alpha \operatorname{alg} /(\mathbb{Q}$ ro $\alpha \in \bar{Q}$ ．प

Splitting Fields
Defy Let $f \in F[x]$ ham $\operatorname{dogree} n>0$. Thun an extor L / F :s a splatting field of f omer F if
(a) $f=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right), \quad c \in F, \alpha_{1} \in L, a \sim d$ (b) $L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Note such L is the small it field over which f spits complobely
log. Splitting field of $x^{2}+1 / Q$ is $(Q)(1)$

$$
\begin{aligned}
& 1 \mathbb{R} \text { in } \mathbb{C} \\
& / \mathbb{C} \text { is } \mathbb{e}
\end{aligned}
$$

1. Splitting field of $x^{4-2 /(2): Q}(i, \sqrt[4]{2})$.

Thu Let $f \in F(x)$ havre degree $n>0$, and let L be a splitting fired of f. Them $[l: F] \leqslant n!$.
If Proceed by induction on n. If $n=1, f=a x+6$ has roof $-b / a \in F$, so $L=F$ and $[L: F]=1 \leq 1!$.
Now supporn fhas degree $n>1, L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ a splitting field of f / F. If me write $f=\left(x-\alpha_{1}\right) g$, gut $g \in F\left(\alpha_{1}\right)[\alpha]$ and g has roots $\alpha_{2}, \ldots, \alpha_{n}$, 5 the splitting field of g over $F\left(\alpha_{1}\right)$ is L. By ind hyp, $\left.\left[L: F G \alpha_{1}\right)\right]$ $\leq(n-1)!$. Than $[L: F]:\left[L: F\left(\alpha_{1}\right)\right]:\left[F\left(\alpha_{1}\right): F\right] \leq(n-1)![F(\alpha): F]$ But $\left[F\left(\alpha_{1}\right): F\right)=\operatorname{deg}\left(m_{\alpha_{1}, F}\right)$ and $f\left(\alpha_{1}\right)=0$ so $\left|F\left(\alpha_{1}\right): F\right| \leq n$ $\Rightarrow[L: F] \leq n!$.
Note The bound 17 sharp $\left(Q(\omega, \sqrt[3]{2}) / Q \operatorname{splits} x^{3}-2\right)$ but nut a lings realized $\left(Q(\sqrt{2}, \sqrt{3}) / Q \operatorname{sp}\right.$ lifo $\left(x^{2}+2\right)\left(x^{2}-3\right)$ and $4<4$!)!

Uniquenes:

$$
\begin{gathered}
L_{1} \\
F_{1} \stackrel{L_{2}}{\varphi} \stackrel{1}{\varphi} F_{2}
\end{gathered}
$$

$L_{1}=$ splitty field of $f_{1} e F(x)$

$$
L_{1}=\overline{\text { whre }} \overline{\operatorname{cosffs}} \text { sf } f_{2} \in F[x)
$$

Them \exists is $\bar{\varphi}: L_{1} \rightarrow L_{2}$ wioh $\varphi=\left.\bar{\varphi}\right|_{F_{1}}$.
PI by ind'r on $n=\operatorname{deg}\left(F_{1}\right)=\operatorname{deg}\left(f_{2}\right)$. If $n=1, L_{1}=F_{1}, L_{2}=F_{2}$ and we can talia $\bar{\varphi}=\varphi$. Nou supporen $n>1$. Thm $L_{1}=F\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ for α_{i} rost of f_{1}. Conss)=ler $F_{1} \subseteq F_{1}\left(\alpha_{1}\right) \subseteq L_{1}$ whire L_{1} is-a splitifing fiald of $g_{1}=f_{1} /\left(x-\alpha_{1}\right)$ over $F_{1} C_{n}$. Styp 1 It $h_{1} \in F_{1}[x]$ beo min poly of $\alpha_{1} F_{1}$. Ther

$$
\begin{array}{r}
F_{1}\left(\alpha_{1}\right)=F_{1}\left[\alpha_{1}\right] \cong F_{1}[x] /\left(h_{1}\right) . \\
\alpha_{1} \mapsto x+\left(h_{1}\right)
\end{array}
$$

 irred fater of f_{2}. Rosts of f_{1} ars $\rho_{1}, \ldots, \beta_{n} \in L_{2}$ Sheree β_{1} is c root of h_{2}
Staps Gut $\left.L_{2} / F_{2} C_{p_{1}}\right)\left(F_{2}\right.$ whit L_{2} splitting $g_{2}=f_{2} /(x-a, 1)$.
Then $\begin{aligned} & F_{2}\left(\beta_{1}\right)=F_{2}\left[\beta_{1}\right] \triangleq F_{2}\left[x_{2}\right] \\ & \beta_{1} \longmapsto x+\left(h_{2}\right]\left(h_{2}\right)\end{aligned}$

stp 5 Digron of $L_{1} / F_{1}\left(\alpha_{1}\right)$ it n-1 To ind hap produces $L_{1} \approx L_{2}$ fitting into the diegram.
cor If $L_{1_{1}} L_{2}$ are splitting fields of $f \in[x]$, thin thare is an iso $L_{1} L_{2}$ whoch s the identioy on F.
II Apply the thm to id: $F \rightarrow F$.

Pop let L be a plating field of $f \in F[x]$, and suparise $h \in F[x]$ is irreducible with roots $\alpha, \beta \in L$. Thu \exists field in o $\sigma: L \rightarrow L$ that is identity on F, tache $\alpha+\beta$.
pf Have $F(\alpha)=F[\alpha] \cong F[k] /(L) \cong F(\beta]=F(\beta)$

Cut the diagram of splatting fields

e.j. $L=Q(\sqrt{2})$ is the plotting field of $x^{2}-2 \in Q[a]$ which has roots $\pm \sqrt{2}$ so \exists iso $\underset{\sqrt{2} \mapsto-\sqrt{2}}{L}$, id - (Q).
Note Such r is an alt of $G a((L / F)$, the Goon gross of L / F.
Normal Extensions
Q Given LFF, how can un tell if L is the splitting field of some $f \in F[x]$?
Prop L Let L be the s战ting field of $f \in F[x]$, and let $g \in F[x]$ be irrod. If g has one rot in L, then g splits completely over L. Pf WLOG, fog ares monic. Than $L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ whirs $f_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$.
If $A \in L$ is a root of g, than g is the mint poly of β / F sires g is Fred. \& manic.

Now consider $s(x)=\prod_{\sigma \in \Sigma_{n}}\left(x-h\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}\right)\right) \in[[x]$.
Roots all in L, include β. Suffices to show $S \in F[x]$. TPS Why? (B / c thin $g l s, 5$ splits completely.)

Consider $S(x)=\prod_{\sigma \in \sum_{n}}\left(x-h\left(x_{\sigma(1)}, \ldots, x_{\sigma(2)}\right)\right)$ with cuffs in $F\left[x_{1}, \ldots, x_{n}\right)$.
This is clearly symmetric in x_{1}, \ldots, x_{x}, so its expansion is ff the form

$$
S(x)=\sum_{i=0}^{n!} p_{i}\left(x_{1}, \ldots, x_{m}\right) x^{i}
$$

whreeach $p_{i} \in F\left(x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}}$. Since the α_{i} are roots of $f \in F[x]$, get $p_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in F$, so $s(x) \in F[x]$.
eg. $\mathbb{Q}(\sqrt[3]{2})$ is not the splitting field of any polynomial in $\mathbb{C}[x]$: $P_{3 \sqrt{2}, Q}=x^{3}-2$ is irred $/ Q$ but has roots $\omega \sqrt[3]{2}, w^{2} \sqrt[3]{2} \notin \mathbb{Q}(\sqrt[3]{1})$.

Dufy An alg extn L / F is normal if every irred poly in $F[x]$ that has a root in L splits complutuly over L.

Aside Perhaps "equitable" would be a better term, but wo are stack Lith "normal."
HW L/F normal of $\mu_{\infty, F}$ split completely $\forall \alpha \in L$.
The Suppers L / F. Than L is the s pliting field of rome $f \in F[x]$ iff L / F is normal and finite.
If (\Rightarrow) Finite by n ! bound or degree, just proud normal. $\Leftrightarrow) L / F$ normal and finite. By finiteness, $L=F\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ where each α_{i} alg $/ F$. Let $p_{i}=m_{\alpha_{i, F}} \in F[x]$, set $f=p_{1} \cdots p_{m}$. Claim L is the splitting field of f.
Clearly f splits completely since each p_{i} has root α_{i} in L and L / F normal. Lat L ' be the infield of L geed by F and the coots if f. Thun $L^{*} F\left(\alpha_{1}, \ldots, \alpha_{m}\right) \subseteq L^{\prime} \subseteq L=L^{\prime}=L$, ard L is the splitting field of f over F.

Separable Extensions
For $f \in F[x]$ and $\beta_{1}, \ldots, \beta_{r}$ distinct in L / F s.t.

$$
f=a_{0}\left(x-\beta_{1}\right)^{m_{1}} \cdots\left(x-\beta_{r}\right)^{m_{r}}, \quad a_{0} \in F, m_{1}, \ldots, m_{r} \geqslant 1
$$

call m_{i} the multiplicity of β_{i}. Say β_{i} is a simple root if $m=1$ and a multiple root if $m_{i}>1$.
Defa A poly $f \in F[x]$ is separable if it is noncoustant and its roots in a. -splitting field are all simple.

Slogan separable $=$ distinct roots
egg. $x^{2}-2 x+1=(x-1)^{2}$ is not separable
Recall discriminant $\Delta(f)$ of a manic $f_{E} F[x]$ of $d y>1$:

$$
\Delta(f)=\prod_{1 \leqslant i<j \leq x}\left(\alpha_{i}-\alpha_{j}\right)^{2} \text { when } f=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{x}\right)
$$

Prof If $f \in F[x]$ is manic and noncoust, then TF AE:
(a) f is separable
(b) $\Delta(f) \neq 0$
(c) f and $f^{\prime}($ the derivative of $f)$ are relatively prime in $F[x]$.

If Trivially true if $\operatorname{dbg}_{\mathrm{g}}(f)=1$ since $\Delta(f)=1$ by convention in this case rappen $n=\operatorname{deg}(f)>1 . \quad(a) \Leftrightarrow(b)$ clear. Let L be a splitting field of f / F so that $f=\left(x-\alpha_{1}\right) \cdots\left(\alpha_{x}-\alpha_{n}\right) \in[[x]$. For a given i, utile $f(x)=\left(x-\alpha_{i}\right) h_{i}(x)$, so $h_{i}(x)=\prod_{j \neq i}\left(x-\alpha_{j}\right)$. By the product rule, $f^{\prime}(x)=\left(x-\alpha_{i}\right) h_{i}^{\prime}(x)+h_{i}(x)$. Eval'n at α_{i} gives $f^{\prime}\left(\alpha_{i}\right)=h_{i}\left(\alpha_{i}\right)$. If (c) is false, thin f, f^{\prime} have a conman factor g of pos degrill. Since $g(f) g\left(\alpha_{i}\right)=0$ for some i, and than $g \mid f^{\prime} \operatorname{imp}\left(\sin f^{\prime}\left(\alpha_{i}\right)=0\right.$. Hence $0=f^{\prime}\left(x_{i}\right)=\prod_{y \neq i}\left(\alpha_{i}-\alpha_{j}\right)$ $\Rightarrow \alpha_{i}=\alpha_{j}$ for som $j \neq i$.

If (c) is true, ther $1=A f+B f^{\prime}$ for same $A, B \in F[x]$. Eval's at α; giver $1=b\left(\alpha_{i}\right) f^{\prime}\left(\alpha_{i}\right)$, so $f^{\prime}\left(\alpha_{i}\right) \neq 0$, so $\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right) \neq 0 \quad \forall i$ $\Rightarrow \alpha_{1}, \ldots, \alpha_{n}$ ard distinct.

Defa For L/F an aly extu,
(a) $\alpha \in L$ is separable oner F if $m_{\alpha, 5}$ is sep / F;
(b) L / F is a separable extension if esory $\alpha \in L$ is up $/ \bar{F}$.

Lusme A nonconstant $f \in F[x]$ is separable iff f is a product of irred polys, each of which is suparable and nos two of whith are multiplos feach other.
Lemman Let $f \in F[x]$ be an irred poly of degree n. Thin f : separatrle if cither of the following conditions is satisfied:
(a) F has characteristion O, or
(b) F has char $p>0$ and $i t_{n}$.

If Let $f=a_{0} x^{n}+\cdots+a_{n-1} x+a_{n}, n>0, a_{0} \neq 0$. Thur

$$
f^{\prime}=n a_{0} x^{n-1}+\cdots+a_{n-1} \text {. By }(\in) \text { or (b), } n \neq 0 \in F,=
$$

$a_{0} \neq 0 \Rightarrow n a_{0} \neq 0 \Rightarrow f^{\prime} \neq 0$ of deg $n-1$. By irred of f, $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ or f. Deg-of $\operatorname{gcd} \leqslant n-1$, s. in fuct $=1$. D -.g. $x^{n}-1 \in F(x)$ is nonseperable iff char $(F)=p / n$.
Chemactoristoc O
Cor If $\operatorname{chor}(F)=0$, then
(a) every iresed in $F[x]$ is separable
(b) every aly exto of F is suparable
(c) a nomonst $f \in F[x]$ is sup crable iff f is a produnt of irred p oly f. no two of chieh ars multipler of rach othwr.
Prop Let char $\bar{F}=0, f \in F[x]$ harx fart'n $f=\mathrm{cg}_{1}^{n_{1}} \ldots g_{2}^{n_{2}}, e \in F$, $\vec{g} ; \in F[\kappa]$ maic irreal distinct. Thin
$\frac{f}{g c d\left(d, f^{*}\right)}=c g_{2} \cdots g_{l}$ and $g_{1} \cdots g_{e}$ is sup $u /$ ram coss as f in a splititing field.

If Reading: $78^{112-113}$.
eq: $f: x^{11}-x^{10}+2 x^{8}-4 x^{7}+3 x^{5}-3 x^{4}+x^{3}+3 x^{2}-x-1 \in Q[x]$.
Thun $\operatorname{ged}\left(f, f^{\prime}\right)=x^{6}-x^{5}+x^{3}-2 x^{2}+1$ (Enalideren algorithm) so $\frac{f}{g^{d}\left(f, f^{\prime}\right)}=x^{5}+x^{2}-x-1$ is se W/ Tame roots as f.

Characteristic $p>0$
Lemma cher $F=p>0, k, \beta \in F$, then $(\alpha+\beta)^{p}=\alpha^{p+}+\beta^{p},(\alpha-\beta)^{p}=\alpha^{p-\beta^{p}}$. if Binomial them $+p l\binom{r}{r}$ for $1 \leq r \leq p-1$.
$\left(\alpha_{p}\right)^{p}=\alpha^{p} \beta^{p}$ so $\alpha \mapsto \alpha^{p}$ is a homomorphism called the Frobenius komomet-phorp How Hint Use tho to thank about $x^{3}-t / F_{3}$.
$f=x^{p}-t=F[x], F=k(t)$, cher $k=p$ is nonsuparable and irrud.
(Skipping 55.4: Thu of Primition Element, which tells as that for infinite $F, L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \downarrow$ eat κ_{i} up $/ F, \exists \alpha \in L$ sb. $L=F(\alpha)$. We ray prom thus later via Galois thy.)
The Galois Group
For $K, L / F$, a field how over F is a home $Q K \rightarrow L$ sot. $\varphi l_{F}=i d_{F}$. Write $K \xrightarrow[F]{\varphi} L$
Defoe The Galore group of L / F is

$$
\operatorname{Gal}(L / F)=\{L \underset{F}{\underset{F}{\leftrightarrows}} L / \sigma \text { is an isomorph hiss }\}
$$

$=$ automorphisms of L / F.
Prop G Gal (L/F) is = group under composition.
阬 $\cdot \sigma_{1} \tau \in G$ Gal(LIF) $\Rightarrow \sigma_{\tau}=\sigma_{\tau} \in$ Gal (LIr)

$$
\begin{aligned}
& \cdot i_{L} \in \operatorname{Ga}(/ L / F) \\
& \cdot r \in \operatorname{Gal}(L / F) \Rightarrow \sigma^{-1} \in \operatorname{Gal}(L / F)
\end{aligned}
$$

$\cdots \cdot g$. $\bar{C} \in G_{\text {al }}(\mathbb{C} / \mathbb{R})$ - $C_{n} \cong\langle\bar{T}\rangle \leqslant \operatorname{Gal}(\mathbb{C} / \mathbb{R})$

$$
L\left(I_{n} \text { fact, }=\right)
$$

Lemme L / F finite, $\sigma \in G a l(L / F), h \in F\left[x_{1}, \ldots, x_{n}\right], \beta_{1}, \ldots, \beta_{n} \in L$ then $\sigma\left(h\left(\beta_{1}, \ldots, \beta_{n}\right)\right)=h\left(\sigma\left(\beta_{1}\right), \ldots, \sigma\left(\beta_{N}\right)\right)$.

Prop L / F finite, $\sigma \in \operatorname{Gal}(L / F)$. Then
(a) If $h \in F[C]$ nomeanst, $\alpha \in L$ rot of h, then $\sigma(\alpha)$ is also a rot of h lying in L.
(b) If $L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, than σ is anigurly determine by its valuers on $\alpha_{2}, \ldots, \alpha_{n}$.
Pf (a) $0=\sigma(0)=\sigma(h(\alpha))=h(\sigma(\alpha))$.
(b) Since L / F finite, $L=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$, sn $\beta \in L$ hes $\beta=h\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for stine $h \in F\left[x_{1}, \ldots, x_{n}\right]$. Thin $\sigma\left(x_{1}\right)=\dot{\sigma}\left(h\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=h\left(\sigma\left(\alpha_{3}\right), \ldots, \sigma\left(\alpha_{n}\right)\right)$,

Cor If L / F is finite, then G al (L/F) is finite.
陆 since L / F 期ite, $L=F\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ with α_{i} alg $/ F$.
If $p_{i}=m_{\alpha_{i}, F}$, than for \quad $\in \operatorname{bal}(L / F)$ must hand $\sigma\left(\alpha_{i}\right)$ a roof of p_{i}, and there are at most $\operatorname{dog}\left(p_{i}\right)$ of these. Sine σ il determined by the values $\sigma\left(\alpha_{i}\right)$, conclude that $|G a l(L / \psi)| \leq \prod_{i=1}^{n} d e y\left(p_{i}\right)<\omega$.
ag. $Q(\sqrt[3]{2}) / Q: x^{3}-2$ only has one real rot, $\sqrt[3]{2}$, and $2(\sqrt[3]{2}) \subseteq(\mathbb{R}$, s. $\operatorname{Gaf}(Q(\sqrt[3]{2}) / Q)=1$.

ㅇ. $F=k(t)$, char $(k)=p>0, L$ the 5 (lifting field of $f=x^{p}-t$. If $x \in L$ a rood of f, thin $L=F(\alpha)$ and $f=(x-\alpha)^{p}$. Thus α is the only root of $f \Rightarrow \operatorname{Gal}(L / F)=1$.
eg Roots of $x^{2}+1$ ard \pm_{i}, st $\langle\bar{c}\rangle=\operatorname{cal}(c / \mathbb{R}) \cong c_{2}$.
e.g. $G a((Q)(\sqrt{2}) / \theta) \triangleq C_{2}$, gand by $a+b \sqrt{2} \mapsto_{a-b \sqrt{2}}$.
\therefore.i. $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. For $r \in G a l(L / Q)$, know $\sigma(\sqrt{2})= \pm \sqrt{2}$, $\sigma(\sqrt{3})= \pm \sqrt{3}$, so $\left.\left|G_{a l}\right| L / Q\right) \mid \leq 4$. If $=4$, then $\operatorname{law} \mid(L / Q)$ $\cong C_{2} \approx C_{2}$.

Defoe let $f \in F(x)$. The Gabis group $\mathbb{I f}$ oar F is $\operatorname{Gal}(L / F)$ for L - splitting field of F.
(Wall-defind $a p$ to isomorphism by prop.)
Ag. $\operatorname{Gal}\left(x^{2}+1 / \mathbb{R}\right) \cong \operatorname{Cal}(\mathbb{C} / \mathbb{R}) \cong C_{2}$.

Gabs groups of splitting fields
Thu Let L be the gritting field of $f \in F[x]$. Thin $|G \mathrm{aal}(L / F)| \leq[L: F]$ with equality if f is separable over F. Pf by induction on $[L: F]$. If $[L: F]=1$, thin $L=F$ and $G a(F / F)=1$ and has order 1. If $[L S F]>1$, them f hes at least on ireshd factor p of $\operatorname{deg}>1$. Let α be a fixed root of p and $\sigma \in \operatorname{Gal}(L / F)$ Set $\tau=\left.\sigma\right|_{F(\alpha)}$ and $\beta=\tau(\alpha)$, Wa get $L \stackrel{\sigma}{\longrightarrow} L$ ARgive conversely, for which ir root of root of p, we known $\exists \tau: F(\alpha) \rightarrow F(\beta)$ extending id f.

Thus
Thus $\begin{aligned}|G a|(L / F) \mid= & \Pi \text { dalinet facturgomel of irene factor) of } f \text { ont } F\end{aligned}$ $\leqslant \Pi_{\operatorname{cog}}\left(p_{i}\right) \quad$ with equality :If f separable.
~.9. $D(\sqrt{2}, \sqrt{3})$ is the splitting field of the sup poly $\left(x^{2}-2\right)\left(x^{2}-3\right)$, so $|\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})>\mathbb{Q})|=4$.
Note Splitting field * separable are necessary hypotheses for equality: $T(\sqrt[3]{2}) / \mathbf{Q}, \quad k(t, \sqrt[p]{t}) / k(t)$ for cher $k: p$.
Defy L / F with L the splitting field of a separable polynomial is called a Galois extension of F.
Permutations of the roots
Assume L / F Galois for $f \in F[x]$. If $\log (f)=n_{1} f=a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for $a_{0} \neq O \in F_{1} \alpha_{i}$ distinctelts of L.

Since $\sigma \in G a l(L / F)$ permutes the roots α_{i}, we get a how

$$
\begin{aligned}
& \operatorname{Gal}(L / F) \Sigma_{n} \\
& \sigma \longmapsto \tau:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\} \\
& \text { where } \sigma\left(\alpha_{i}\right)=\alpha_{\tau(i)} .
\end{aligned}
$$

(Every gp action $G \times S \rightarrow \delta$ gives a hoo $G \longrightarrow \Sigma_{131}$ in this ways
Prop The hove Gal (L/F) $\rightarrow \Sigma_{n}$ is infective.
Pf σ is determined by its action on $\alpha_{1}, \ldots, \alpha_{n}$ so $\sigma=i \alpha_{L}$ iff $\sigma\left(\alpha_{i}\right)=\alpha_{i} \forall i$ iff $\sigma \longmapsto 1$.
Cor If L is the splitting field of a sep poly $f \in F[x]$. thin $[L: F] \mid n!$ for $n=\operatorname{deg}(f)$.
PI May regard G all $L / / F) \leq \Sigma_{n}$ by the prop, se this is implied by lagrangis theorem.
Note Already proud $[L: F] \leq n!$ ($w / 0$ separability hypothesis), so then refines that result.

2g. $L=Q(\sqrt{2}, \sqrt{3}), f=\left(x^{2}-2\right)\left(x^{2}-3\right)$

$$
\alpha_{1}=\sqrt{2}, \alpha_{2}=-\sqrt{2}, \alpha_{3}=\sqrt{3}, \quad \alpha_{1}=-\sqrt{3}
$$

$$
\begin{aligned}
\tau: \alpha_{1}^{2} \alpha_{2}^{2} & \alpha_{3} \leftrightarrow \alpha_{4} \\
\text { Get } \operatorname{Gal}(L / Q) & =\{2,(12),(34),(12)(34)\} \\
& =\langle(121,134)\rangle \leq \sum_{4} .
\end{aligned}
$$

log. $L=\mathbb{Q}(\omega, \sqrt[3]{2})$ with $\omega=2^{2 \pi i / 3}, 5^{2}$ pitting fielded of $x^{3}-2 /(Q$. Have Gal L LTD $) \longleftrightarrow \Sigma_{3}$ and $\left|G_{a}(L L / Q)\right|=[L: Q]=6$. But $\left|\Sigma_{3}\right|=6$, so $\operatorname{Gal}\left(L /(Q) \equiv \Sigma_{3}\right.$.

Recall A gp action $G \times S \rightarrow S$ is transitive if $\forall s, t \in S$ Jg $\in G$ sit. $g s=t$.
Prop $L e t l$ be the spiting field of sup $f \in F[x]$. Thur $G a l(L / F)$ acts transitively on the roots of f iff f is irred / F.
If Warm already seen that f acts transitively on roots if fred factor of f. By separability, these sets are disjoint, and thus form the orbits of the action of Gal(L/F) on roots of f. Transitivity on all roots then correspond e to there being only 1 irred factor, inn. f irrsd. E

The p-theroon of 2 prime
$\zeta_{1}=e^{2 \pi i / p}$. The roots of $x^{p}-2$ are $\zeta_{p}^{j} \sqrt[5]{2}$ for $\delta^{\leqslant} j^{\leq} p^{-1}$.
Thus $L=\$\left(\sqrt{2}, 3_{p} \sqrt[{\sqrt{2}}]{2}, 3_{p}^{2} \sqrt[v]{2}, \ldots, 3_{p}^{p-1} \sqrt[2]{2}\right)$

$$
=\left(\zeta_{1}, \sqrt[p]{2}\right)
$$

is the splitting field of $x^{p}-2$ oi 2 .
Min poly of ζ_{p} is $x^{p-1}+x^{p-2}+\cdots+1$ with roots $\xi_{p}^{i}, 1 \leq i \leq p-1$.
Min pasty of $\sqrt[p]{2}$; $x^{\prime}-2$ by Eisenstein criterion.

Tower tho $+g-d(p, p-1)=1$

$$
\Rightarrow[L: \mathbb{Q}]=p(p-1) .
$$

Thus $|G<1(L / Q)|=p(p-1)$. Take $\sigma \in G a l(L / Q)$. Then σ is determine by $\left.r\left(3_{p}\right) \in\left\{3_{p}, 3_{l}^{2}, \ldots,\right\}_{p}^{p-1}\right\}, \sigma(\sqrt{2})$ e\{ $\sqrt{2}, 3_{p} \sqrt{2}, \ldots$.
GIl $\sigma=\sigma_{i, j}$ if $\sigma\left(3_{p}\right)=3_{1}^{i}, \sigma(\sqrt{2})=3_{p}^{j} \sqrt{2}$
for some $10 \leq i \leq p-1,0 \leq j \leq p-1$. Every σ is of this form and there are only $(p-1) p$ choices for i, j, so all $\sigma_{i, j}$ ard realized.
To determine group structure, we need to comp ate composition:

$$
\begin{aligned}
\sigma_{i j} \sigma_{r s}(3) & =\sigma_{i j}\left(3^{r}\right)=\left(\sigma_{i j} 3\right)^{r}=3^{i r} \\
\sigma_{i j} \sigma_{r s}(\sqrt{2}) & =\sigma_{i j}\left(3^{r} \sqrt{2}\right)=\sigma_{i j}\left(3^{j}\right) \sigma_{i j}(\sqrt{2})=3^{i j} 3^{j} \sqrt{2} \\
& =3^{i j+j} \sqrt[2]{2} .
\end{aligned}
$$

Thus $\sigma_{i j} \sigma_{r s}=\sigma_{i r, i s+j}$ where th subscripts are interpented in F_{p}. Get $=$ bijection $\mathbb{F}_{1} x \times F_{p} \rightarrow G a(L / Q)$ but its nut a hour! $(i, j) \longmapsto \sigma_{3 j}$

Two persputives on the group steneture:
Geometry: Let $A\left(A L_{1}\left(F_{p}\right)=\left\{b_{j}^{i j} m F_{i} \rightarrow \mathbb{F}_{i}\right.\right.$ of the form $u m a c t b$ for come $\left.a, b \in F_{p}\right\}$
Easy to chuck $\gamma_{a, b}$ bij iff $a \in \mathbb{F}_{p}^{x}$.
Gp op is sop' n, and

$$
\begin{aligned}
\gamma_{a, b} \circ \gamma_{c, d}(u) & =\gamma_{a, b}(c u+d)=a(c u+d)+b=a c u+(a d+b) \\
& =\gamma_{a c, d \ell+b}
\end{aligned}
$$

Thurs $G_{a 1}(L / B) \xrightarrow{\ddot{ }} A G L_{1}\left(\mathbb{F}_{p}\right)$.

$$
\sigma_{a, b} \longmapsto \gamma_{a, b}
$$

Semi-diruct product
(1) Recall that if $G=N H$ for $N \leqslant G, H \leq G, N \cap H=1$, than $G=N \times H$, the semiodiruct product of $N+H$.
(3) For $\varphi: H \rightarrow \operatorname{Aut}(N)$ home, construct $N \underset{\varphi}{x} H$ with underlying set $N \times H$ and group op $\left(n_{1}, h_{2}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} \varphi\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)$.
This recovers (1) if $\varphi: h \mapsto\left(n \mapsto h_{a} h^{-1}\right)$ is the anjugestion ham.
For $\operatorname{Gal}(L / \bar{F})$, take $N=\left\{\sigma_{1, j} \mid j \in \mathbb{F}_{p}\right\} \cong \mathbb{F}_{p} \cong . S_{p}$. Note that $N \& G a l(L T \vec{r})$. Take $H=\left\{\sigma_{i, j} \mid i \in \mathbb{F}_{p}^{x}\right\} \cong \mathbb{F}_{p}^{x} \triangleq C_{p-1}$ Have $\sigma_{1, j} \sigma_{i, 0}=\sigma_{1 i, 1,0+j}=\sigma_{i, j}$ so $N H=G_{a l}(L / Q)$, clearly $N_{n} H=1$.

Finally compute $\sigma_{i 0} \sigma_{i j} \sigma_{i 0}^{-1}=\left(\sigma_{i-1, i j+0}\right) \sigma_{i \%, 0}$

$$
\begin{aligned}
& =\sigma_{i, i j} \sigma_{i,-1} \\
& =\sigma_{i, i \cdot 0+i j}
\end{aligned}
$$

$$
=\sigma_{1, i j} .
$$

This corresponds to $\varphi: \mathbb{F}_{i} \times \rightarrow$ Mut $\left(\mathbb{F}_{p}\right)$
$i \longmapsto(j \mapsto i j)$, the mull by i map. Get $G=l(L / Q) \cong \mathbb{F}_{p} \underset{\operatorname{manl}_{i}}{ } \mathbb{F}_{p_{i}^{x}}^{x}$.

Galore Extensions
Defy For $L \not F$ finite and $H \leqslant G a l(L / F)$,

$$
L^{H}:=\{\alpha \in L \mid \sigma(\alpha)=\alpha \forall \sigma \in H\}
$$

is the fixed field of H.
Moral Exc $L^{\prime \prime}$ is a field.
Them L/F finite. TFAE:

c) L / F normal + separable.
 goal is to show $K=F$. Note L is also the porting foisted of f our K, so $[L: F]=|\operatorname{Gal}(L / F)|=[L: K]=|\mathrm{Gal}(L / K)|$. Also note $\mathrm{Gal}(L / K)$ $\leq \operatorname{Gal}(L / F)$ sinai $\sigma / K=i d \Rightarrow \sigma l_{F}=i d$. But $G a l(L / F) \leqslant G_{a}(L L / K)$ as well b/c K is the fixed freed of $G_{\mathrm{Oal}}(L / F)$. This $\left.G_{\mathrm{al}}(L / K)=\mathrm{Gal}^{(L L} L / F\right)$ and $[L: F]=[L: K]$. Since $[L: F]:[L: K][K: F]$, we hare $[K: F]=1 \Rightarrow K: F$. (b) $\Rightarrow(c)$: Suppose $F=L^{\operatorname{Gol}(L / F)}$ and lat $\alpha \in L$. Let $\left\{\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{r}\right\}$ $=\operatorname{Gal}(L / F) \cdot\{\alpha\}$. consider $h(x)=\prod_{i=1}^{e}\left(x-x_{i}\right) \in L[x]$.
Claim $h \in F[x]$ \& h is irrsd/F.
Note that each $\sigma \in G$ all (L/F) permutes $\left\{\alpha_{,}, \ldots, \alpha_{r}\right\}$, so in also permeates the factors $x-\infty$: of h. Thus the coifs of h are fired by $\operatorname{Gal}(L / F) \Rightarrow h \in L^{\operatorname{Gal}(L / F)}[x]=F[x]$.
Nest let $g \in F[x]$ be the irrud factor of h vanishing at α.
Thun $\sigma(\alpha)$ is a roof of $g{ }_{h} \forall \sigma \in \operatorname{Girrad}(L / F) \Rightarrow$ all α; ore roofs of g, whine $h / g \Rightarrow g h$ irreg.
Thus $h=m_{k, F}$. Hance

- Normality: If $f \in F[x]$ irrsd w/rod $\alpha \in L$, them $f=a h$ for same $a \in F^{2}$. Thus f sp its completely over L, proving normality.
- Separabilitys: if $\alpha \in L$, fum its minimal poly is h. Ther α sup simee h is.
(c) $\Rightarrow(a)$: Supposn L / F normal esep. Them $L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where each pir $m_{\alpha_{i}, F}$ is sep. Let q_{1}, \ldots, q_{r} be the distinct elfs of $\left\{p_{1}, \ldots, p_{r}\right\}$, and set $f=q_{1} \cdots q_{r}$. Thin f is sep and L is the oplitting field of fover F (chuch!).
Defen Anextr L/F is a Golores exton ifit is finite and satiofines ary of the equiv candrtions of the Thum.
Note $Q(\sqrt{2}, \sqrt{3}) / Q$ Gabor, $Q(\sqrt[3]{2}) / Q$ is not.
Prop suppon L / F is Gealotis and $L / K / F$ is a suberabension. Thun L / K is Galors.
If Use condertion (a).
e.g. $B(i, \sqrt[4]{2}) / Q$ is the spitfing fiold of $x^{4} 2$ and hence is Gatois.

Then lat L / F be finiten Thun \mid Kall $(L / F)|\mid[L: F]$.
Nofe Alrlady prowed \mid Gall $L / F) \mid \leq[L: F]$ w/ equatity iff L / F Gaborr.

Thus $K=L^{\operatorname{cas}(L / K)}=1 / K$ is Gador. Hence

$$
[L: F]=[L: K][k: F)=|\operatorname{Gol}(L / K)| \tau K: F]=\mid \operatorname{Gol}(L / F L \mid[k: F) .
$$

Finite separable extans
Prop L / F Finitu. $L \sup / F:$ ff $t=F\left(\alpha_{1}, \ldots, \alpha_{n}\right) w /$ each α_{i} sy F_{F}.
if (\Rightarrow)
(\Leftrightarrow) Supper $L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with each $\alpha_{i} \sup / F$. Let pi=mm_{i}, F, and let $q_{\ldots}, \ldots, q_{r}$ be thedorincte els of $\left\{p_{1}, \ldots, p_{r}\right\}$. The $f=$ q. \cdots gr is sep. Let M be the splitting fold of form L. Then $M=L\left(\beta_{1}, \ldots, \beta_{m}\right)$ for $\beta_{i} r_{\text {shh of }} f$ claim: $M=F\left(\beta_{1}, \ldots, \beta_{m}\right)$. Clearly 2. Rect the α_{i} are among the P_{j}, so $L=F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \leq F\left(\beta_{1}, \ldots, \beta_{m}\right) \Rightarrow M \leq F\left(\beta_{1}, \ldots, \beta_{m}\right)$, in equal. Thess M / F Gabon and hence sup. Since $L \subseteq M$, every elf of L is sep. $/ F . \square$
Galois closure
Prop If L / F finitosip, then M / L as abrewe is Galois suer F ane is the smallest such exeter of L.
if Reading (Prop 7.1.7). I
Defer Call M as about the Gators colours of L / F.

Normal Subgrops / Narmal Exteasions
A. Corjugate Fields

Defn For finite extus $L / K / F, \sigma \in G a(L / F)$, call

$$
\sigma K=\{\sigma(\alpha) \mid \alpha \in K\}
$$

a conjugate field of K.
Note $[K: F]=[\sigma K: F]$ b/c $K \underset{\underset{\sim}{\underset{\sim}{c}} \underset{F}{\sigma} \sigma}{ }$
ㅇ.g.

$\sigma \in G a l(Q(\omega, \sqrt[3]{n}) / 2)$ is determinat by $\sigma(\omega) \in\left\{\omega, \omega \omega^{2}\right\}$ and $\sigma(\sqrt[3]{2}) \in\left\{\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}\right\}$. It's eary to chuck tato $-Q(\omega)=\mathbb{Q}(\omega) \quad \forall \sigma, \quad Q(\sqrt[3]{2})$ ba, $Q(\sqrt[3]{2}), Q(\omega, \sqrt[3]{2})$, $Q\left(\omega^{3} \sqrt[3]{2}\right)$ as $i t s$ conpugafes.
Lemman. Finite eators $L / K / F$. Thin
(a) $\operatorname{Gal}(L / K) \leqslant \operatorname{Gal}(L / F)$
(b) If $\sigma \in \operatorname{Gal}(L / F)$, then $\operatorname{Gal}(L / \sigma K)=\sigma \operatorname{Gal}(L / \mathbb{L}) \sigma^{\prime \prime}$ in $\operatorname{Gad}(L / F)$.
If (a) V simen $F \subseteq K$.
(b) Let $\gamma \in \sigma$ leal $(L / K) \sigma^{-i}, \beta \in \sigma K$. Thin $\gamma=\sigma \tau \sigma^{-1}$ for some $\tau \in \operatorname{Gul}(L / K)$, and $\beta=\sigma(\alpha)$ for some $\alpha \in K$. Thes

$$
\begin{aligned}
\gamma(\rho) & =\sigma \tau \sigma^{-1}(\sigma(\alpha))=\sigma \tau(\alpha)=\sigma(\alpha)=\beta \\
\left.\Rightarrow \gamma\right|_{\sigma K} & =i d \Rightarrow \sigma \operatorname{col}(L / K) \sigma^{-1} \leq \operatorname{Gal}(L / / K) .
\end{aligned}
$$

\geqslant smilar.
B. Normal Lubgps

Thun Suppose $L / K / F$ whure L / F Godoor. Thin TFAE:
(a) $K=\sigma K \quad \forall \sigma \in \operatorname{bad}(L / F)$
(b) Gal(L/K) $\triangleq \operatorname{Gal}(L / F)$
(c) K / F Gabis
(d) K / F normal.

Pf $(a) \Rightarrow(b):$ If $K=\sigma K$, thmmall $L / K)=\operatorname{Gal}(L / \sigma K)=\operatorname{coall} / L / K) \sigma_{-2}$ so $\operatorname{Gac}(L+1 / K) \& \operatorname{Gad}(L / F)$.
$(b) \Rightarrow(a): \operatorname{Gal}(i / K) ; \sigma \operatorname{Gal}(L / K) \sigma^{-1}=\operatorname{Gal}(L / \sigma K)$
nermelify
$L / K * L / \sigma K$ Grodort, so $K=L^{\operatorname{Gal}(L / K)}=L^{\operatorname{Gal}(L / \sigma K)} \cdot \sigma K$.
$(c) \Rightarrow(d): V$ as uvery 6 oolor x xebn is normal and sep.
$(d) \Rightarrow(c): L / F G$ dois $\Rightarrow L / F \sup \Rightarrow \cos ^{k} / F \sup$.
Thus K/F normal \& sep, henue Gectois.
$(a) \Rightarrow(d)$: Lut $f \in F[x)$ beirrad $/ F$, root $\alpha \notin K$. Thum $f=a_{0} \frac{r}{1}\left(k-\alpha_{i}\right)$ for $\alpha_{1}=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \in L$ disfinctefts if L obtained by applysing etts of Gadll/ F) to α. Since $\alpha \in K$, each $\alpha_{i} \in \sigma K=K \Rightarrow f$ spits complefely over K.
$(d) \Rightarrow(a)$: Take $\alpha \in K, \sigma \in G a(L / F)$, and (et $p=m_{\alpha}, F$. Thun $\sigma(\alpha)$ is also a rort of p. Sinen K / F is normal, psples umplebely orar $K \Rightarrow \sigma(\alpha) \in K \Rightarrow \sigma K \subseteq K$. sixes thas fields have the same clogres over F, $\sigma K=k$.
cf. Examph 7.26 in Cox to ser the implication g of this the ram for $\mathbb{Q}(\omega, \sqrt[3]{2}) / Q$.

Them Suppose $L / K / F$ with $K / F \& L / F$ Gators. Thun $\operatorname{Gal}(L / M K) \leq \operatorname{Gal}(L / F)$ and $\operatorname{Gall}(C / F) / \operatorname{Gal}(L / K)$ $\simeq \operatorname{Gal}(K / F)$.
PF If K / F Guchis, thin $\operatorname{Gac}(L / K) \& G a l(L / F)$ by prev than For fixed . $\sigma \in G_{a}(L / F),\left.\sigma\right|_{k}: K \cong \sigma K=K \Rightarrow \sigma_{k}$ an out of k / F. Then $\sigma \mapsto \sigma_{k}$ define $\Phi: \operatorname{Gal}(L / F) \rightarrow \operatorname{Gal}(K / F)$ which is chearly a homomorphosm. Moreover, $\sigma \in \operatorname{ker} \Phi \Leftrightarrow \sigma l_{k}=i d_{k} \leftrightarrow \sigma \in \operatorname{Gal}(L / K)$
$\therefore \operatorname{Ker} \Phi=\operatorname{Gal}(L / K)$. Itramasim to show in $\Phi: \operatorname{Gal}(K /$ 伴). Theft $|\operatorname{Im} \bar{\phi}|=|\operatorname{Gal}(L / F) / \operatorname{Gal}(L / K)|$

$$
\begin{aligned}
& =\frac{[L: F]}{[L: K)} \\
& =[K: F] \\
& =|G \operatorname{arc}(K / F]|
\end{aligned}
$$

$=\operatorname{im} \boldsymbol{\phi}=\operatorname{Gol}(K / F)$.
My, $L=\mathbb{D}(\omega, \sqrt[2]{2})$
$\begin{aligned} & 1\langle\sigma\rangle \\ & Q(\omega)\end{aligned} \quad \Rightarrow \operatorname{Gal}(Q(\omega) / Q R) \equiv \operatorname{Gal}(L / R) /\langle\sigma\rangle$

$$
{\underset{Q}{Q}}_{1 \text { GoODS }} \quad \cong \Sigma_{3} / A_{3} \cong C_{2}
$$

Fundamental Thu e of Galore Thy I Lot L / F be Galois.
(a) For $L / K / F, G \operatorname{Gal}(L / K) \leq G a l(L / F)$ has fixed field $L^{\text {Gal (LK) }}=K$.
Furthermore $|G \operatorname{cal}(L / K)|=[L: K)$ and $[G a l(L / F)$: Gafl(L/K: $=[K: F]$.
(6) For $H \leq G \mathrm{Gal}(L / F)$, L^{H} has Gobo gp

$$
\operatorname{Gad}\left(L / L^{H}\right)=H .
$$

Furthermore $\left[L: L^{H}\right]=1 H \mid$ ane $\left[L^{H}: F\right]:[G \operatorname{mal}(L \neq F): H]$.
If (a) L / K automatically G dor, $s L_{\operatorname{God}(L / K)}=K$. \mid Gad $(L / K) \mid:[L: K)$, \mid Gal (L/F) $\mid:[L: F]$ since both entries colors. Tower them the gives

$$
[\operatorname{Gan}(L K): \operatorname{arc}(L / K)]=\frac{r_{L: F]}^{[L: K]}:[K: F) .}{}
$$

(b) Take $H \leqslant G$ al $L(F)$. Thu $L / L H / F$, and $H \leq \operatorname{Gal}\left(L / L^{H}\right)$. L/ LH Gallon; so

$$
|\Delta t| \leqslant\left|\mathrm{Gal}\left(L / L^{H}\right)\right|=\left[L: L_{H}\right]
$$

Thus it suffices to show equality. Suppose for \& that $|H|<[L: L H]$. Then $\exists \alpha_{1}, \ldots, \alpha_{n+1} \in L$ which are $L^{H}-\operatorname{lin}$ ind. for $n=|1| \mid$. Let $H=\left\{\tilde{\sigma}_{1, \ldots}^{2}, \sigma_{n n}\right\}$. Then the system

$$
\begin{gather*}
\sigma_{1}\left(\alpha_{1}\right) x_{1}+\sigma_{1}\left(\alpha_{n}\right) x_{2}+\cdots+\sigma_{1}\left(\alpha_{n+1}\right) x_{n+1}=0 \tag{B}\\
\vdots \\
\sigma_{n}\left(\alpha_{1}\right) x_{1}+\sigma_{n}\left(\alpha_{2}\right) x_{2}+\cdots+\sigma_{n}\left(\alpha_{n+1}\right) x_{n+1}=0
\end{gather*}
$$

F n equations in $n+2$ unknowns x_{1}, \ldots, x_{n+1} has a solution $x_{i} \beta_{1}, \ldots, x_{n+1}=\beta_{n n}$ in L where not all $\beta_{i}=0$. By lin ind of $\alpha_{1}, \ldots, \alpha_{n+1}$ (and $\sigma_{i}=e$) not all β_{i} ard in L^{H}.

ace inverses of each other which severze inclusions.
Forthermoro, if $K S \rightarrow H$ under thos boign, than $K F$ is Camoers if $H \pm G a l(L / F)$, and whon ther happens, there is a naturft isomorphorm $G_{\text {al }}(L / F) / H \cong \operatorname{Gal}(K / F)$.
If $\left.K \mapsto G a l(L) \mapsto L^{\text {coall }} / R\right)=K$

$$
H \mapsto L^{H} \longmapsto \operatorname{Gal}\left(L / L^{H}\right)=H
$$

Inclusson-revorsing is an lasy chach.
Normelity portimn proved Uednisday.

Math
$x^{8}-2$
The splotting foeld $\frac{1}{} x^{8}-2$
Thu spliting field of $x^{8}-2 / 2$ is quwld by $\theta=\sqrt[8]{2} \in \mathbb{R}$ and
$\xi=\zeta_{8}=e^{2 \pi i / g}$.
Note that $i=\zeta_{4} \in \mathbb{Q}\left(\xi_{8}\right)$ and $\zeta_{8}+\zeta_{8}^{7}=\sqrt{2} \in \mathbb{Q}\left(\zeta_{8}\right)$
$\Rightarrow \mathbb{Q}(i, \sqrt{2}) \subseteq \mathbb{Q}\left(\zeta_{g}\right)$. In fut, $m_{3, Q}=x^{4+1}$ so $Q\left(z_{8}\right)=Q^{\prime}(i, \sqrt{2})$.
Simes $\theta^{4}=\sqrt{2}$, ges that sp.field of $x^{8}-2$ is gevel by θ, i. $[Q(\theta): Q]=8 \mathrm{~b} / \mathrm{c} \theta$ has monil poly $x^{8}-2$ (irrud by Eisensteont).
$\mathbb{Q}(\theta) \subseteq \mathbb{R}$ so $i \notin \mathbb{Q}(\theta)$ so $\mathbb{Q}(\theta ; 5)=\mathbb{Q}(\theta, i)$

$$
16\left(\begin{array}{c}
\alpha, 5) \\
12 \\
2(\theta) \\
18 \\
2
\end{array}\right.
$$

The Gealoix gp is defermoned by ts action on θ, i :

$$
\begin{aligned}
& \theta \longmapsto \zeta^{a} \theta \quad a=0,1, \ldots, 7 \\
& i \longmapsto \pm i
\end{aligned}
$$

arm paible, and thers are onty 14 of thase, sothuyis all ruabtoed. Defim

$$
\sigma:\left\{\begin{array}{l}
\theta \mapsto \zeta \theta \\
i \mapsto i
\end{array} \quad \tau:\left\{\begin{array}{l}
\theta \mapsto \theta \\
i \mapsto-i
\end{array}\right.\right.
$$

Note that $\zeta=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}=\frac{1}{2}(1+i) \sqrt{2}=\frac{1}{2}(1+i) \theta^{4}$
Thus $\sigma(\zeta)=-3=3^{5}, \quad \tau(\zeta)=\zeta^{7}$

What is the corresponding lattice of suberkenentions?
For $\mathbb{Q}(\theta, i) / K / \mathbb{Q}$ with $K=\mathbb{Q}(\theta, i)^{H}$,
$[K: \subset Q]=[G: H]$, so it sufferers to find K of the correct dyer fixed by (the generators-of) t.
e.g. $Q(i)$ is freed by $\sigma, \quad[G:\langle\sigma\rangle]=2$, and $[Q(i):(Q)]=2$, So $Q(0)=Q(\theta, i)^{\langle\sigma\rangle}$.

Ultimately get

2.g. $H=\left\langle\tau \sigma^{3}\right\rangle$. $\theta^{2}=\sqrt[4]{2}$ fiend by $\sigma^{4},\left\langle\sigma^{4}\right\rangle \Delta$ It of index 2 with rout reps $1, \tau \sigma^{3}$. Consider

$$
\begin{aligned}
\alpha & =\left(1+\tau \sigma^{3}\right) \theta^{2}=\theta^{2}+\tau \sigma^{3} \theta^{2} \\
\tau \sigma^{3} \alpha & =\left(\tau \sigma^{3}+\left(\tau r^{3}\right)^{2}\right) \theta^{2} \\
& =\left(\tau \sigma^{3}+\sigma^{4}\right) \theta^{2} \\
& =\alpha \quad \text { since } \sigma^{4} \theta^{2}=\theta^{2}
\end{aligned}
$$

Now $\alpha=\sqrt[4]{2}+i \sqrt[4]{2}=(1+i) \sqrt[4]{2} \in(i, 9)^{4}$.
Chuck $\sigma^{2} \alpha \neq \alpha$, so selbag diagram $\Rightarrow Q(i, \theta)^{H}=Q((1+i) \sqrt[4]{2})$.
Note $\tau H \tau^{-1}=\langle\tau \sigma\rangle$ has fixed field $\tau Q(\alpha)=Q(\tau \alpha)=Q((1-i) \sqrt{5})$.

The Discriminant
For a monconstant manic $f \in F[x]$, have discriminant $\Delta(f) \in F$. If $n=\operatorname{deg}(f) \geqslant 2$ and $f:\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ in aspirating field L sf f, the $\Delta(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ and f is separable if $\Delta(f) \neq 0$. Define $\sqrt{\Delta x_{f} \mid}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) \in L$.
Recall that for f separable, the action of Gal (L) TF) on roots $\left\{\alpha, \ldots, \alpha_{n}\right\}$ determines $G_{a l}(L / F) \longleftrightarrow I_{n}$.
Thu leo $f_{1} L / F$ be as above are assume char $F_{t 2}$.
(a) If $\sigma \otimes G_{a}(L / F) \longmapsto \tau \in \Sigma_{n}$, then

$$
\sigma(\sqrt{\Delta(f)})=\operatorname{sgn}(\tau) \sqrt{\Delta(f)}
$$

(6) Th image of Gal (L/F) lies in the alternating group A_{n} iff $\sqrt{\Delta(f)} \in F \quad\left(i, \mu . \Delta(f)=a^{2}\right.$ for some $\left.a \in F\right)$.
Pf Real $\sqrt{\Delta}=\prod_{i<j}\left(x_{i}-x_{j}\right) \in F\left[x_{1}, \ldots, x_{r}\right]$ has the property

$$
\tau \sqrt{\Delta}=\operatorname{sgn}(\tau) \sqrt{\Delta} \text { for } \tau \in \Sigma_{n}
$$

Evalix at $x_{1}=\alpha_{1}, \ldots, x_{n}=\alpha_{n}$ gores

$$
\prod_{i<j}\left(\alpha_{\tau(i)}-\alpha_{\tau(j)}\right)=\operatorname{sgn}(\tau) \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)=\operatorname{sgn}(\tau) \sqrt{\Delta(f)}
$$

but $\sigma\left(\alpha_{i}\right)=\alpha_{\tau(i)}$ by def n, os the LHS $=\sigma(\sqrt{\Delta(A})$. Thus (a) For $(b), L / F$ is Galois, so $F=L^{\text {cal }(L / F) \text {. Thus }}$

$$
\begin{aligned}
\sqrt{\Delta(f)} \in F & \Leftrightarrow \sigma(\sqrt{\Delta(f)})=\sqrt{\Delta(t)} \quad \forall \sigma \in G_{\text {ul }}(L / F) \\
& \Leftrightarrow \operatorname{sgn}(\tau) \sqrt{\Delta(f)}=\sqrt{\Delta(f)} \forall \sigma \\
& \Leftrightarrow \operatorname{sgn}(\tau)=1 \forall \sigma .
\end{aligned}
$$

Math 412 Work $F, ~ W e d n e s d a y ~$
manor irred sep cubic, char $F \neq 2$. If
Prop Let $f \in F[x]$ be a monoz ir red sep cuber, char $F \neq 2$. If L is the splitting field of f our F, than

$$
\operatorname{Gal}(L / F) \cong \begin{cases}C_{3} & \text { if } \Delta(f) \text { fr a square in } F \\ \Sigma_{3} & 0 / \mathrm{W} .\end{cases}
$$

Pf For α a root of $F, L(F(\alpha) / F$ and $[F(\alpha): F]=3$, to $[L: F]$ is a multiple of 3 . We also haw $\operatorname{Gel}(L / F) \hookrightarrow \sum_{n}$, and the only subges -\& E_{3} of order dswistrle by 3 arsis Σ_{3} and $A_{3} \cong C_{3}$.

Thu Univissal Extension
$L=F\left(x_{1}, \ldots, x_{n}\right) / K=F\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ for σ_{i} the elementary sum pol, s.
From reading: L B th splitting field of

$$
\tilde{f}=x^{n}-\sigma_{1} x^{n-1}+\cdots+(-1)^{n} \sigma_{n}=\prod_{i=1}^{n}\left(x-x_{i}\right)
$$

and $G a(L / K) \cong \Sigma_{n}$. Under this identification, $\sigma \in \Sigma_{n}$ permutes the x_{i} according to σ.
The Let $R \in F\left(x_{1}, \ldots, x_{n}\right)$ be a ratel f_{n}.
(a) R is invariant under Σ_{n} iff $R \in F\left(\sigma_{1}, \ldots, \sigma_{n}\right)$
(b) Assume char $F \neq 2$. Thun R, invariant waler A_{n} iff $\exists A, B \in F\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ sit. $R=A+B \sqrt{\Delta}$.
If (a) $L^{\text {(aol }(L / K)}=K$.
(b) Let $M=L^{A_{n}}$. Since $\left[\Sigma_{n}: A_{n}\right]: 2,[M: K]=2$.

Since $\tau \sqrt{\Delta}=\operatorname{sgn}(\tau) \sqrt{\Delta}, \quad \sqrt{\Delta} \in M$, so $K \subseteq K(\sqrt{A}) \subseteq M$.
Thus $2=[M: k]=[M: K(\sqrt{a})][k(\sqrt{a}): K]$. But $\sqrt{\Delta} \xi^{\prime} k$ sa $k(\sqrt{\Delta})=M$.

Solvable Groups
Defn A finite group G is solvable if the rs aron subgroups

$$
1=G_{n} \subseteq G_{n-1} \subseteq \cdots \subseteq G_{1} \subseteq G_{0}=G
$$

st. for $i=1, \ldots, n$ un haves
(a) $G_{i} \leqslant G_{i-1}$
(b) $\left[G_{i-1}: G_{i}\right]$ is prime. (s- $G_{i} / G_{i-i} \doteq C_{p}$)

Eg. The chain $1 \leqslant A_{3} \leq \Sigma_{3}$ exhibits Σ_{3} as solvable.

- All finite abelian groups are solvable (soon).
- A_{n}, E_{n} are nonsolvable for $x \geq 5$ (later).

Prop Every subgp of a finite solvable $j p$ is solvable. If leet $\left\{G_{i}\right\}_{i=0}^{n}$ be a chair witnessing solvabrity of G.

For $H \approx G$ lefirn $H_{i}=H \cap G_{i}$ and noted $H_{0}=H \cap G_{p}=H \cap G=H$

$$
H_{n}=t \ln 1=1 .
$$

Lat π be the composite $H_{i-1} \longrightarrow G_{i-1} \longrightarrow G_{i-1} / G_{i}$.
Then kern $\pi=\left\{h \in H_{i-1} \mid h G_{i}=G_{i}\right\}$

$$
\begin{aligned}
& =H_{i-1} \cap G_{i}=\left(H \cap G_{i-1}\right) \cap G_{i} \\
& =H \cap G_{i}=H_{i} \simeq H_{i-1} .
\end{aligned}
$$

By the first isomorphism them,

$$
\begin{aligned}
& H_{i-1} / H_{i} \cong \operatorname{im}(\pi) \leqslant G_{i-1} / G_{i} \\
& \text { so } H t_{i-1} / H t_{i} \cong 1 \text { or } C_{p} . \\
& \Uparrow \\
& H_{i}=H_{i-1}
\end{aligned}
$$

So discarding deuplieabes wa get a chain witmssing solvability of H.
The $H \$ G$ finite. Thun G is solvable iff H and $G / 1 t$ are solvable.

Pf First suppose Gsolvable. Then H is solvable by the prop. Let $\pi: G \longrightarrow G / 1+$ be the quotient hom. and set $\tilde{G}_{i}=\pi\left(G_{i}\right)$. Exc After lisearding deuplicates,
\tilde{G}_{i} give a chair witmusing solvability of ce/t.
Nou supposer H, G Nt solvablewith

$$
\begin{aligned}
& 1=H_{l} \leq H_{l-1} \leq \cdots \leq H_{0}=H \\
& 1=\tilde{G}_{m} \leq \cdots \leq \tilde{G}_{0}=G / l t
\end{aligned}
$$

witwessing s.lvability. Than

$$
1=H_{l} \leq \cdots \leq H_{0}=H \leq \pi^{-1} \tilde{G}_{m} \leq \cdots \leq \pi^{-1} \tilde{G}_{\Delta}=G
$$

witimesses solvabilify of G.(chack). Q
Prop Every firibe abeltan group Eis solvabhu.
Pf by strong induation on $n=1 G 1$. The case $n=1$ is trivial. Assumen G abeloan of order $n>1$ and fhe resectl is frue Vabelien gps of orcher in.
Lef p be a prime dovisor of n. If $p=n, G \approx c p$ s.lvable. If $p^{<n}$. Cauchy's tho says' there is $\langle g\rangle \leqslant G,\langle g\rangle \cong C_{p}$. Thes is solvable + normal since G abelian. $|G /\langle g\rangle|<n=0 \quad G /\langle g\rangle$ solvable so the prop follows from the theorem. a.
e.g. $\mathbb{F}_{p} \leqslant T \leqslant$ AlC, $\left(\mathbb{F}_{p}\right)$ with $A G C,\left(\mathbb{F}_{p}\right) / T \geqslant \mathbb{F}_{p}^{x}$. Both $\mathbb{F}_{p}, \mathbb{F}_{p}{ }^{x}$ abelion, heuce soluable, so $A G L,\left(T_{p}\right)$ it soluable.
Runh Feit-Thompson thearem: Evary gp of odd order is soluable. 255 pt

Radical \& Eilvable Extemions
Defu A field extension L / F is radical if thre are fields $F=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{n}=L$ whare for $i=1, \ldots, n \exists \gamma_{i} \in F_{i}$ s.t. $F_{i}=F_{i-1}\left(\gamma_{i}\right)$ and $\gamma_{i}^{m i} \in F_{i-1}$ for some integer $m_{i}>0$. Note if $b_{i}=\gamma_{i}^{m_{i}}$ then $F_{i}=F_{i-1}\left(\sqrt[m_{i}]{b_{i}}\right)$, i.e. radical exfors arize by adjoining suceestive radicals.
e.g. $Q \subseteq Q(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2})(\sqrt{2+\sqrt{2}})=\mathbb{Q}(\sqrt{2+\sqrt{2}})$ withurces $\mathbb{C}(\sqrt{2+\sqrt{2}}) / \mathbb{Q}$ as a radical exta.

Defn A field exte L / F is sowable (by radicals) if there is a fielde extor M / L s.t. M / F is radizal.
e.g. The spliffing fiele of $x^{3}+x^{2}-2 x+1$ © is rolvable but not ralical.
Defer Suppose $K_{1}, K_{2} \subseteq L$ subfields. The compositum $K_{1} K_{2}$ of $K_{1} * K_{2}$ is the smallistsabfield of 2 contrining K_{1}, K_{2}.

Existence: Fields ara closed unchs arbitrary infersection. Prop MIC/F with MT Galoos. Thin the compositum of all conjugater fields of L in M is the $G a b$ bir closeres of L / F.
Lemma $M / L_{1}, L_{2} / F$ with M / F Gabir, thin

$$
\operatorname{Cal}\left(M / L_{1} L_{2}\right)=\operatorname{Gal}\left(M / L_{1}\right) \wedge \operatorname{Gal}\left(M / L_{2}\right) \text {. }
$$

if Lemma If σ fixer $L_{1} L_{2}$ than it fixes $L_{1}, L_{2}=0$

$$
\operatorname{Gal}\left(M / L_{1} L_{2}\right) \leq \operatorname{Gal}\left(M / L_{1}\right) \cap \operatorname{Gal}\left(M / L_{2}\right)
$$

suppon $\sigma \in G_{a}\left(M / L_{1}\right) \cap G_{a}\left(M / L_{2}\right)$. sutpoor for \& that $\sigma x \neq x$ for some $x \in L_{1} L_{2}$. Then $M^{\langle\sigma\rangle} n L_{1} L_{2} \nsubseteq L_{1} L_{2}$ with $L_{1}, L_{2} \subseteq M^{\langle\sigma\rangle} \cap L_{1} L_{2}, ~$ 步. \quad I
if Prop cimpositum of the $r, r \in G_{a}(l M / F)$ her $G_{a} c_{\text {o ir }}$ Ip $\cap \sigma G a l(M / L) r^{-1}$, which is clearly normal in Gel (M/Ker) $r \in \operatorname{Gan}(M / F)$
so $\operatorname{Com}_{\sigma \in G \cos M / F)}(\sigma L) / F$ is G_{2} Cor and contains
L. Now check that any Galois extern containing L contains all σL (exc).
Propertius of radical 4 solvable ext ut
lumina (a) If $L / F, M / L$ are radial, so is M / F.

(c) $K_{1} / F, K_{2} / \bar{F}$ radical $\Rightarrow K_{1} K_{2} / \bar{F}$ radical
(a) Pf (a) follows from defies a (c) $\Leftarrow(b)$.

For (b), the ides is to adjoin the same roots to K_{2} (chuck details), \square
Thun If L / F is separable and radical, then the Galois closures of L is also radical.
if The Gators conjugates of L ara radical. O
Cor solvable extras of char 0 fields have solvable Galois to sire.

Solvable extensions，solvable groups．
Assumption All fields have char 0.
For $m \in \mathbb{Z}^{+}$，field L, x^{m-1} is separable with root $1,3, \ldots, 3^{m-1}$ forming a cyclic group of archer m ．The spiting field is $L(3)$ ，and $L(3) / L$ is Galois and $G a l(L(\xi) / L)$ is Abiloan． （Indue，σ determined by $\sigma(3) \in\left\{1, \ldots, \zeta^{n-1}\right\}$ ．）
consider

Lemme If L / F is Galwir，then $L(\zeta) / F$ and $L(\zeta) / F(3)$ are also Galois，and
$\operatorname{Gar}(L / F)$ is sow able $\Leftrightarrow \operatorname{Gal}(L(3) / F)$ is solvable

$$
\Leftrightarrow G a l(L(\delta) / F(\xi)): \text { solvable. }
$$

传 Chuck $L(3) / F$ Gabs（exc）．so $L(3) / F(3)$ is Galois as well． For First equiv，get Gal（L C）／L）$\leqslant \operatorname{Gal}(L(3) / F)$ wish quotient $\cong \operatorname{Cel}(L / F)$ ．$\tau_{\text {Abelian，hence solvable．}}$
Thus $\operatorname{Ga}(L(S) / F)$ solvable $\Leftrightarrow \operatorname{Gra}(C L / F)$ solvable．

$$
\text { Similarly, } \quad \operatorname{Gal}(F(3) / F) \cong \operatorname{Gad}(L(3) / F) / \operatorname{Gal}(L(3) / F(\xi))
$$

Aphelian，Liner solvable is G Gal $(L(3) / F)$ sol \Leftrightarrow solv．
Lemma Suppose M／K Gaesis with Gal（M／K）$\cong C_{p}$ ，p prime． If K contains a primitive pooh not of unity 3 ，then $\exists \alpha \in M$ s．b．$M=K(\alpha)$ s nd $\alpha^{p} \in K$ ．
Pf Later if times Read on p． 203.

Math 412	Werk 8 . Watneslay	2
hen L / F solvable iff $G a(L / F)$ solqable		

Thm L/F Galoos. Then L / F
PE \Leftrightarrow Reduce to the radical cosen:

Suppor Gal (M/F) solvable. Tham $\mathrm{Ga}(\mathrm{L} / \mathrm{F})$ is a rolvelum jp since its is omoplio to $G_{\text {aal }}(M / F) T G a l(M / E)$. Thus it inffion to show Gal(M-F) solubble, i.e. U- maisy assume L/F radical anco Ceaboris.
If we adjoin a primitive moth root of unity 3 to F and L, get $L(\zeta) / F(\xi)$ radical and Gabis. Thaving $\operatorname{col}(t)(\xi) / F(\zeta))$ sotwable will imply leal (L/F) reluable. So WLOG, F containg any modh root of unity we want.
Tahe $F=F_{0} \subseteq F_{1} \subseteq \cdots \in F_{n-1} \subseteq F_{n}=L$ witurssing L / F radicol: $F_{i}=F_{i-1}\left(Y_{i}\right)$ with $\gamma_{i}^{n_{i}}$ e F_{i-1}. May assume F conteins prim $m_{i}-$ th roof f unity, $i=1, \ldots, n$. Claim F_{i} / F_{i-1} Galor vith cyelie Galois group.
$\left.\left.\gamma_{i},\right\}_{i} \gamma_{i}, \ldots,\right\}_{i}^{m_{i}-i} \gamma_{i}$ are the distinct 1001 f of $x^{m_{i}} \gamma_{i}^{n_{i}} \in F_{j-1}[\phi]$. Since $\}_{i} \in F \in F_{i-1}$, un have $\left.\left.F_{i-1}\left(\gamma_{i},\right\}_{i} \gamma_{i}, \ldots,\right\}_{i}^{m_{i}-1} \gamma_{i}\right)=F_{i-1}\left(\gamma_{i}\right)$ $=F_{i}$, so $F_{i} / F_{i,}, G a b i r$, For $\sigma \in G u l\left(F_{i} / \bar{r}_{i=1}\right), \exists!0 \leq \ell \leq m_{i} k$ r.f. $\sigma\left(\gamma_{i}\right)=J_{i}^{l} \gamma_{i}$. For $C_{M_{i}}=\langle g\rangle, \sigma \mapsto g^{d}$ definms an injuedire
 is cyclic.
Now prove G alal (L / F) solvable. Let $G_{i}: \operatorname{Gal}\left(L / F_{i}\right) \leqslant \operatorname{Cal}(G / F)$. Get $1=G \operatorname{Gal}(L / \varepsilon)=G$ al $\left(L / F_{n}\right)=G_{n} \leq G_{x .1} \leq \cdots \leq G_{1}\left\{G_{0}=G_{a l l} l /\right.$
 $\cong G \mathrm{al}\left(F_{i} / F_{i n}\right)$, eyclit henve Alelion.
cor of G solma $\Leftrightarrow H, G / W$ solv is that fittration quotients solvable $\Rightarrow G$ soluable, so $G a l(L / F)$ is solvabice.
(\Leftarrow) Let L / F be labois with solvable Gabir growi
Special casu: F contzins a primition $p^{-1 t h}$ rot of unity \forall prome $p \mid$ lGal(L/F) |.
Now show L / F radical in this casn: Take
$1=G_{x} \& \cdots \& G_{0}=G_{a l}(L / T)$ witurising rolvability.
Let $F_{i}=L^{G_{i}}$ to get

$$
F=L^{\text {Galle } t)^{0}}=L^{G_{0}}=F_{0} \subseteq F_{1} \subseteq \ldots \subseteq F_{n-1} \subseteq F_{n}=L^{G_{n}}=L^{\prime}=1 .
$$

$G_{i} \pm G_{i-1} \Rightarrow G_{i-1} / G_{i} \pm \operatorname{Cal}\left(F_{i} / F_{i-1}\right) \Longrightarrow C_{p}$ for a porimer
Ex. p (LGall $A=)$. The lemma implay $F_{i}=F_{i-1}(\alpha)$ for $\alpha^{p} \in F_{i-1}$. Thuns LFradical.
Now consider the general cass:
Let $m=(G a l(L / F) 1,3$ a prim m-th root of unity. Thun $\operatorname{Ged}(L /() / F(3))$; rolvable.

$$
\operatorname{Gal}(L / F) \cong \operatorname{an}(L(\xi) / F) / \operatorname{Gal}((L\}) / L))
$$

induced by $\operatorname{Gal}(L / \xi) / F)$ ras $_{2} G a l(L / F)$

t^{2} ker=l b/c elts of ker cre id on $L F(\xi)=L(\xi)$.
Thus $m=1 G \operatorname{Gid}(L(S) / F(S)) \mid(G a l(L / F)$. Tiber priene p / m. Thun $3^{m / p}$ ir a primitine $p^{-t h}$ root of unityr, and $7^{m / p} \in F(3)$ so $L(3) / F(3)$ is in 7 hu speliel casn, hence a redical extm. $F(\xi) / F$ is radical, $s=L(\xi) \not F$ is radical \Rightarrow L/F sulnable.
Cor L / F Gadors of $\log _{1 / 01} \mathrm{~m}$, wh haple, 3 a prim m-bh root of 1 . Then
of Lima $T_{\text {a he }}\langle\sigma\rangle=G$ al $(M / K) \equiv C_{p}$. Fix $\beta^{e} \mathcal{M}-K$.
Then for $i=0, \ldots, p^{-1}$, consider the Lagrange roof went

$$
\alpha_{i}=\beta+3^{-i} \sigma(\beta)+3^{-2 i} \sigma^{2}(\beta)+\cdots+3^{-i(p-1)} \sigma^{p-1}(\beta) .
$$

The $3^{-i} \sigma\left(\alpha_{i}\right)=3^{-i} \sigma(\rho)+3^{-2 i} \sigma^{2}(\varphi)+\cdots+3^{-i\left(\varphi^{-1}\right)} \sigma^{-1}(\beta)+\underbrace{3^{-i} \phi_{\sigma} p(\beta)}_{\beta}$

$$
\begin{aligned}
& \Rightarrow 3^{-i} r\left(\alpha_{i}\right)=\alpha_{i} \\
& \Rightarrow r\left(\alpha_{i}\right)=3^{i} \alpha_{i} \\
& \Rightarrow \sigma\left(\alpha_{i}^{p}\right)=3^{i p} \alpha_{i}^{p}=\alpha_{i}^{p} . \\
& \Rightarrow \alpha_{i}^{p} \in M^{\text {ail }(M / K)}=K . \quad A s_{0} \kappa_{0} \in K .
\end{aligned}
$$

Case $1 \exists 1 \leq i \leq p-1$ sf $\alpha_{i} \neq 0$. Thin $J^{i} \neq 1$ so $3^{i} \alpha_{i} \neq \alpha_{i}$ so $\sigma\left(\alpha_{i}\right) \notin \alpha_{i}$ so $\alpha_{i} \notin K$. Since [M:K] prime, get $M=K\left(\alpha_{i}\right)$
Gas $2 \alpha_{i}=0$ for $1 \leq i \leq p-1$. Than

$$
\begin{aligned}
\alpha_{0} & =\alpha_{0}+\alpha_{1}+\cdots+\alpha_{p-1} \\
& =\cdots \cdots=p_{\beta} .
\end{aligned}
$$

so $\beta=\alpha_{0} / \beta$ since $\alpha \in K, \beta \notin K$. Tens sere always in case $1 . \square$

Simple Groups
Defn A group C is simple if its only normal subgroups anu 1 and G.
eng. c_{p} for p prime (Lagrangès Than)
Them A_{n} "rimple for $n \geq 5$.
If The facts: (1) L.cych $\left(i_{1} \cdots i_{l}\right) \in A_{n}$. ff l is odd
(1) For $n \geqslant 3, A_{n}$ is gen'd by 3-cycles (HW)

For (1), $\left(0, \cdots i_{l}\right)=\left(i_{1} i_{l}\right) \cdots\left(i, i_{3}\right)\left(i_{1} i_{2}\right)$.

Now suppose $H \neq 1 \leftrightarrow A_{n}$. Want to show $H=A_{n}$. First shaw H contains a 3 -cache. Tale $\mid \neq \sigma \in H$. Since $\left(j_{1} j_{2} j_{3}\right) \in A_{n}$, , H.

$$
\sigma^{-1}\left(j_{1} j_{2} j_{3}\right)^{-1} \sigma\left(j_{1} j_{2} j_{3}\right) \in H
$$

If neither j nor $r(j) \in\left\{j_{1}, j_{2}, j_{3}\right\}$, thin $r^{-1}\left(j_{1} j_{2} j_{1}\right)^{-1} \sigma\left(j_{1} j_{2} j_{3}\right)$ fixes j. Thus the elf in question mover at most 6 elts of $\{1, \ldots, n\}$.
Case 1 First suppose on of the cycles in σ has length $\geqslant 4$. say $r=\left(i_{1} i_{2} i_{3} i_{4} \cdots\right)(\cdots) \cdots$. Therm $\sigma^{-1}\left(i_{2} i_{3} i_{4}\right)^{-1} \sigma\left(i_{2} i_{3} i_{4}\right)$ $=\left(i_{1} i_{3} i_{4}\right)$. Indued, fines all $j \notin\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ and $i_{2} \mapsto i_{3} \mapsto i_{4} \mapsto i_{3} \mapsto i_{2}$. Etc.
cen 2 Suppose σ has a 3-cycle. If σ is a 3 -cycle, were dom. So may assume $\sigma=\left(i_{1} i_{2} i_{5}\right)\left(i_{4} i_{5} \cdots\right) \cdots$.

Than $\sigma^{-1}\left(i_{2} i_{3} i_{5}\right)^{-1} \sigma\left(\begin{array}{lll}i_{2} & i_{3} & i_{5}\end{array}\right)=\left(\begin{array}{llll}i_{1} & i_{4} & i_{2} & i_{3} \\ i_{5}\end{array}\right)$
so H contains a 5 -cycle, so, by Car $1, H$ contains a 3 -aye. l.
Casein 3 Finally supper σ is a product of disjoint 2 -cycle
$\sigma=\left(i_{1} i_{2}\right)\left(i_{3} i_{4}\right) \cdots$. Then $\sigma^{-1}\left(i_{2} i_{3} i_{4}\right)^{-1} \sigma\left(i_{2} i_{3} i_{4}\right)$ $=\left(i_{1} i_{3}\right)\left(i_{2} i_{4}\right) \in H$. Let i_{5} be distinct from i_{1}, \ldots, i_{4} (using $n \geqslant 5$). Then

$$
\begin{gathered}
\left(\left(i_{1} i_{3}\right)\left(i_{2} i_{4}\right)\right)^{-1}\left(i_{1} i_{3} i_{5}\right)^{-1}\left(\left(i_{1} i_{3}\right)\left(i_{2} i_{4}\right)\right)\left(i_{1} i_{3} i_{5}\right) \\
=\left(i_{1} i_{5} i_{3}\right) \in H .
\end{gathered}
$$

Now know some $(i ; k) \in l t$ and went to show all 3 cycles $\in H$ Suppose $i^{\prime}, j^{\prime}, t^{\prime}$ distinct, and let $\theta \in \Sigma_{n}$ satisfy

$$
\theta(i)=i^{\prime}, \theta(j)=j^{\prime}, \quad \theta(k)=k^{\prime} \text {. }
$$

Thin $\theta(i ; k) \theta^{\prime \prime}=\left(i^{\prime} j^{\prime} k^{\prime}\right.$. If $\theta \in A_{n}$, get $\left(i^{\prime} j^{\prime} k^{\prime}\right) \in H \leq A_{n}$. If $\theta \notin A_{n}$, thin $\theta^{\prime}=\theta(i j) \in A_{n}$ and $\theta^{\prime}(i j k) \theta^{\prime-1}=\left(j^{\prime} i^{\prime} k^{\prime}\right) \in \mathbb{H}$ so $\left(i^{\prime} j^{\prime} k^{\prime}\right)=\left(j^{\prime} i^{\prime} k^{\prime}\right)^{-1} \in L^{\prime}$. As H contains all 3 -cycles, $H=A_{n}$.
Lemmas Let G be a neranelicon finite simple group Then G is ort solvable.
If Jupon $\cdots s G, a G_{0}=G$ sitursess solve, livy. Then $G_{1}=1$ by simplicity $f G$ and $\left[G: G_{1}\right]=|G|=p$, prime. But then $G=C_{p}$ is Abelian.
Thai A_{1}, Σ_{n} solvable of $n \leq 4$.

Solving Plynomials by Radicals

* Assume all fields of char O.*

Dh ene hut $f \in F[x]$ be roncoustant with splitting field L / F.
(a) A rout $\alpha \in L$ of f is suppressible by readied omer F if a lie in some radical extension of F.
(b) The polynomial f is solvable by radicals over F if L / F is a solvable extension.

Prop Lat $f \in F(x)$ be irrudexible. Then f is solvable by radicals our F iff f has a root expressible by radials our F.
Pf $(\Leftrightarrow) \checkmark$
(\leftrightarrows) upon $f(x)=0$ with α in some radical extension of F. Thun $F(x) / F$ solvable, s_{0} its Galois closure $M T F$ is soluble By normality of M / F, M contains the splatting fired of f our F s. f is solvable by radicals.

Recall For $f \in F(x), G \operatorname{Gal}(f / F)=$ Gall (UF) for L a splitting field of f / F.
Th er A polynomial $f \in F[x]$ is solvable by radicalsfifff

$$
\operatorname{Gal}(f / F) \text { is solvable. } \square
$$

Pop If $f \in F[x]$ has degree $n \leq 4$, then f is solvable by radicals If If f is separable, then G al $(f / F) \leq \Sigma_{4}$ which o solvable. For the nonseparable case, work with noncepeated erred factor of f. t
-.g. $\operatorname{Gal}(\underbrace{x^{5}-6 x+3} / \theta) \approx \sum_{5}$, mot solvable.
irredusitile, so no root expressible by radicals!

The Universal Polynomial:

$$
\tilde{f}=x^{2}-\sigma_{1} x+\sigma_{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

insolvable by radicals by the quadratic fula.
Degree a generalization:

$$
\tilde{f}=x^{n}-\sigma_{1} x^{n+1} \cdots+(-1)^{n} \sigma_{m}=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

solvable by radicals iff $L=F\left(x_{1}, \ldots, x_{n}\right) / F\left(\sigma_{1}, \ldots, \sigma_{n}\right)=K$ solvable iff Gal $(L / K) \subseteq \sum_{n}$ solvable. Hence have generifellas for roots iff $n \leq 4$.
Note Some polynomials of degree >4 are solvable by radicals.

- Abelian Equations:

Dufy we $f \in F[x]$. Call $f=0$ an Abelian equation if f separable with root α rit. the roots of f ard $\theta_{1}(\alpha), \ldots, \theta_{n}(\alpha)$ for $\theta_{1}, \ldots, \theta_{n}$ rational frs with couffes in F satisfying

$$
\theta_{i}\left(\theta_{j}(\alpha)\right)=\theta_{j}\left(\theta_{i}(\alpha)\right) \quad \forall y_{j}
$$

The let $f \in F[x]$. If $f=0$ is en Abeliam equation, them $f o r i o l v a b l y$ by radicals ouse F.
If Abulia groups ard solvable, so suffices to show Golll/F) Akelian for L splitting field of f / F. For $\sigma, \tau \in \operatorname{Gal}(L / F)$, chuck that

$$
\begin{aligned}
& \cdot \sigma(\alpha)=\theta_{i}(\alpha)-\tau(\alpha)=\theta_{j}(\alpha) \text { for som }, i, j \text {. } \\
& \text { - } \sigma \tau=\tau \sigma \text { iff } \sigma(\tau(\alpha))=\tau(\sigma(\alpha)) \\
& \cdot \sigma(\tau(\alpha))=\theta_{j}\left(\theta_{i}(\alpha)\right) \text { and } \tau(\sigma(\alpha))=\theta_{i}\left(\theta_{j}(\alpha)\right) \text {. }
\end{aligned}
$$

Then let $f \in F(x)$ be irrend and suparable of degree n seth splitting field L / F. Then
$f=0$ is thelian iff $\mathrm{Ca}(L / F)$ is Abelimin. When then conditions are satisfied, $|G a l(L / F)|=[L: F]=n$ and $L=F(\alpha)$ for any $\operatorname{rof} \alpha \in L$ of F.
PE Just saw \Rightarrow. Fer \in, let $\alpha \in L$ be a roost of F. Then $L / F(\alpha) / F \longleftrightarrow \operatorname{Coal}(L / F(\alpha)) \stackrel{\Delta l}{\text { leal }}(L / F)$
Thus $F(\alpha) / F$ is Galois, is f splits completely indian $F(\alpha)$ by normality. Thus $L=F(x)$ and $[L: F]=n$. Each root is thus of the form $\theta_{i}(\alpha)$ for $\theta_{0} \in F(x)$.

Reading Them 8.5.9: Actin's elegant proof of FTA. It works for any exon C / R wheres R has no estes of add degree >1, C has no extins if dy 2 .

Cyclotomic Polynomials
Goal Determine $I_{m}:=m_{a^{2 \pi i m}}, \mathbb{D}_{2}$ and $\operatorname{Gad}\left(0,\left(\xi_{n}\right) / C 2\right)$.
Defn The Euler ϕ-function $\phi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$

$$
n \longmapsto|\{i \mid 0 \leq i<n, \operatorname{ged}(i, n)=1\}|
$$

Note $\phi(n)=\left|(z / n / z)^{x}\right|$.
Lemme (a) If $g(d(n, m)=1$, then $f(n, n)=\phi(n) \phi(m)$.
(b) If $n>1$,

$$
\phi(n)=n \prod_{\left.p\right|_{n}}\left(1-\frac{1}{p}\right) .
$$

plan
Pf (a) Assume $\operatorname{ged}(n, m)=1$. Thin $\operatorname{San} z i ' s$ The implies

$$
\mathbb{Z} \operatorname{man} \mathbb{Z} \cong \mathbb{Z} \ln \mathbb{Z} \times \mathbb{k} \ln \mathbb{Z}
$$

So $(\mathbb{Z} \ln Z)^{x} \cong(\pi / m z)^{x} \times(\mathbb{H} n z)^{x}$.
(6) Fur p prime, $\phi\left(p^{a}\right)=p^{a}-\left|\left\{j\left|0 \leq j^{<} p^{a}, p\right| j\right\}\right|$

$$
\begin{aligned}
& =p^{a}-\left|\left\{p l \mid 0 \leq l<p^{a-1}\right\}\right| \\
& =p^{a}-p^{a-1}=p^{a}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

So if $n=p_{1}^{c_{1}} \cdots p_{s}^{a}$ for p_{i} distinct primes, thin

$$
\begin{aligned}
\phi(n) & =\prod_{p_{i}(n} \phi\left(p_{i}^{a_{i}}\right) \\
& =n \prod_{p / n}^{n-1}\left(1-\frac{1}{p}\right) . \quad \square
\end{aligned}
$$

Let $\zeta=\zeta_{n}=e^{2 x i / n}$. Than $x^{n}-1=\prod_{i=0}^{n-1}\left(x-3^{i}\right)$. Define the neth cyctotomie plyamial

$$
\Phi_{n}(x)=\prod_{\substack{0 \leq i<n \\ g c d(i, n)=1}}\left(x-3^{i}\right)
$$

Thus $\operatorname{deg} \Phi_{n}=\phi(n)$ and roots of $I_{n}=$ primitive nth roots of 1

$$
\begin{aligned}
& \Phi_{4}=(x-i)(x+i)=x^{2}+1 . \\
& \Phi_{p}=\left(x-\zeta_{p}\right)\left(x-\xi_{p}^{2}\right) \cdots\left(x-z_{p}^{p-1}\right)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+1 .
\end{aligned}
$$

Prop $\Phi_{n} \in \mathbb{Z}[x]$ manic if deg n $\beta(n)$. Furthermore,

$$
x^{n}-1=\prod_{d / n} \Phi_{d}(x)
$$

whore the product is our positive integers al dividing n.
Pf We have $x^{n}-1=\prod_{0 \leq i<n}\left(x-3^{i}\right)=\prod_{d / n} \prod_{0 \leq i<n}\left(x-3^{i}\right)$ $\operatorname{gcd}(i, n)=d$
If $\operatorname{g}^{c d}(i, n)=d$, than $i=d j$ and $n=d \frac{n}{d}$ for $\operatorname{gcd}\left(j, \frac{n}{\alpha}\right)=1$.
Also $0 \leq i<n \Leftrightarrow 0 \leq d_{j} \leqslant d \frac{n}{d} \Leftrightarrow 0 \leq j<\frac{n}{d}$ and $3_{n}^{d}=\zeta_{n / d}$, sn $x-3_{n}^{i}=x-3_{n}^{d j}=x-3_{n / d}^{j}$
Thus $\prod_{0 \leq i<n}\left(x-\zeta^{i}\right)=\prod_{0 \leq j<\frac{n}{d}}\left(x-3_{n}^{j}\right)=\Phi_{\frac{n}{d}}(x)$

$$
\operatorname{gcd}(i, n)=d \quad \operatorname{grd}\left(j, \frac{n}{d}\right)=1
$$

so $x^{n}-1=\prod_{d / n} \Phi_{d}(x)=\prod_{d / n} \Phi_{d}(x)$.
Now show $\Phi_{E_{n}}(x) \in \mathbb{Z}[x]$ by strong induction on n.

$$
\begin{aligned}
& \text { For } n=1, \Phi_{1}(x)=x-1 \in \mathbb{Z}[x] \text {. If } n>1, \\
& x^{n}-1 \Phi(x)=\Phi_{n}(x) \prod_{\operatorname{dlu}_{d<n}}^{\Phi_{d}(x)=\Phi_{n}(x) \underbrace{g(x)}}
\end{aligned}
$$

By the division a Jorithm, $\Phi_{n}(x) \in \mathbb{Z}\left[x C_{0} \quad Q\right.$ Now compute $\operatorname{Cral}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$.
(Ama $f \in \mathbb{Z}[x]$ manic of pos degree, p prime. If $f p$ isth movie pelynarsial whose roots are the th $^{\text {th }}$ powers of the rats of f, then
$f_{p} \in \mathbb{Z}[x]$ and the coifs of f, f_{p} are congruent $\bmod p$. Pf Read lemma 9.1.8. (flay w/Eymm polys)
The The cyelotonte polynomial $\Phi_{n}(x)$ is urrad / Q so $\Phi_{n}=m_{J_{n}, Q}$. ane $\left[\Delta b\left(\xi_{n}\right): Q\right]=\phi(n)$.
If Let $f \in \mathbb{Q}[x]$ be an irrde factor $f \Phi_{n}$. By Geans's Lemma,
$\Phi_{n}=f \cdot g$ for $f, g \in \mathbb{Z}\left\{x l_{\text {, manic. }}\right.$
Take p prime tn. Step $1 \quad f(3)=0 \Rightarrow f\left(s^{p}\right)=0$.
ruppoon for $\geqslant f(\xi)=0$ bet $f\left(3^{p}\right) \neq 0$. Tahr f a in lemma.
HW: roots of f_{p} ard distinct prim math root $f 1$.
Thus $f_{p} \mid \bar{\Phi}_{n}$. If f, f_{p} there a root, thun $f=f_{p}$ ($f 1 f_{p} b^{\prime} / \mathrm{f}$ trued, have same degree). Rut this contradicts $f\left(3^{p}\right) \neq 0$. Thus f, f_{p} have no common roots so

$$
\Phi_{n}: f f_{p} h \Rightarrow h \in \mathbb{Z}[x] \text { ionic. }
$$

Let $\left.\overline{(\overline{)}}: \mathbb{Z}[x] \rightarrow \bar{F}_{p} \mid x\right]$ reduce copes mod p. Since $\bar{f}=\bar{f}_{p}$ by the Lemma, get $\bar{f}^{2}\left|\bar{E}_{n}\right| x^{n}-1 \Rightarrow x^{n}-2$ not separable in $\mathbb{F}_{p}[x]$. D $\sin \omega$ pto, completing Step ${ }^{4}$.
Now lat 3 be a fixed root of $f, 了^{\prime}$ any prim moth root of 1 . HD: $\zeta^{\prime}=3_{n}^{j}$ for same $\operatorname{ged}(j, n)=1$. Let $j=p_{2} \cdots p$ be prime tot p_{n}. Note each pi rel prime n. By step 1 ,

$$
3,3^{p_{1}}, 3^{p+n}, \cdots, 3^{p \cdots p r}=3^{j}
$$

are roots of f. Thus every prim nth root of 1 is a root of $f \Rightarrow f=\Phi_{n}$.
Them G al $\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \stackrel{\cong}{\Longrightarrow}(\mathbb{U}$

$$
\sigma \longmapsto l l] \text { if } \sigma\left(3_{n}\right)=3_{n}^{l} \text {. }
$$

Constructible Numbers
What is a construction? Han some known points, use straightedge and compass to build lines and circles:

C1 from $\alpha \neq \beta$, can draw the line l through α, β.
c_{2} From $\alpha \neq \beta$ and γ, draw circle C with center γ and radius the distance from α to β.

From the coniffruction (c) get the following points
P1 The pint of intersection of distinct lines l_{1}, l_{2} constraterd as above
P2 The pouts of intersection of a lime l and circle C constructed as about
P3 The points of intersection of distinct circles C_{1}, C_{2} construct ied as above.
Consicher the plane to be C, start $w / \#_{s} / \mathrm{pts} 0,1$ to get Def $\alpha \in \mathbb{C}$ is constractith if there a finite sequence of straightedeg a compass construction e coning $C_{1}, C_{2}, P 1, P 2, P 3$ that h begins $s) 0,1$ and enos with α.
TPS Construct: 2

- $n \in \mathbb{Z}$
- vertical aces
- $\pm i, \mathbb{Z}_{i}$.
eng $\zeta_{n}=2^{2 \pi i / n}$ constructible of regular n-goo can be constructed by ruler and compass.

Thm $C:=\{\alpha \in \mathbb{C} \mid \alpha$ is contructilite $\}$ is a subfield of \mathbb{C}. Furtharmone (a) Let $\alpha=a+i b, a ; b \in \mathbb{R}$. Than $\alpha \in C$ iff $a, b \in C$.
(b) $\alpha \in C \Longrightarrow \sqrt{\alpha} \in C$.
if Tak $\alpha \in C=0$

For $\alpha, \beta \in \mathcal{E}$ not collimar with 0

- ietersect $|\beta|$ circle thriu w/ann α with |el cirche thras. wa ceptor
Chucle Collinear case.
Thas proves C is a subgp of (C uncher + . Nos prow (a):

$$
i b \neq a+i b \in c \Rightarrow a, i b \in c
$$

Circle w/ centor radius $|i b|=161$ gorws $\pm|b|$, one of then is $b \in C$.
Chuch $a, b \in C \cap \mathbb{R} \Rightarrow a+i b \in C$. Io (a) \checkmark
Now talur $a, b \in e \cap \mathbb{R}_{>0}:$ is $p_{\text {papallal of } \bar{i} a}$

$$
\Rightarrow a b \in C
$$

$$
\begin{aligned}
\text { ia }
\end{aligned} \quad \Rightarrow \frac{1}{a} \in C \Rightarrow \mathbb{R}
$$

$$
\left.\begin{array}{l}
(a+i b)(c+i d)=(a c-b d)+i(d a+b c) \\
\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}
\end{array}\right\} \Rightarrow c \text { a freld }
$$

For (b), consider $\alpha=r_{2}^{i \theta}, r=|\alpha|>0, \alpha \in C$.

So just and $\sqrt{r} \in C$:

$$
\frac{1}{d}=\frac{d}{r} \Rightarrow d^{2}=r \Rightarrow d=\sqrt{r} \in C .
$$

e.g. $3_{5}=\frac{-1+\sqrt{5}}{4}+\frac{i}{2} \sqrt{\frac{5+\sqrt{5}}{2}} \in C$ so the regular pentagon ii constructible.
The For $\alpha \in \mathbb{C}, \alpha \in C$ 评 ヨsubfields $Q=F_{0} \subseteq F_{1} \subseteq \ldots \subseteq F_{n} \leq 4$ with $\alpha \in F_{n}$ and $\left[F_{i}: F_{i-1}\right]=2$ for $1 \leq \lambda \leq n$.

The $\alpha \in C$ if $\exists \mathbb{Q}=F_{0} \subseteq F_{1} \subseteq \ldots \subseteq F_{n-1} \subseteq F_{n} \subseteq \mathbb{T}$ rit. $<\in F_{n}$ and $\left[F_{i}: F_{i n}\right]=2$ for $1 \leq i \leq n$.
Pf (\Leftarrow) Hame $F_{i}=F_{i-1}\left(\sqrt{\alpha_{i}}\right)$ for some $\alpha_{i} \in F_{i-1} . F_{0}=\mathbb{Q} \subseteq C$. Juppoon $F_{i-1} \subseteq C$. Thin $\alpha_{i} \in C \Rightarrow \sqrt{\alpha_{i}} \in C$ so $F_{i} \subseteq C$. (\Rightarrow) Wa show $\exists=F_{0} \subseteq \cdots \subseteq F_{n} \subseteq \mathbb{C}$..t. F_{n} contains $R_{e}(\alpha), I_{n}(\alpha)$ and $\left[F_{i}: F_{i-1}\right]: 2$. Thin $\alpha \in F_{n}(i)$, so dom.
Proceed by induction on N, number of times $P 1, P 2, P 3$ use in construction of α. For $N=0, \alpha=0$ or 1 so $F_{n}=F_{0}=\mathbb{R}$. Now supp ese a constructed in $N>1$ steps, where the last step una $P 1$, intersection of distinct limes l_{1}, l_{2}. Than l_{1} constructed from α_{1}, β_{1} by C_{1}, l_{2} frame α_{2}, β_{2} by C_{1}. By ind hypotherns, $\exists Q=F_{0} \subseteq \cdots \subseteq F_{n} \subseteq \Phi$ with $\left[F_{i}: F_{1-1}\right]: r$ and $F_{n} \rightarrow R e$, In of $\alpha_{1}, p_{1}, \alpha_{2}, \beta_{2}$. Uss linear algebra, line intersution fonda, to ,how $\operatorname{Re}(\alpha), \operatorname{Im}(\alpha) \in F_{n}$.
Next suppose last step in construction of α uss P_{2}, intersection of $\lim l$, circle C. Thun d built from $\alpha_{1} \not \beta_{1}, C_{1}$ and c built from $\alpha_{2} \neq \beta_{2}$ and γ_{2}, all coming from earlier stayer of construction. Thus $\exists Q=F_{0} \in \cdots \in F_{n} \in \mathbb{C}$ with $\left[F_{i}: F_{i n}\right]: 2$ and F_{n} containing R_{1}, In of $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, Y_{2}$. Lima /circle intersection is a quadratic wand 'n and $\frac{\text { get }}{R_{\text {d }} \text { In }}$ () $\alpha \in F_{n}$ or quad exam of F_{n}.
Sim for tho circle intersections (H3) courtranting $\alpha . \square$ Cor C is the rmellost subfield of \mathbb{C} that is closed under the operation of taking square vats.
Pf Already showed $x \in C \Rightarrow \sqrt{x} \in C$. Taker $F \subseteq C$ cloud under $\sqrt{ }$ and take $\alpha \in \mathbb{C}$. Thun $\exists \mathbb{R}=F_{0} \subseteq F_{1} \subseteq \cdots \xi_{2} \subseteq \mathbb{C}$

Cor If $\alpha \in C$, the $[Q(\alpha): Q]=2^{m n}$ for some $m \in \mathbb{N}$. Thus all $\alpha \in C$ are alg/Q with minimal poly $/ \mathbb{Q}$ of degree 2^{m}.
e.g. You cant trisect a 120° angle $\mathrm{b} / \mathrm{c} \zeta_{9} \notin C .(H W)$
eeg. Given a cube with volume 1, can we construct one with volume 2 ("duplication of the cube")?
Requires construction of $\sqrt[3]{2}$, hat $\sqrt[3]{2}$ has mun" polynomial $x^{3}-2$ aver Q so is ont in C.
12. Given a radius 1 circle, can un contract asquoca of anew ara ("squaring the circle")?
Requires $\sqrt{\pi} \in C \Rightarrow(\sqrt{\pi})^{2}=\pi \in C \Rightarrow \pi a \operatorname{ly} / Q$ E.
Then lat $\alpha \in \mathbb{C}$ be ably 12 ane let L be then spitting field of $m_{\alpha, Q}$. Than α is constructible ff $[l: Q]$ y apouer if 2 .
Note $L \neq \mathbb{R}(\alpha)$ in general!
If Reading 7
Regular polygons and roots of unity:
Def An ode prime p is a Fermat prime if $p=2^{z^{m}}+1$ for some $m \geq 0$.
The Let $n>2$ be ain integer. Then a regular region con be
 where $5 \geqslant 0$ is an integer aral $p_{1, \ldots, p} p_{r}$ are distinct Fermat primps. ($r>0$).
If t H have $3_{n} \in C$ iff $\left[\mathbb{Q}\left(3_{n}\right): \mathbb{Q}\right]$ is a power of 2 , and $\left[Q\left(3_{n}\right):(2)\right]=\phi(n), s_{0} \zeta_{n} \in C$ iff $\phi(n)$ is a power sf 2 .
Supper $n=2^{5} p_{1} \cdots p_{r}, p_{i}$ Fermat primes. Then

$$
\phi(n)=n \prod_{p \mid r}\left(1-\frac{1}{p}\right)= \begin{cases}2^{s-1}\left(p_{i}-1\right) \cdots\left(p_{r}-1\right) & i i_{s}>0 \\ \left(p_{i}-1\right) \cdots\left(p_{r}-1\right) & s=0\end{cases}
$$

This is a power er of 2 since each p_{i} is a Fermat prime.
Nos suppose $\phi(n)$ is a power of 2 and $n=q_{1}^{a_{1}} \cdots q_{s}^{c_{s}}$ prime fact'n. Then $\psi(n)=q_{1}^{a_{1}-1}\left(q_{1}-1\right) \cdots q_{5}^{a_{5}-1}\left(q_{5}-1\right)$

If q_{i} is odd, then $a_{i}=1$ since $\phi(n)$ is a power of 2 , and also q_{i}^{-1} is a power of 2 .
But if $q=2^{k}+1$ is prime, thar k is a power of $2(H W)$. so the odd q_{i} art Fermat primes and have $a_{i}=1$, प Note $F_{n}=z^{2^{n}+1}$ is prime for $n=0, \ldots, 4$, composite for $5 \leq n \leq 32$, unknown in gun'l:

n	F_{n}
0	3
1	5
2	17
3	257
4	65537

Finite Fields
Prop Let F be a finite field. Then
(a) \exists ! prime p sit. F contains a subfield isomapplese $A \mathbb{F}_{p}$
(b) F is a finite extra of F_{p}, and $|F|=p^{n}$ for $n=\left[F: F_{p}\right]$.

Pf There is a uniquer ring how $\mathbb{Z} \xrightarrow{f} F$ taking $1 \mapsto 1$. since F is finite, the home is not ing hence has kernel $m \mathbb{Z}$ forsomen $m>1$, whence d $\mathbb{Z} / m \mathbb{Z} \xrightarrow{\Longrightarrow} \operatorname{in}(f)$. But in (f) has no O divisors, so in fact $m=1$ prime, ind $\mathbb{Z} p \mathbb{Z} \subseteq F$ by thees map. F_{p}
This males F an \mathbb{F}_{p} vs; and finiteness of $F \Rightarrow\left[F: V_{p}\right]=n<\infty$. But them $F \cong \mathbb{F}_{p}^{n}$ as an $F_{p} \cdot v_{s}$, so $|F|=p^{n}$.
Them let F be a finite field with $q=p^{n}$ elements. Then
(a) $\alpha q=\alpha \quad \forall \alpha \in F$
(b) $x^{q}-x=\prod_{\alpha \in F}(x-\alpha)$
(c) Fir a split ing field over F_{p} of $x^{q}-x \in F_{p}[x]$.

Thus any two fields with q alts are isomorphic.
If F^{-x} que is a group with q^{-1} efts, so $\alpha^{q-1}=1 \forall *+F^{-}$. So $\quad \alpha^{q}=\alpha \quad \forall \alpha \in F . \quad \square$
Them Gown any prime p and any positive integer n, \exists finite fist d with P^{n} elements.
If Let $q=p^{n}$ and let l be the splitting field of $x^{q}-x$ over 雰. Thin $x^{5}-x$ ir separable, so $F=\left\{\alpha \in L \mid \alpha^{2}=\alpha\right\}$ ir a subset of L containing q els. Fir a subfield (church) so is the desired field.

Prop If $f \in \mathbb{F}_{p}[x]$ is nonconstant and $n \geq 1$, then the number f roots of f in $A_{p^{n}}$ is the degree of the polynomial $\operatorname{ged}\left(f, x^{p^{n}-x}\right)$.
PI Let gigged = product of then $x-\alpha_{i}$ dividing ff (for $F_{p n}=\left\{\alpha_{1, \ldots}, \alpha_{p} n\right\}$. But $x-\alpha_{i}$ divides f if $f\left(\alpha_{i}\right)=0$ so $g=\prod_{f\left(\alpha_{i}\right)=0}\left(x-\alpha_{i}\right)$.

The If $\tau^{2} p^{n}$, thin
(a) $\mathbb{F}_{q} / \mathbb{F}_{p}$ is a Galois extension of degree n.
(b) The map Froth $: \mathbb{F}_{q} \rightarrow F_{q}, \alpha \mapsto a^{p} \in G_{-} l\left(F_{q} / F_{p}\right)$.
(c) $\left\langle F_{\text {rob }}\right\rangle=\operatorname{Gal}\left(\mathbb{F}_{a} / \mathbb{F}_{p}\right) \cong C_{n}$

陆 \mathbb{F}_{q} is the splitting field of the separable polynomial $x^{2}-x$.
Fob $\in G_{0}\left(\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)\right.$ is sirius simon \mathbb{F}_{T} has cher p and $a^{P}=a$ for $a \in F_{p}$.
Know that the order of Frobp divides n. Suppose Fro $b_{p}^{r}=i \alpha$. Then $\alpha^{p^{r}}=\alpha \quad \forall \alpha \in \mathbb{K}_{q} \Rightarrow x^{p}-x$ has q roots

Cor For finite fields $F_{p} m$, $F_{p^{n}}$, have $F_{p^{m}} \leq F_{p^{n}}$ is f m / n.
if suppose Fp pr n. Then $m \mid n$ by the tower them.
 conversely, suppose m / n. Since $\operatorname{Gal}\left(\pi_{p n} / \mathbb{H}_{p}\right)=C_{x}$, it has $=$ rubgop H of archer $\frac{n}{m}$. Than $\sigma_{p=}^{H} \cong F_{p m}$.
Them For $m l_{n,} \operatorname{Gach}\left(\right.$ 和 $\left._{p_{n}^{n}} / \mathbb{F}_{p}^{m}\right) \cong C_{n / m}$.

$$
\left\langle\text { Prob }_{\uparrow}^{m}\right\rangle
$$

Irreducible polynomials ovar finite fields.
Prop let $f \in H_{p}[x]$ be wrud of oleg in. Than
(a) $f \mid x^{p^{n}-x}$
(b) f is separach hu
(c) Govenn an integer $n \geqslant 1, \quad f\left(x^{p^{n}}-x \Leftrightarrow f\right.$ has a not in $F_{p^{n}}$

$$
\left.\Leftrightarrow m\right|_{n} .
$$

Pif Begon woth (c). Take α a root of f in the plitting field \mathbb{T}_{p}. Sinev f irrud, $\mathbb{F}_{p}(\alpha) / \mathbb{N}_{p}$ has degreen m, so $\mathbb{F}_{p}(\alpha) \cong \mathbb{F}_{p} m$.
Now $\mathbb{F}_{p^{\prime}} \geq \mathbb{F}_{p^{n}}$ 抽 m / n, so get sicond equivalence.
By irreducibrlity of $f, \quad f \mid \operatorname{ged}\left(f, x^{p}-x\right) \Leftrightarrow \operatorname{deg}\left(\operatorname{ged}\left(f, x p^{n}-x\right)\right)>0$ and this degrer $=\#$ roots of f in σ_{p}.
(a) \& (b) fllow ras-ry.

Note In fact, irrsd $f \in \mathbb{F}_{q}[x]$ are always cyparable. Hever inseparability is only a phanomenon in imfinite fields of char p.
Let $\mathscr{W}_{m}:=\left\{f \in \mathbb{F}_{p}[x] \mid f\right.$ is monic irrode of dysrec $\left.m\right\}$

$$
N_{m}:=\left|N_{m}\right| .
$$

Thm for $n \geqslant 1, \sum_{m / n} m N_{m}=p^{n}$.
of whe have $x^{p^{n}-x}=\prod_{m \mid n} \prod_{f \in N_{m}} f$ b/c the moniz irrdivisors of $x^{P^{n}-x}$ are exactly
thor collection of f by (c) above. Computing degrus on both sides (anel fo. Nm has deger) gras th. Thin.
a.g. $N_{1}=p$ so $p^{2}=2 N_{2}+N_{1}=2 N_{2}+p \Rightarrow N_{2}=\frac{1}{2}\left(p^{2}-p\right)$.

Sim, $\quad N_{4}=\frac{1}{4}\left(p^{4}-p^{2}\right)$.

Them (Mübins inversion fula) For $f, g: \mathbb{K}^{+} \rightarrow A, A$ an Abeldan gp, and $g(n)=\sum_{m / n} f(m)$, we have $f(n)=\sum_{m \mid n} \mu(m) g(n / m)$
(where operation on $A_{\text {is }}+1$).
The $N_{n}=\frac{1}{n} \sum_{m / n} \mu(m) p^{n / m}$.
If Let $f(n)=n N_{n}$. Then $g(n)=\sum_{m / n} f(m)=\sum_{m / n} m N_{m}=p^{n}$.
By Mäbins inversion, $n N_{n}=\sum_{n / n} \mu(m) g(n / m)=\sum_{m / n} \mu(m) p^{n / n}$. 中
过 $N_{4}=\frac{1}{4}\left(\mu(1) p^{4 / 1}+\mu(2) p^{4 / 2}+\mu(4) p^{\mu / 4}\right)$
$=\frac{1}{4}\left(p^{4}-p^{2}\right)$
Fowthur directions:

- Arad factors of mod p rideution of Φ_{α}
- Berlekamp's algorithm: When is $f \in \mathbb{F}_{p}[x]$ irreducible
- Number theory: K / \mathbb{D} finite, $\theta_{K} \subseteq K$ ring f integers,

$$
O_{K} / m \cong \mathbb{F}_{2}
$$

- Matrix groups /Fa \rightarrow finite simple groups
- Coding theory: error correcting codes
- Cryptography va elliptic curves our finite fields

Combinatorics $\binom{n}{k}_{q}=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{n}-2\right) \cdots\left(q^{k}-q^{k-1}\right)}$
$q \longrightarrow 1:\binom{n}{h}$
$q=p^{n}: \# k-$ dim subspaces of E_{a}^{n} (Field with one element?

Aside on Mäbius inversion
Suppose $f, g: \mathbb{Z}^{+} \rightarrow(A,+f$ for A an Abelian group. If $g(n)=\sum_{d / n} f(\alpha)$, then $f(n)=\sum_{m / n} \mu(m) g(n / m)$
Pf We have

$$
\begin{aligned}
& \sum_{d / n} \mu(d) g(n / d)=\sum_{d / n} \mu(n / d) g(d) \\
&=\sum_{d / n} \mu(n / d)\left(\sum_{d / d} f\left(d_{1}\right)\right) \\
&=\sum_{d_{1} / n} f\left(d_{1}\right)\left(\sum_{d_{1} / d / n} \mu(n / d)\right) \\
&=\sum_{d_{1} \mid n} f\left(d_{1}\right)\left(\sum_{d_{2} / m} \mu\left(m / d_{2}\right)\right) \\
& \text { where } m=\frac{n}{d_{1}}, d_{2}=\frac{d}{d} \\
&=f(n) .
\end{aligned}
$$

Formally Real Fields
Defu A field F is formallyr real if -1 is not a serm of squeras in F; othurwise, F is called nonreal.
Notation

$$
\begin{aligned}
& F^{\square}:=\left\{a^{2} \mid a \in F\right\} \\
& F^{B}:=\left\{a^{2} \mid a \in F^{x}\right\}=F^{a},\{0\} . \\
& \sigma(F)=\left\{\sum_{i=1}^{n} a_{i}^{2} \mid a_{i} \in F, n \in \mathbb{N}\right\} \\
& \sigma(F)=\sigma(F) \backslash\{0\}
\end{aligned}
$$

Note Formally real fields have cher $0 \mathrm{~b} / \mathrm{c}$

$$
\begin{gathered}
\sigma\left(\mathbb{F}_{p}\right)=\mathbb{F}_{p} \\
(\text { churk }) .
\end{gathered}
$$

Prop $(a) \dot{\sigma}(F) \leqslant F^{x}$
(b) If F is nowrual and cher $F \neq 2$, thin $\sigma(F)=F$.

Note If cher $F=2, \sigma(F)=F^{a}$.
Pf (a) Easy to chuck closure of $\dot{\sigma}(F)$ under mult'n.
If $\theta \neq a=a_{1}^{2}+\cdots+a_{n}^{2} \in F$, then

$$
\frac{1}{a}=\frac{a}{a^{2}}=\left(\frac{a_{1}}{a}\right)^{2}+\cdots+\left(\frac{a_{n}}{a}\right)^{2} \varepsilon \dot{\sigma}(F) .
$$

(b) Given $x \in F$, we have $x=\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2} \in F^{a}+\sigma(F) F^{a}$ $\subseteq \sigma(F)$.
Defn An ordeving on F is a set PFF callud the positine con of the ordering s.t.
(1) $P+P \subseteq P$
(2) $P \cdot P \subseteq P$
(3) $P \cup(-P)=F$.

Prop Let (F, P) be any ordersed field. Thin
(1) $\sigma(F) \subseteq P$
(2) $-1 \notin P$, and $P \cap(-P)=\{O\}$
(4) $P^{x}:=P$ \{O\} is a sulbog of
(3) F is formally rial
(5) If $P^{\prime} \uparrow F$ is anothe orderng.
$P \subseteq P^{\prime} \Rightarrow P=P^{\prime}$

Math hz Well, Usemosda
Follows from same trick as (b) above,
If Moral exc. Note (2) follows from same trick as (b) aboun, and (2) $\Rightarrow(3)$. D
Note. $F=P^{x} H\{0\} 11\left(-P^{x}\right)$ so wa can define a relation \leqslant_{p} on F by $x \leqslant_{p y}$ iff $y-x \in P$. Gut that s_{p} is a total ordering on F.

- For F / F_{0} and $P \subset F$ an ordering, get an induend ordering $P_{0}:=F_{0} \cap P$ on F_{0}
- \mathbb{R} has a unique ordering by $\mathbb{R}^{\square}=\sigma(\mathbb{R})=\mathbb{R} \geqslant 0$.

Lemma Let F be formally real and $K=F(\sqrt{a})$ be a quadratic seth of F. Thin K is nomrsad iff $a \in \dot{\sigma}(F)$. Pf If $-a \in \dot{\sigma}(F)$, then $(\sqrt{a})^{2}+(-a)=0$ shows that K is nourlal.
Conversely, if K is nonreal, haves $-1=\left[\left(b_{i}+c_{i} \sqrt{a}\right)^{2}, b_{i}, c_{i} \oplus F\right.$.
so $-1=\sum b_{i}^{2}+a \sum c_{i}^{2}$. Now $\sum c_{i}^{2} \neq 0$ ($\left.0 / w-1=\sum b_{i}^{2} \in \sigma(F)\right)$ Sa $-a=\frac{1+\Sigma b_{i}^{2}}{\tau_{i}^{2}} \in \dot{\sigma}(F)$.
Defn F is Enctidean if F is formally real and $\left[F^{x} ; F^{-\pi}\right]=2$.
Defy. F is Ply thagorian if the sum of two squares is always a square.
Prop If F is Euclidean, thin F is Pythagorean with a unique ordering.
Nope converse is also trace.
If Clam $P=F^{\square}$ is an ordering. Clearly hare $P \sqsubseteq F, P \cdot P \leq F, P \cup(-P)=F$, so only need to show $P+P \subseteq P$, in, F is Pythagorean. Enffies to show $1+y^{2} \in F$ for all $y \in F$. If $\operatorname{lig}^{2} \in F \cdot F^{Q}=-F^{a}$, then $-\left(\in F F^{B}\right.$.

Math tiv wuh 11 , Wrdnasday 3
Uniqueness follows since $F^{a} \subseteq \sigma(F) \subseteq P$ for all orderings.
The For all fields F, TFAE:
(i) Fir Euclidean.
(2) Fo formally, real, butenury quadratic extension of F in nourcal.
(3) $\sqrt{-1} \notin F$ and k. $F(\sqrt{-1})$ is quadratically clos id (inn. $k^{n}=k$) (41 char $(F) \neq 2$ and \exists quad seton L / F that is quadratically closed.
那 $(2) \Rightarrow(1)$: For any nonsquare $a \in F, F(\sqrt{a})$ is nonrial, so $-a=a_{1}^{2}+\cdots+a_{n}^{2}$ for somme $a_{i} \in F$. Take sech an eqn with n minimal (ss $a_{i} \neq 0$, in particular) Ne nd to show $n=1$, If $_{1}$, a_{1}^{2} tan F^{n} implies $-\left(a_{1}^{2}+a_{2}^{2}\right)=b_{1}^{2}+\cdots+b_{m}^{2}$ for soma $b_{j} \in F$, and this contradicts formal reality of F.
$(1) \Rightarrow(3) \Longrightarrow(4) \Rightarrow(2)$: Mors work (norms, quadratic forms).
Defy A field F is real closed if F is formally real, but no proper algebraic esth of F.s formally real.
Cor If F is real closed, thin F is euclidean, has unique orchring F^{a}, and $F(\sqrt{-1})$ is quadratically closed.
Prop let F be a formally real field, and \bar{F} its algebraic closure. Then \exists real closed field $R, F \subseteq R \subseteq F$.
阬 Let $R=\{L \subseteq \bar{F} \mid F \subseteq L$, L formally real $\}$. If $\left\{F_{\alpha}\right\}$ is a chain in R, thun $\bigcup_{2} F_{\alpha} \in R$ too. Ry Zorn's Lemma, $\exists R \in R$ that is maximal and thus raul closed.
Thun F is formally rial iff F has at least one ordering.

PF $\Leftarrow:-1 \notin P \geq \sigma(F)$.
\Rightarrow : Have an alg extra $R \geq F$ that is reed closed. The unique ordering R^{\square} on R indues on s on F.
Fact Lat $X_{F}=\{$ orderings on $F\}$. Thin $\bigcap_{p \in X_{F}} P=\sigma(F)$.
say that the totally positive alts of F are the sumer of squares.
$\therefore 2(\sqrt{2})$
indenes two different order ing ion
$\sqrt{2} \varphi^{\prime}, \mathbb{R} \quad Q(\sqrt{2})$. This ares in fact the (2) $(\sqrt{2})$. Thin are in fact th
only two. For $\theta=5+3 \sqrt{2}$, have $\varphi(\theta), \varphi^{\prime}(\theta)>0$, so $5+3 \sqrt{2} \in \sigma(Q(\sqrt{2}))$. In fact, $2(5+3 \sqrt{2})=1^{2}+(1+\sqrt{2})^{2}+(1+\sqrt{2})^{2}+(1+\sqrt{2})^{2}$.
a.g. Infinitely many ardurings on $F(x)$ for F formally real.

Characterizations of real clog ed fields
Prop TFAE: (1) Any odd degree $f \in F[x]$ has a root in F
(a) F has no proper odd degree externs.

If $(2) \Rightarrow(1)$: By induction on $n=\operatorname{deg}(f)$. Trio for $n=1$. Assume $n>1$. If f is irene, thin $F[x] /(f)$ proper ord dy sain, θ. So $f: f_{1} f_{2}$ with, $\operatorname{sig}, \operatorname{deg}\left(f_{1}\right)$ odd $<n$. But then f_{1} hair a root in F so fools too.
(1) $\Rightarrow(2)$: If K / T has odd deg $n>1, \exists \theta \in K-F$ and of g $m_{\theta, F}=[F(\theta): F]$ is an odd integer 21 . It has a root in $F_{\text {by }}(1)$, so \geqslant.
Fact If F is formally rue', then every odd degree extn of F is as well.
(Roo via Springer's Them on quadratic forms.)
Cor If F is real closed, then any odd dey poly $f \in F[]$ hes a root in F.
Them TFAE: (1) Fir read clone.
(L) Fir Eudidean and unary odd-degren polannomtal in $F[x]$ has a root in \bar{F}
13) $\sqrt{-1} \& F$ and $K=F(\sqrt{-1})$ is algebraically closed.

Cor \mathbb{R} is ralelosed and \mathbb{C} is algebraically closed. if of Thu (3) $\Rightarrow(1)$: F Euclidean so F formally rall. Since the only proper alg ext er of $F: K$ (which is non real), F is rial closed.
(1) $\Rightarrow(2)$:
(2) $\Rightarrow(3)$: Have K quadratically closed. If $f(x) \in K[x]$ umionstowi then $f \bar{f} \in F[x]$. If $f \bar{f}$ has a root in K, thun f does, so saffiens
to show all $z \in F[x]-F$ here a roof in K. tet E be the splitting field of $\left(x^{2}+1\right) g$ our F, which is a Galois since F has no odd deg externs, get that $[E: F]=2^{n}$. (If not a power of 2 , fixed field of $H=2-5 y$ low sung of $\mathrm{Gal}(E / F)$ is odd degree.) Sines $\&$ her no aud orations (K quad closed b/c Fecliblean get that $K=E$. Since E spins $\left(x^{2}+1\right) g(x)$, get that g has a root in $K, ~ 4$

Tho [Artin-Schrieir] Let C be any algebraically closed firtel, and $F \subseteq C$ with $[C: F]<\infty$. Then $\operatorname{char}(F)=0, F$ is real closed, and $C=F(\sqrt{-1})$.
Pf (Assuming char $F=0$) Claim $[C: F]$ is a power of 2 . Arrume for P that an odd primes $p \mid[C: F]$. Since C / F is finite Galas with $\mid G$ Gal $(C / F) \mid=[C: F]$ divisible by P. $\left.\begin{array}{l}\text { know } \exists H \leq G a l(C / F) \text { of order } p \text { and }\left[C: C_{1}^{A}\right]: p \text {. } \\ F i x \\ K\end{array}\right\} \in C$ Since $\}$ her deg $\leq p-1$ auer Fix $\zeta=\zeta_{p} \in C$. Since ζ her dey $\leqslant p-1$ over K, get $3 \in K$. Thus $C=K(x)$ where $x \in C, x^{p}=a \in K$. Let $(\sigma)=\operatorname{Gal}(C / k) \cong C_{p}$ and take $y \in C$ st. $y ?=x$ (so $y^{p^{2}}=a$). Thin $\sigma(y)=\alpha y$ for some α rit. $\alpha^{p^{2}}=1$. If $\alpha^{p}=1$, then $\sigma(x)=\sigma(y)^{p}=y^{p}=x$, \geqslant, so α is a primitive p^{\prime} root of unity. Thus $\sigma(\alpha)=\alpha^{r}$ for some r rel prime to Whence $\sigma^{2}(y)=\alpha^{r+1} y, \sigma^{3}(y)=\alpha^{r^{2}+r+1} y$, etc., ultimately giving $\left.y=\sigma^{p} l_{y}\right)=\alpha^{r^{p-1}+\cdots+r n} y$.

Thus $r^{p-1}+\cdots r r+1 \equiv 0\left(\bmod p^{2}\right)$. Multiplying by r, get $r^{p} \equiv 1\left(\bmod p^{2}\right)$. In particular, $r^{p} \equiv 1(\bmod p)$, so (FlT) $r \equiv 1$ (model p), $r=1+k p$ for some $k \in \mathbb{Z}$. But then-

$$
\begin{aligned}
r^{p-1}+\cdots+r+1 & =\frac{r^{p}-1}{r-1} \\
& =\frac{(1+k p)^{p}-1}{k p} \\
& =\frac{\binom{p}{1} k_{p}+\binom{p}{2}(k p)^{2}+\binom{p}{3}(k p)^{3}+\cdots+(k p)^{p}}{k p} \\
& =p+\binom{p}{2} k_{p}+\binom{p}{3}\left(k_{p}\right)^{2}+\cdots+(k p)^{p-1} \\
& \equiv p\left(\text { mod } p^{2}\right) \\
& \underbrace{\text { and }\binom{p}{2} k p=\frac{p(p-1)}{2} k_{p}=\frac{k(p-1)}{2} p^{2}}_{\text {manifest for }}
\end{aligned}
$$

$$
\text { is a multiple of } p^{2} \text { sine } p \text { odd. }
$$

This contradicts $r^{p} \equiv 1\left(\bmod p^{2}\right)$.
Now know $[C: F]: r^{n}$ for some n. Claim, $n=1$.
If $n \geqslant 2$, gut $E \subseteq L \leq C$ with $[C: L]=[L: E]=2$ (by Galois thy + fact that gpo of order p^{n} haws subgps of orch ir $\left.p^{k} \forall 0 \leq h \leq n\right)$ Get L Emlidean since r C quad closed, so $\sqrt{-1} \notin L$. The $E(\sqrt{-1})$ is another subfield of C with $[C: E(\sqrt{-1})]=2$, s $E(\sqrt{-1})$ Euclidvern, E blc $\sqrt{-1} \in E(\sqrt{-1})$. Therefore $[C: F\}=2$. Again, $\sqrt{-1} \& F$, so $F(\sqrt{-1})=C$.

