
MATH 342 – PRESENTATIONS

As outlined in the syllabus, Math 342 students will create and present 20-minute lectures on
topological topics during the end of the term. Additionally, they will write and typeset detailed
notes (3–8 pages) to accompany their lecture.

Over spring break, you are expected to create a topic proposal for your presentation. This
should be a short (1–2 paragraphs) note typeset in LATEX describing your topic, your interest in
it, and a sketch of goals for your presentation.1 Below is a non-exhaustive list of potential topics.
Feel free to propose a topic which is not on this list.

» Urysohn’s lemma. This lemma (really a major theorem in point-set topology) gives condi-
tions under which a continuous map f : X → [a, b] exists which takes disjoint closed sets
to a and b, respectively. See §33 of Munkres.

» Countability and separation axioms. Do you love exotic topological spaces with no con-
ceivable use and extremely nuanced properties? Do you want to provide counterexamples
to naïve point-set conjectures at the drop of a hat? This project is for you! See §§30-31 of
Munkres.

» Metrization theorems. A project (potentially multiple projects) for the topology student
who loves analysis. Munkres §34 and Chapter 6 describes a cottage industry devoted to
providing conditions under which a topological space is metrizable. Metric spaces are
important, so these theorems are too!

» Dimension theory and embeddings of manifolds. Learn how to define the “dimension”
of a topological spaces, and prove theorems about when an m-dimensional space embeds
into Rn. See §50 of Munkres.

» Cantor and Baire space. Cantor space C = {0, 1}N and Baire space N = NN have many
remarkable properties. Explore the “middle-thirds construction” of C and prove that N
is homeomorphic to R r Q. Learn how C is the “generic” compact space and N is the
“generic” Polish space, or present Brouwer’s theorem: a topological space is homeomor-
phic to Cantor space if and only if it is nonempty, perfect, compact, totally disconnected,
and metrizable.

» Topological groups. A topological group is a space G which is also a group for which the
multiplication and inverse operations are continuous. Many of your favorite groups (GLn,
SO(n), SU(2), . . . ) are examples of topological groups. Set up some of the basic theory
(especially quotients) and examine some interesting examples. See pp.145–146 of Munkres
and §4.3 of Armstrong, Basic topology.

» Stone-Čech compactification. A compactification of a spaceX is a compact Hausdorff space
Y containing X as a subspace such that the closure of X in Y is all of Y . The Stone-Čech
compactification βX of a spaceX is a particularly nice compactification which is (in a precise
categorical sense) initial amongst continuous functions from X to compact spaces. Con-
struct βX , prove that it has the stated universal property, and interpret these results in the
language of adjunctions. See §38 of Munkres.

» Stone spaces and profinite sets. The categorically inclined student may be interested to
learn that the category of Stone spaces (compact totally disconnected Hausdorff spaces) is
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1If you don’t know how to use LATEX, this is a great opportunity to get familiar with it! LATEX learning resources are
available on the course website.
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equivalent to the category of pro-objects in the category of finite sets. Both of these are
in turn dual to the category of Boolean algebras. These results depend on Stone-Čech
compactification, so this might work better as one half of a “team" project in which one
student presents compactification and the other does Stone spaces.

» Compactly generated weakly Hausdorff spaces. The category of topological spaces is not
“cartesian closed,” meaning that it does not have good function objects which are related in
a particular fashion to the product. Learn what cartesian closed, complete, and cocomplete
mean, learn what a compactly generated weakly Hausdorff space is, and learn something
about why compactly generated weakly Hausdorff spaces have all these properties. See
Steenrod, A convenient category of topological spaces.

» Higher homotopy groups. The path-connected components π0(X) and fundamental group
π1(X) are extremely important invariants which we will study in class. These fit into an
infinite family of invariants, the homotopy groups πn(X) for n ∈ N. The group πn(X)
consists of homotopy classes of continuous maps Sn → X . Define and describe the group
structure on πn(X). Then undertake some subset of the following projects:

– Prove that πn(X) is abelian for n ≥ 2.
– Show that πk(Sn) = 0 for k < n and πn(Sn) = Z for n ≥ 1.
– Define (and visualize!) the Hopf map η and prove that it generates π3(S2) ∼= Z.

Warning: Topic proposals are subject to approval by the instructor, and you may be asked to
switch topics for a number of reasons, including but not limited to inappropriateness of topic and
duplication of topic by multiple students.
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