MATH 342: TOPOLOGY WEEK 2 HOMEWORK SUPPLEMENT

Problem 1. For sets A and B and a function $f: A \rightarrow B$ we defined functions

$$
f_{*}: 2^{A} \rightarrow 2^{B} \quad \text { and } \quad f^{*}: 2^{B} \rightarrow 2^{A}
$$

given by

$$
f_{*}(U)=\{f(u) \mid u \in U\} \quad \text { and } \quad f^{*}(V)=\{a \in A \mid f(a) \in V\} .
$$

for $U \subseteq A$ and $V \subseteq B$.
(a) For sets B and C and a function $g: B \rightarrow C$, prove that

$$
(g \circ f)_{*}=g_{*} \circ f_{*} \quad \text { and } \quad(g \circ f)^{*}=f^{*} \circ g^{*}
$$

(b) Let $1_{A}: A \rightarrow A$ denote the identity function on A. Describe $\left(1_{A}\right)_{*}$ and $\left(1_{A}\right)^{*}$.

Problem 2. Given a function $f: A \rightarrow B$, how are injectivity and surjectivity of f related to injectivity and surjectivity properties of f_{*} and f^{*} ? (A complete solution will determine all the implications which are true and then prove them.)
Problem 3. Given a function $f: A \rightarrow B$ and $U \subseteq A, V \subseteq B$, prove that $f_{*}(U) \subseteq V$ if and only if $U \subseteq f^{*}(V)$. (Later we will use Problems 1 and 3 to describe ($)_{*}$ and ()* as adjoint functors.)
Problem 4. Recall that in class we defined a topology on the set \mathbb{Z} of integers where the open sets were precisely the $U \subseteq \mathbb{Z}$ such that $U=\varnothing$ or for every $b \in U$ there exists a positive integer a such that $a \mathbb{Z}+b \subseteq U$. Note the following two facts:
(i) Any nonempty open set is infinite.
(ii) Any set $a \mathbb{Z}+b$ (where $a, b \in \mathbb{Z}, a>0$) is closed (in addition to being open).

Fact (i) is obvious from the definition of open sets in \mathbb{Z}.
(a) Prove that fact (ii) is true by writing $a \mathbb{Z}+b$ as the complement of an open set.
(b) Let \mathbb{P} denote the set of positive prime integers and note that

$$
\mathbb{Z} \backslash\{ \pm 1\}=\bigcup_{p \in \mathbb{P}} p \mathbb{Z}+0
$$

since every integer other than ± 1 is divisible by a prime. Use facts (i) and (ii) along with properties of topologies to conclude that \mathbb{P} is an infinite set.
You just used topology to prove that there are infinitely many prime numbers!

