
TOPOLOGY FROM THE CATEGORICAL VIEWPOINT

KYLE ORMSBY

One of the primary insights of twentieth century mathematics is that objects should not be stud-
ied in isolation. Rather, to understand objects we must also understand relationships between ob-
jects. Topologies offer one notion of ‘relation’, organizing the points of a set into neighborhoods.
As an abstraction of geometry, topology is immensely successful, but it fails to capture a second,
more structural notion of relation.

Category theory organizes objects by their transformations. Once these notions of object and re-
lation are abstracted, it becomes possible to compare and contrast different fields of mathematics.
Theorems about wildly different mathematical objects are often identical in their categorical con-
tent. In this manner, category theory becomes a meta-mathematical tool for both identifying and
conjecturing structural results.

These notes aim to introduce category theory in parallel with James Munkres’s Topology. We
will use this language to motivate definitions and interpret theorems. Moving into the algebro-
topological portion of the course, this language will become even more important as we use the
fundamental group functor to compare the categories of topological spaces and groups.

1. CATEGORIES

We begin with a motivating example. Sets are a type of mathematical object. Sets are related
by functions. Each function has a domain (source) and codomain (target). In standard notation,
f : A Ñ B denotes a function with domain A and codomain B. Of course, functions admit
composition: given g : B Ñ C and f : A Ñ B we can form g ˝ f : A Ñ C by assigning gpfpaqq to
a P A. This composition is associative: if f : AÑ B, g : B Ñ C, and h : C Ñ D are functions, then

h ˝ pg ˝ fq “ ph ˝ gq ˝ f.

Moreover, each set (even the empty set!) admits an identity function 1A : A Ñ A. This function
takes each a P A to a and satisfies the following property: for each g : AÑ B and each f : C Ñ A,

g ˝ 1A “ g and 1A ˝ f “ f.

In the following definition, we will see that categories consist of objects, morphisms (with
source and target objects), composition, and identity morphisms satisfying associativity and iden-
tity properties. As such, sets and functions form our first example of a category.

Definition 1.1. A category C consists of a collection of objects Ob C and a collection of morphisms
Mor C along with assignments s, t : Mor C Ñ Ob C (called the source and target maps). Let
C px, yq Ď Mor C denote the collection of morphisms with source x P Ob C and target y P Ob C .
Then for each x, y, z P Ob C , C is also equipped with a composition

˝ : C py, zq ˆ C px, yq Ñ C px, zq

pg, fq ÞÑ g ˝ f.

Additionally, for each x P Ob C there is an identity morphism 1x P C px, xq. This data must satisfy
the following properties:

(associativity) For objects x, y, z, w and morphisms f P C px, yq, g P C py, zq, and h P C pz, wq, we have

h ˝ pg ˝ fq “ ph ˝ gq ˝ f.
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(identity) For each x, y P Ob C , f P C px, yq, and g P C py, xq, we have

f ˝ 1x “ f and 1x ˝ g “ g.

It is useful to think about categories diagrammatically. These diagrams use letters to represent
objects, and labelled arrows to represent morphisms. So if x, y P Ob C and f P C px, yq, we may
draw

x
f
ÝÑ y

in order to represent that f is a morphism in with source x and target y. (Note that we have
dropped C from our notation here: usually it will be clear from context which category we are
working in.) We may also write f : xÑ y to represent f P C px, yq.

Now suppose that in addition to f we also have

y
g
ÝÑ z,

a morphism with source y and target z. Composition tells us that we then get a new morphism

x
g˝f
ÝÝÑ z.

We can put all of this information into a single commutative diagram

y
g

  
x

f
??

g˝f
// z.

When we say that a diagram
y

g

  
x

f
??

h
// z.

commutes, we are saying precisely that h “ g ˝ f . The geometric presentation of the diagram is
unimportant, and we could just as easily draw commutative diagrams

x
f //

h

88y
g // z or x

f //

h ��

y

g

��
z

to communicate that h “ g ˝ f .
We can use diagrams to express the axioms for a category. Associativity becomes

y
g

��

h˝g // w

x

f
??

g˝f
// z

h

??

so we can interpret this axiom as saying that we can paste together commutative triangles to
produce commutative quadrilaterals. The identity axiom becomes

x
1x //

f   

x

f

��
x

and y
g //

g
  

x

1x
��
x.
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Without realizing it, you have been working with categories for a long time. Consider the
following examples.

Example 1.2. We have already mentioned that sets and functions form a category. We denote this
category Set. Similarly, there is a category FinSet with objects finite sets and morphisms functions
between finite sets.

Example 1.3. Let k be a field and let Vectk have objects k-vector spaces and morphisms k-linear
transformations. Since linear transformations compose (in the set-theoretic sense) to give new
linear transformations, Vectk is also a category. (It is obvious that the identity function 1V : V Ñ V
is linear.) We can also consider the category FinVectk of finite-dimensional k-vector spaces and
k-linear transformations.

Example 1.4. The empty category ∅ has no objects (i.e., Ob∅ “ ∅) and no morphisms (Mor∅ “ ∅).
The source, target, and composition functions are all the empty function ∅Ñ ∅ and all properties
are satisfied vacuously!

Example 1.5. The trivial category ‚ has a singleton set t˚u for its objects and a single morphism
(necessarily the identity on ˚), 1 : ˚ Ñ ˚. The only composition to define is 1 ˝ 1 “ 1 and this is
enough to check the associativity and identity properties as well.

Example 1.6. Not every category has special classes of functions as morphisms. Consider Matk
whose objects are the natural number N “ t0, 1, 2, . . .u and whose morphisms Matpm,nq are nˆm
matrices with entries in a field k. Composition is given by matrix multiplication (check compati-
bility!) and the nˆ n identity matrix is 1n. Since matrix multiplication is associative, this forms a
category.

If you are suspicious that this category is eerily similar to FinVectk, worry not: it is! After
studying equivalences of categories and skeleta, you will understand exactly how similar.

The following two examples should seem completely obvious if you have already taken a
course in abstract algebra. If you have not, there is no harm in skipping them.

Example 1.7. There are categories Gp, FinGp, and AbGp of groups, finite groups, and abelian
groups, respectively. In each case, morphisms are group homomorphisms.

Example 1.8. There are categories Ring and CommRing of rings and commutative rings, respec-
tively. In both cases, morphisms are ring homomorphisms. There is also a category Field of fields
and field homomorphisms.

Finally, we come to the category of primary interest in this course, the category of topological
spaces and continuous functions.

Example 1.9. The category Top has topological spaces as its objects and continuous functions as
its morphisms. In order to check this, we must see that the composition of continuous functions
is continuous and that identity functions are continuous. The former condition is the content of
Theorem 18.2(c) in Munkres. If X is a topological space and 1X : X Ñ X is the identity function,
then for any U Ď X open, 1´1X pUq “ U is open in X , so 1X is continuous. The associativity and
identity axioms hold because they hold for functions.

Remark 1.10. Of course, there is also a category whose objects are topological spaces and mor-
phisms are arbitrary functions between underlying sets. And while we are free to define such a
category, it is not of particular interest. A category is a tool for studying relationships between
objects. If we choose the wrong set of relationships (i.e., the wrong morphisms), then we end up
with an uninteresting — or, worse yet, misleading — category.
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2. ISOMORPHISMS

The morphisms in a category give us a way to relate or compare objects. When are two objects
“the same" in light of these comparisons? Of course, this notion of sameness is different from
equality. We would like to know when two objects are “indistinguishable via morphisms" rather
than when they are literally equal. The following definition provides this notion.

Definition 2.1. A morphism f P C px, yq is an isomorphism if there exists a morphisms g P C py, xq
such that g ˝ f “ 1x and f ˝ g “ 1y. We call g a (two-sided) inverse to f . Objects x, y P Ob C are
isomorphic if there exists an isomorphism f P C px, yq. In this case we write x – y, and if f P C px, yq
is an isomorphism we write f : x – y.

Proposition 2.2. Isomorphism is an equivalence relation on Ob C .

Proof. We first check that – is reflexive. Indeed, 1x : x – x for all x P Ob C because 1x ˝ 1x “ 1x by
the identity axiom.

We now check that – is symmetric. Suppose f : x – y. Then there exists g P C py, xq such that
g ˝ f “ 1x and f ˝ g “ 1y. This tells us that g : y – x as well.

Finally, we check that – is transitive. Suppose f : x – y and g : y – z. There exist f 1 P C py, xq
and g1 P C pz, yq such that f 1 ˝ f “ 1x, f ˝ f 1 “ 1y, g1 ˝ g “ 1y, and g ˝ g1 “ 1z . Observe that

pf 1 ˝ g1q ˝ pg ˝ fq “ pf 1 ˝ pg1 ˝ gqq ˝ f “ pf 1 ˝ 1yq ˝ f “ f 1 ˝ f “ 1x

and
pg ˝ fq ˝ pf 1 ˝ g1q “ pg ˝ pf ˝ f 1qq ˝ g1 “ pg ˝ 1yq ˝ g

1 “ g ˝ g1 “ 1z.

Thus g ˝ f : x – z, as desired. �

In the following sequence of propositions, we identify which morphisms are isomorphisms in
some of the categories we introduced in §1.

Proposition 2.3. A function f P SetpA,Bq is an isomorphism if and only if it is a bijection.

Proof. First suppose that f is an isomorphism, in which case there exists g P SetpB,Aq such that
g ˝ f “ 1A and f ˝ g “ 1B . Suppose that fpaq “ fpa1q. Then, applying g to both sides, we get that
a “ a1, so f is injective. Given b P B we see that fpgpbqq “ b, so f is surjective as well, and hence a
bijection.

Now suppose that f is a bijection. Given b P B, surjectivity of f implies that there exists an
a P A such that fpaq “ b. By infectivity of f , this a is unique. We may thus define g : B Ñ A
by the rule gpbq “ a (for a the unique element of A such that fpaq “ b). It is simple to check that
g ˝ f “ 1A and f ˝ g “ 1B , so f : A – B. �

Proposition 2.4. A linear transformation L P VectkpV,W q is an isomorphism if and only if it is bijective
as a function.

Proof. First suppose that our linear transformation L : V Ñ W is a bijective function. As we saw
in the previous proof, there exists a function (but is it a linear transformation?) M : W Ñ V such
that M ˝ L “ 1V and L ˝M “ 1W . For w,w1 P W suppose that Mpwq “ v and Mpw1q “ v1. Then
Lpvq “ w and Lpv1q “ w1, so for a scalar λ P k we have Lpv ` λv1q “ w ` λw1 by linearity of L. By
the definition of M it follows that

Mpw ` λw1q “ v ` λv1 “Mpwq ` λMpw1q.

We conclude that M P VectkpW,V q (i.e., that M is k-linear) so L : V –W .
Now suppose that L P VectkpV,W q is an isomorphism. Then, since linear transformations are

just special sorts of functions, we also have that L P SetpV,W q is an isomorphism. The previous
proposition then implies L is a bijection. �
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It is tempting to now guess that isomorphisms in Top are continuous bijective functions. This
is false! Let S1 “ tz P C | |z| “ 1u be the unit circle with basic opens the “open arcs" teiθ | θ P
pa, bq, a ă bu. Let r0, 2πq denote the half-open interval of nonnegative real numbers less than 2π
with basic opens r0, 2πq X pa, bq. The reader may check that the function

w : r0, 2πq Ñ S1

θ ÞÑ eiθ

is a continuous bijection.
Do we still hope that continuous bijections are isomorphisms of topological spaces? Should an

interval and a circle really be “the same"? Thankfully, w is not an isomorphism. In the next para-
graph we will check that its inverse, which takes the argument of a unit complex number, is not
continuous. Since inverse functions are unique, it follow that there are no maps in ToppS1, r0, 2πqq
which are inverses to w.

Let arg denote the inverse to w. The set U “ r0, πq is open in r0, 2πq, and arg´1pUq “ wpUq “
teiθ | θ P r0, πqu. It is readily checked that this set is not open, whence arg is not continuous.

Oftentimes, isomorphisms in a particular category get a special name; this is the case in the
category Top.

Definition 2.5. An isomorphism in Top (i.e., a continuous function f : X Ñ Y for which there
exists a continuous function g : X Ñ Y such that g ˝ f “ 1X and f ˝ g “ 1Y ) is called a home-
omorphism. If two spaces X,Y are isomorphic in Top, then we call them homeomorphic and write
X – Y .

Definition 2.6. A continuous function f P ToppX,Y q is called open if fpUq Ď Y is open for all
open U Ď X .

Proposition 2.7. A map f P ToppX,Y q is a homeomorphism if and only if it is an open bijection.

Proof. Suppose f is an open bijection. To prove that f is a homeomorphism, it suffices to show that
its inverse function g is continuous. For U Ď X open, g´1pUq “ fpUq is open in Y by hypothesis,
so g is continuous.

Now suppose f is a homeomorphism and let g P ToppY,Xq be its inverse. By Proposition 2.3,
f is a bijection. For any open U Ď X , fpUq “ g´1pUq is open in Y because g is continuous. We
conclude that f is open as well. �

In practice, we will only sometimes use Proposition 2.7 to check that a given map is a homeo-
morphism. Frequently, it is just as easy or easier to directly construct a continuous inverse.

3. BINARY PRODUCTS

Given objects x, y in a category C we can consider the collection of diagrams

z

�� ��
x y

in C . In other words, we are considering objects z which “map to" both x and y (along with the
“mappings"). A typical sort of categorical question is the following:

Is there a universal z mapping to x and y?
Such a universal object is referred to as the product of x and y in C . We make this notion precise in
the following definition.
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Definition 3.1. Suppose P P Ob C is equipped with morphisms px P C pP, xq and py P C pP, yq
such that for any f P C pz, xq and g P C pz, yq, there is a unique morphism h P C pz, P q such that
px ˝ h “ f and py ˝ h “ g. Then the data pP, px, pyq is called the product of x and y in C and is
denoted xˆ y.

We can succinctly summarize the product axioms in the following commutative diagram:

z

��   
D!
��

x Poo // y.

Here the dotted arrow labelled “D!" indicates that there exists (D) a unique (!) morphism which
makes the diagram commute.

Frequently, we will abuse notation and write P “ x ˆ y, leaving the morphisms px and py
implicit. In this case, the diagram reads

z

|| ##
D!
��

x xˆ yoo // y.

Our definition raises two obvious questions:

(1) Does xˆ y exist?
(2) If it does exist, is xˆ y unique?

The answer to (1) is no in general. There are many categories which do not have products.
Nonetheless, many categories of interest do have products, including Set and Top. We will study
these examples in a moment.

As for (2), existence of a product does imply a very good sort of uniqueness. Namely, when it
exists, xˆ y is unique up to unique isomorphism. By this, we mean that if there exist xÐ P Ñ y and
xÐ QÑ y in C both satisfying Definition 5.1, then there is a unique morphism P Ñ Q such that
the diagram

P

�� ��

��

x y

Q

__ ??

commutes, and this morphism is an isomorphism. In the categorical context, this is the best sort
of uniqueness we can hope for.

Proposition 3.2. If xˆ y exists in C , then it is unique up to unique isomorphism in the above sense.

Proof. Suppose that xÐ P Ñ y and xÐ QÑ y in C both satisfy Definition 5.1. Then the diagram

P

�� ��
x Qoo // y
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and Definition 5.1 tell us that there is a unique morphism f : P Ñ Q such that

P

�� ��
f
��

x Qoo // y

commutes. Our proof will be complete if we can show that f is an isomorphism. To this end,
consider the diagram

Q

�� ��
x Poo // y

and use the definition of product to produce a unique morphism g : QÑ P such that

Q

�� ��

g

��
x Poo // y

commutes. Pasting our diagrams together, we get the commutative diagram

P

�� ��
f
��

x Qoo //

g

��

y

P

@@__

which tells us that

P

�� ��
g˝f
��

x Poo // y

commutes. But observe that 1P : P Ñ P in place of g ˝ f also makes this diagram commute.
Since such a morphism is unique by definition, g ˝ f “ 1P . The reader should work out a similar
argument to show that f ˝ g “ 1Q. Hence f : P – Q, and we have thus proven that xˆ y is unique
up to unique isomorphism. �

We now investigate several categories that have binary products. We begin with Set, the cate-
gory of sets and functions.

Proposition 3.3. For sets A and B, the cartesian product AˆB “ tpa, bq | a P A, b P Bu along with the
projection maps pA : AˆB Ñ A, pa, bq ÞÑ a and pB : AˆB Ñ B, pa, bq ÞÑ b is the categorical product
of A and B.
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Proof. Given a set C and functions A f
ÐÝ C

g
ÝÑ B, define h : C Ñ A ˆ B taking c ÞÑ hpcq “

pfpcq, gpcqq. It is easy to check that

C
f

{{

g

##
h
��

A AˆBpA
oo

pB
// B

commutes and moreover that h is the only function making the diagram commute. We conclude
that AˆB is indeed the categorical product of A and B. �

Proposition 3.4. If k is a field and Matk is the category of natural numbers and k-matrices, then the
categorical product of n and m is the natural number n`m along with the morphisms

pn “
`

In 0nˆm
˘

and pm “
`

0mˆn Im
˘

where Ij is the j ˆ j identity matrix and 0jˆ` is the j ˆ ` matrix of 0’s.

Proof. Given a natural number `, an n ˆ ` matrix N , and an m ˆ ` matrix M , define P to be the
pn`mq ˆ ` matrix

P “

ˆ

N
M

˙

.

This is precisely the data of a diagram

`
N

||

M

##
P
��

n n`mpn
oo

pm
// m

in the category Matk. Observe that

pn ˝ P “
`

In 0nˆm
˘

ˆ

N
M

˙

“ N and pm ˝ P “
`

0mˆn Im
˘

ˆ

N
M

˙

“M

so the diagram commutes. We leave it to the reader to check that P is the unique matrix having
this property. �

We now turn to the study of products in Top, the category of topological spaces and continuous
functions. We certainly suspect that the product of spaces X and Y has the cartesian product
X ˆY as its underlying set. But is there a topology on X ˆY which will make it satisfy Definition
5.1? To approach this question, observe that we will need both of the projection maps

X
pX
ÐÝÝ X ˆ Y

pY
ÝÝÑ Y

to be continuous. For U Ď X , we have p´1X U “ U ˆ Y , and for V Ď Y , we have p´1Y V “ X ˆ V .
Thus for U Ď X open and V Ď Y open, we must have U ˆY and XˆV open in XˆY . Moreover,
open sets are closed under finite intersection, so

U ˆ V “ pU ˆ Y q X pX ˆ V q

must be open in X ˆ Y . Since Definition 5.1 does not seem to put additional restrictions on the
topology, our best guess is that the topology on X ˆ Y is generated by the sets U ˆ V . (The reader
should check that tU ˆ V | U Ď X and V Ď Y openu is a basis.)

Theorem 3.5. For topological spaces X and Y , let τXˆY be the topology on the cartesian product X ˆ Y
generated by the basis of sets U ˆ V where U Ď X and V Ď Y are open. Then pX, τXˆY q equipped with
the standard projection maps pX and pY is the categorical product of X and Y .
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Proof. First note that pX and pY are continuous by the discussion preceding the statement of the

theorem. Given a space Z and continuous functions X f
ÐÝ Z

g
ÝÑ Y , let h : Z Ñ X ˆ Y be the

function taking z ÞÑ pfpzq, gpzqq. By Proposition 5.5, h is the unique function making the diagram

Z
f

{{

g

##
h
��

X X ˆ YpX
oo

pY
// Y

commute (as a diagram of sets and functions). If we prove h is continuous, then we will be done
with our proof.

Since τXˆY is generated by the basis of sets U ˆV (U Ď X and V Ď Y open), it suffices to check
that h´1U ˆ V Ď Z is open. By an easy computation,

h´1U ˆ V “ f´1U X g´1V.

Since f and g are continuous and finite intersections of open sets are open, we see that h´1U ˆ V
is open, completing our proof. �

We conclude this section by mentioning that there are many categories which do not have bi-
nary products. For instance, suppose C is a category in which C px, yq “ ∅ whenever x ‰ y. An
example of such a category is Σ8 which has the sets n “ t0, 1, . . . , n´ 1u as objects and Σ8pn,mq
equal to the set of bijections n Ñ m. In order for x ˆ y to exist in C , we must have morphisms
xÐ xˆ y Ñ y, and in a category such as Σ8, we won’t have any such morphisms when x ‰ y!

4. MONOMORPHISMS AND SUBOBJECTS

In §2 we studied isomorphisms, the morphisms in a category which identify when objects are
categorically indistinguishable. In this section, we turn to monomorphisms, another special class of
morphisms.

Definition 4.1. A morphism i : x Ñ y in a category C is a monomorphism if for all morphisms
f1, f2 : z Ñ x in C , the equality i ˝ f1 “ i ˝ f2 implies that f1 “ f2. (In other words, i is left-
cancellative with respect to composition in C .) When i is a monomorphism we say that it is monic
and write i : x ãÑ y.

We can think of this definition as saying that whatever the composites i ˝ f1 and i ˝ f2 can “see"
of y, in fact happened in x before postcomposition with i. A few examples will help us hone our
intuition about monomorphisms.

Proposition 4.2. The monomorphisms in Set are precisely the injective functions.

Proof. Suppose that i : A ãÑ B is a monomorphism. For elements a1 and a2 of A, consider the
functions f1, f2 : t˚u Ñ A taking ˚ ÞÑ a1 and ˚ ÞÑ a2, respectively. Suppose that ipa1q “ ipa2q. We
may reinterpret this condition as saying that i ˝ f1 “ i ˝ f2 since the first composite takes ˚ ÞÑ ipa1q
while the second takes ˚ ÞÑ ipa2q. Since i is monic, we have f1 “ f2, which is equivalent to a1 “ a2.

Now suppose that i : A Ñ B is injective and that there are functions f1, f2 : C Ñ A such that
i˝f1 “ i˝f2. Then for each c P C, ipf1pcqq “ ipf2pcqq. Since i is injective, we learn that f1pcq “ f2pcq,
whence f1 “ f2, so i is monic. �

Proposition 4.3. For k a field, the monomorphisms in Vectk are the injective k-linear maps.

Proof. Suppose that i : V ãÑ W is a monomorphism in Vectk. Given a nonzero element v P V , let
fv : k Ñ V be the k linear map taking 1 ÞÑ v and let 0 : k Ñ V be the map taking everything in
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k to 0 P V . Suppose for contradiction that ipvq “ 0. Then it is easy to check that i ˝ fv “ i ˝ 0, so
fv “ 0, whence v “ 0, a contradiction. We conclude that ker i “ 0, whence i is injective.

Now suppose that i : V Ñ W is an injective linear map and that there are linear maps L1, L2 :
U Ñ V such that i ˝ L1 “ i ˝ L2. Since everything in sight is a function, the argument from the
second paragraph of the proof of Proposition 4.2 goes through, and we may conclude that L1 “ L2

so i is monic. �

We now consider monomorphisms in the category of topological spaces and continuous func-
tions.

Proposition 4.4. The monomorphisms in Top are precisely the injective continuous functions.

Proof. Suppose that i : X ãÑ Y is a monomorphism in Top. Endow the singleton set t˚u with
the discrete topology (which is in fact the unique topology on this set). Noting that every func-
tion t˚u Ñ X is continuous (check this!), we may directly adapt the proof of Proposition 4.2 to
determine that i is injective. It is similarly easy to see that injective continuous functions are
monomorphisms. �

Given a subset A of a topological space X , we may now ask when the inclusion i : A Ñ X
taking a ÞÑ a is a monomorphism. Obviously, this map is injective, so we are really asking what
topologies on A make i continuous. Given U Ď X , we have i´1U “ U XA, so it suffices that U XA
be open in A for all open U Ď X . In fact, it is easy to check that

τA “ tU XA | U Ď X openu

is a topology on A. We conclude that for any topology on A finer than τA, i : A ãÑ X is a
monomorphism. Equivalently, τA is the coarsest topology onA such that i : A ãÑ X is continuous.
Since τA satisfies such a special property, we will give it a name.

Definition 4.5. For a subset A of a topological space X , the topology τA “ tU XA | U Ď X openu
is called the subspace topology on A.

We use the subspace topology in making the following definition.

Definition 4.6. For topological spaces X , Y , an embedding f : X Ñ Y is a continuous function
which is a homeomorphism onto its image. More precisely, the induced function f : X Ñ fpXq is
a homeomorphism where the image fpXq is given the subspace topology in Y .

It is good to think of embeddings as ways of identifying spaces with subspaces of other spaces.
Note that the embedding is strictly more information than its domain: it tells us not only the
homeomorphism type of the domain, but also how the domain “sits in” the codomain. Knots
probably form the most famous example of a class of embeddings. Let S1 denote the unit circle in
R2 with the subspace topology. To a topologist, a knot is an embedding S1 ãÑ R3. One can think
of this as a knotted string with its ends fused in three-dimensional euclidean space.

The following proposition exhibits that the notion of an embedding is not the same as that of a
monomorphism in Top.

Proposition 4.7. In the category Top, every embedding is a monomorphism, but not every monomorphism
is an embedding.

Proof. Suppose that f : X Ñ Y is an embedding. Then f : X Ñ fpXq is a homeomorphism and
hence a bijection, whence f must be injective. The function f is continuous by hypothesis, so f is
a monomorphism by Proposition .

To see that the converse is false, let X “ t0, 1u with the discrete topology and let Y “ t0, 1, 2u
with the indiscrete topology. (Thus all subsets of X are open, while only ∅ and Y are open in Y .)
Let f : X ãÑ Y be the obvious inclusion, which is clearly continuous and hence a monomorphism.
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Note, though, that f : X Ñ fpXq is not open since t0u is open in X but not open in fpXqwith the
subspace topology. Hence, by Proposition 2.7, f is not an embedding. �

5. GENERAL PRODUCTS

In §3 we studied categorical products x ˆ y of two objects x and y in a category C . What if we
have a more general collection of objects xi P Ob C where i runs through some indexing set I? Is
there a universal object which maps to all the xi? If there is, this object (along with its morphisms
to the xi) is called the product of the xi. We develop this notion in this section.

Definition 5.1. Suppose that I Ñ Ob C is a function taking i ÞÑ xi, P P Ob C , and I Ñ Mor C is a
function taking i ÞÑ pi P C pP, xiq such that for any z P Ob C and morphisms fi P C pz, xiq, there is
a unique morphisms h P C pz, P q such that pi ˝ h “ fi for each i P I . Then the data pP, tpi | i P Iuq
is called the product of the xi in C and is denoted

P “
ź

iPI

xi.

We can express this definition succinctly via the following commutative diagram:

z

fi

��

fj

��

D!h
�� fk

��

P
pi

{{
pj

~~
pk

!!
xi xj ¨ ¨ ¨ xk.

Some comments on the diagram are in order:
» We read the diagram as saying that given z and the morphisms fi, i P I , there is a unique

morphism h making the diagram commute.
» We have permitted ourselves the liberty of placing morphism labels “within" the arrows

they are labeling. This is strictly for aesthetic reasons. Having the arrow fj pass “under"
pj is an aesthetic choice as well.

» Each of i, j, and k are elements of I , and the ellipses in the bottom row represent the
additional x` belonging to txi | i P Iu. The morphisms f` and p` are implicit in the diagram
as well.

» Make sure that you can spot the |I|-many commuting triangles pi ˝ h “ fi in the above
diagram. (Of course, |I| ´ 3 of them are implicit.) In fact, we could reinterpret the above
diagram as saying that there is a unique h : z Ñ P making the diagrams

z

fj

��

h
��
P

pj
~~

xj

commute for each j P I .
As with binary products in an arbitrary category C , general products may or may not exist.

It is the case, though, that when a general categorical product exists, it is unique up to unique
isomorphism.
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Theorem 5.2. Suppose pP, tpi | i P Iuq and pQ, tqi | i P Iuq both satisfy Definition 5.1. Then there is a
unique morphism P Ñ Q making the diagram

P
pi

{{
pj

~~

pk

��

��

xi xj ¨ ¨ ¨ xk

Q

qi

cc

qj

``

qk

EE

commute, and this morphism is an isomorphism.

Proof. The proof is essentially identical to the proof of Proposition 3.2, just with |I| ´ 2 more mor-
phisms in play. The reader should convince herself that this is the case, carefully writing out the
diagram chase if necessary. �

Remark 5.3. We could just as easily have defined
ź

A “
ź

xPA

x

for A any subset of Ob C . Such a product is equipped with maps px :
ś

AÑ x for each x P A.

Certain products have special names and special notation:
» If A “ tx, yu, then, when it exists,

ś

A is typically denoted xˆ y. This matches our notion
of binary product from Section 3.

» If A “ tx1, x2, . . . , xnu, then, when it exists, we write x1 ˆ x2 ˆ ¨ ¨ ¨ ˆ xn or
n
ź

i“1

xi for
ś

A.

» If A “ txu is a singleton set, it is easy to check that
ź

txu “ x

where the morphism px : xÑ x is the identity morphism 1x. This product always exists.
» If A “ ∅ is the empty subset of Ob C , then, when it exists,

ś

∅ is called the terminal object
of C , and is typically denoted ˚ (or sometimes 1). If we carefully sort out the quantifiers
in Definition 5.1, we see that ˚ is an object in C which admits a unique morphism from
each z P Ob C . In other words, |C pz, ˚q| “ 1 for each z P Ob C . The category Set of sets
and functions has terminal object any singleton set. Similarly, Top has terminal object any
single point topological space. The category Vectk of k-vector spaces has terminal object
0 “ t0u.

We now undertake the task of identifying products in several familiar categories. We begin with
Set.

Definition 5.4. Given a family tXi | i P Iu of sets Xi (in other words, a “function" I Ñ Ob Set,
ignoring the fact that Ob Set is not a set), define the cartesian product

ą

iPI

Xi

to be the set of functions x : I Ñ
Ť

iPI Xi such that xpiq P Xi. In a cartesian product, we will
typically write xi for xpiq. An element of

Ś

iPI Xi is called a tuple, and we will frequently write
pxiq or pxiqiPI for x.

Given j P I , we define the projection pj :
Ś

iPI Xi Ñ Xj by the formula pjpxq “ xj .
12



Proposition 5.5. The cartesian product
Ś

iPI Xi along with its projection functions pi form the product
ś

iPI Xi in Set.

Proof. Given a set Z and functions fi : Z Ñ Xi for i P I , define h : Z Ñ
Ś

Xi by hpzq “ pfipzqqiPI .
Then piphpzqq “ fipzq for all i P I and all z P Z, whence pi ˝ h “ fi for all i P I . The reader may
check that the equations pi ˝ h “ fi completely specify h, so

Ś

Xi is in fact the product in Set of
the Xi. �

Remark 5.6. Now that we have proven that cartesian and categorical products are identical in Set,
we will adopt the more common notation

ś

Xi for
Ś

Xi when the Xi are sets.

Example 5.7. For k a field, the product in Vectk of k-vector spaces Vi, i P I , has underlying set
the cartesian product of the Vi with linear structure given by pviq ` pwiq “ pvi ` wiq and λpviq “
pλviq. The projection maps are usual ones. The reader may easily check the correctness of these
assertions.

Note, though, that FinVectk, the category of finite-dimensional k-vector spaces, does not have
arbitrary products. Indeed,

ś

iPI Vi exists if and only if
ř

iPI dimk Vi ă 8; in this case, the product
is the same as that for Vectk.

As we shall presently see, arbitrary products do exist in Top, the category of topological spaces
and continuous functions. Rather than leap directly to the definition/theorem (defineorem?) giving
these products, we will gradually develop the necessary concepts.

For topological spaces Xi, i P I , it is reasonable to guess that the set underlying
ś

iPI Xi is the
cartesian product of the sets underlying each Xi. If this is the case, then we need each of the
projection functions pj :

ś

Xi Ñ Xj to be continuous. For U Ď Xj , the preimage p´1j U is exactly
ś

Xi but with the Xj factor replaced by U . In other words,

p´1j U “ tpxiq | xi P Xi for i P I r tju and xj P Uu Ď
ź

Xi

is the set of tuples with j-th coordinate in U . When U is open in Xj , this set must be open in
ś

Xi.
Let

Sj “ tp
´1
j U | U Ď Xj openu

be the set of such subsets of
ś

Xi, and let

S “
ď

jPI

Sj .

Supposing that τ is the topology on
ś

Xi which we seek (i.e., the topology which will make
ś

Xi a product in Top), we see that we must have S Ď τ . Note that S is a subbasis. (Indeed,
p´1j Xj “

ś

Xi is already an element of S , and the subbasis condition only mandates that the
union of all elements of S be

ś

Xi.)
Since little else seems to be hiding in Definition 5.1, it is reasonable to guess that τ is the topology

τS generated by the subbasis S . This is in fact the case. We will develop some properties of τS
and then prove that p

ś

Xi, τS q along with the projection maps pj :
ś

Xi Ñ Xj form a product in
Top.

Proposition 5.8. For J Ď I and Uj Ď Xj open for each j P J , let U “ tUj | j P Ju and let

BU “
ź

iPI

Vi

where Vj “ Uj if j P J and Vi “ Xi if i P I r J . We will refer to J as the index subset of U . Using this
terminology, the basis B generated by S is equal to

B “ tBU | U has finite index setu.

As such, the topology generated by S consists of arbitrary unions of elements of B.
13



Remark 5.9. Note that the basis setsBU are precisely products of open subsets Ui of eachXi where
all but finitely many Ui “ Xi. Later, we will comment on box topology, a different topology on the
cartesian product of the Xi in which we permit the Ui to be arbitrary open subsets of Xi.

Proof. The basis B generated by S consists of finite intersections of sets in S . Note that

p´1j U X p´1j V “ p´1j pU X V q,

so it suffices to consider finite intersections

B “ p´1j1 Uj1 X p
´1
j2
Uj2 X ¨ ¨ ¨ X p

´1
jn
Ujn

in which the indices jk are all distinct.
A point pxiq is inB if and only if xj1 P Uj1 , xj2 P Uj2 , . . . , xjn P Ujn while the other xi are allowed

to range freely through Xi. Hence B “ BU where U “ tUj1 , . . . , Ujnu, completing our proof. �

We now come to our main theorem for this section, which identifies products in Top.

Theorem 5.10. For topological spaces Xi, i P I , the cartesian product
ś

iPI Xi equipped with the topology
τS generated by the subbasis S is the product of the Xi in Top.

Proof. We aim to prove that for any space Z and collection tfi : Z Ñ Xi | i P Iu of continuous
functions, there is a unique continuous function h : Z Ñ

ś

Xi such that the diagrams

Z

fj





h
��

ś

Xi

pj||
Xj

commute for each j P I . Given such data, define h by the formula

hpzq “ pfipzqqiPI .

In our proof of Proposition 5.5, we have already seen that h is the unique function making the
diagram commute. It remains to show that h is continuous relative to τS .

Since τS is generated by the subbasis S , it suffices to check that each of the subbasic opens
p´1j U for j P I and U Ď Xj open are taken to open subsets of Z by h´1. Since pj ˝ h “ fj , we have
h´1 ˝ p´1j “ f´1j . The function fj is continuous by hypothesis, so h´1pp´1j Uq “ f´1j U is open in Z,
as desired. �

The following theorem is really just a reinterpretation of the statement that
ś

Xi is a categorical
product in Top. In order to state it, we introduce a small amount of terminology. Given a function
(not necessarily continuous) f : Z Ñ

ś

Xi, define the component functions of f to be fi “ pi ˝ f
for i P I . Also note that given functions fi : Z Ñ Xi, i P I , Proposition 5.5 tells us that there is a
unique function f : Z Ñ

ś

Xi whose component functions are fi. (It makes no difference to call
the function f instead of h.)

Theorem 5.11. A function f : Z Ñ
ś

Xi is continuous if and only if each of its component functions
fi “ pi ˝ f is continuous.

Proof. First suppose that f is continuous. Since each pi is continuous and compositions of contin-
uous functions are continuous, we learn that fi “ pi ˝ f is continuous for each i P I .

14



Now suppose that each fi is continuous. By Proposition 5.5, f is the unique function making
fi “ pi ˝ f for each i P I , and the fact that

ś

Xi is a product in Top now guarantees that f is
continuous. �

Given Theorem 5.10, it is reasonable to make the following definition.

Definition 5.12. The topology on
ś

iPI Xi generated by the subbasis S is called the product topol-
ogy on

ś

Xi. If we make no further comment, we will always assume that
ś

Xi has been given
the product topology.

There is another, more naïve and less useful topology on
ś

Xi which we will sometimes con-
sider.

Definition 5.13. Given a cartesian product
ś

iPI Xi of topological spaces, let Bbox denote the col-
lection of sets BU (defined in Proposition 5.8) in which the index set of U is allowed to be any
subset of I . The box topology on

ś

Xi is the topology generated by this basis.

Remark 5.14. We leave it to the reader to check that Bbox is in fact a basis. Also note that we could
just as well mandate that the index set of U be all of I .

Remark 5.15. If the index set I is finite, then the box and product topologies are the same.

The following example is one of those examples that every topologist knows. You should com-
mit it to memory so that you never make the mistake of confusing the product and box topologies.

Example 5.16. Let RN denote the countably infinite product of R with itself, i.e.,

RN “
ź

nPN
R.

Let ∆ denote the diagonal function

∆ : R ÝÑ RN

t ÞÝÑ pt, t, t, . . .q.

Each component function ∆n of ∆ is the identity function 1R, hence ∆ is continuous if we give RN

the product topology.
Now consider RN with the box topology. The set

B “
ź

nPN

ˆ

´1

n` 1
,

1

n` 1

˙

“ p´1, 1q ˆ p´1{2, 1{2q ˆ p´1{3, 1{3q ˆ ¨ ¨ ¨

is an element of Bbox and hence is a box-open subset of RN. Note, though, that

∆´1B “
č

nPN

ˆ

´1

n` 1
,

1

n` 1

˙

“ t0u.

(Exercise: check that the above equalities hold!) Hence ∆´1B is not an open subset of R, and we
conclude that ∆ is not continuous relative to the box topology on RN.

We can draw the following morals from this example:
(a) The product and box topologies are in fact different topologies in general (despite the fact that

they are the same when the index set is finite). We know this because we have just seen that
they have different sets of continuous functions. From this, we can conclude that there are
instances in which the box topology is strictly finer than the product topology.

(b) The fact that the product topology makes
ś

Xi into a categorical product should convince us
of its superiority to the box topology. But even if we do not trust category theorists, continuity
of ∆ is clearly a desirable property, and we must use the product topology to guarantee this.
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6. QUOTIENTS

Recall the notion of an equivalence relation „ on a set X . Specifically, „ is a relation which is
reflexive (x „ x for all x P X), symmetric (x „ y ùñ y „ x), and transitive (x „ y, y „ z ùñ

x „ z). For instance, the relation
x „ y ðñ x´ y P Z

is an equivalence relation on R.
Given an equivalence relation „ on X , we may partition X into equivalence classes (relative to

„). The equivalence class of x P X is the set of y P X such that x „ y. Writing X{ „ for the set of
„ equivalence classes, we see that

X “
ž

APX{„

A

where > denotes disjoint union. In the case of the example from the previous paragraph, we see
that R{ „“ ta` Z | a P r0, 1qu and the partition into equivalence classes takes the form

R “
ž

aPr0,1q

a` Z.

Not wishing to be circular in our reasoning, we will postpone commenting on the topology of R{ „
until we have introduced the quotient topology and quotient spaces.

Given a partition
X “

ž

iPI

Xi

of a set X , there is an equivalence relation given by x „ y if and only if there is an index i P I such
that x, y P Xi. For this equivalence relation, X{ „“ tXi | i P Iu.

There is a natural quotient function q : X Ñ X{ „ taking x to the equivalence class of x. Note
that q is surjective. Given any surjective function p : X Ñ Y , we can partitionX into the fibers of p,
p´1tyu for y P Y . This partition yields an equivalence relation whose associated quotient function
is p. As such, we see that equivalence relations, partitions, and surjective functions are three sides
of the same hypercoin.

Now suppose that X is a topological space with an equivalence relation „ on its underlying
set. How should we topologize X{ „? Our search should be guided by the quotient map q : X Ñ

X{ „, which ought to be continuous. Consider the set

τ “ tU Ď X{ „| q´1U is open in Xu.

The reader may check that τ is a topology, and is in fact the finest topology on X{ „ such that q is
continuous. We call τ the quotient topology on X{ „.

It is not the case that every surjective continuous function p : X Ñ Y arises from an equivalence
relation on X . Indeed, the quotient map q : X Ñ X{ „ has the special property that U Ď X{ „
is open if and only if q´1U is open in X . Meanwhile, for p to be continuous, we only need that U
open in Y implies that p´1U is open in X . But this crucial distinction is the only one. If we want
to recover our hypercoin in the topological setting, we must replace “surjective function" with the
following notion of “quotient map”.

Definition 6.1. A continuous function q : X Ñ Y is a quotient map if it is surjective and U Ď Y is
open if and only if q´1U Ď X is open. If q is a quotient map, then Y is called a quotient of X or a
quotient space. If q is the quotient function of an equivalence relation „, then we will always give
Y “ X{ „ the quotient topology, the unique topology that makes q a quotient map.

Note that this is not a strictly categorical definition. While it is possible to recast quotients in
purely categorical terms, there is little benefit to doing so (at least currently), and we find the above
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derivation sufficient for our purposes. Nonetheless, it is the case that quotient maps q : X Ñ Y
satisfy a certain universal property.

Theorem 6.2. Given a quotient map q : X Ñ Y and y P Y , let Xy :“ q´1tyu denote the fiber of q over
y. Suppose f : X Ñ Z is a continuous function which is constant on Xy for each y P Y . Then there is a
unique map g : Y Ñ Z such that g ˝ q “ f . If, additionally, f is a quotient map with f´1tfpxqu “ Xqpxq

for all x P X , then g is a homeomorphism.

We may diagrammatically represent the first part of the theorem as follows:

Xy

��   
@yX

q

��
f

!!

˚

D
��

Y
D!g
// Z.

Here ˚ denotes a one point space, Xy Ñ X is the inclusion mapping, and the commutativity of the
upper right parallelogram says that f is constant on Xy (since the image of ˚ Ñ Z is necessarily
a single point). The quantifiers @y and D (on the right-hand vertical arrow) are meant to indicate
that for every y P Y there is a map ˚ Ñ Z such that the upper right parallelogram commutes,
recapitulating the hypothesis that f is constant on each fiber. In this case, there is a unique map
g : Y Ñ Z making the bottom triangle commute.

Proof of Theorem 6.2. Cf. Theorem 22.2 in Munkres for the first part of the theorem. It remains to
show that g is a homeomorphism under the additional hypotheses on f . We begin by showing
that the hypotheses of the first part of the theorem hold with f and q swapped. Since both q and
f are surjective, it is clear that the fibers of q are in bijective correspondence with the fibers of f .
Since q is constant on its own fibers, we see that it is also constant on the fibers of f . Hence there
is a unique map h : Z Ñ Y such that h ˝ f “ q.

We now check that g is a homeomorphism by proving that g ˝ h “ 1Y and h ˝ g “ 1Z . Consider
the commutative diagram

X
q

~~
f
��

q

  
Y

h
// Z g

// Y.

Thus, by the first part of the theorem (with q playing the roles of both q and f ), we see that g ˝ h is
the unique map Y Ñ Y such that pg ˝ hq ˝ q “ q. Since 1Y is a map satisfying 1Y ˝ q “ q, we learn
that g ˝ h “ 1Y . A similar argument with the commutative diagram

X
f

~~
q

��

f

  
Z g

// Y
h
// Z

shows that h ˝ g “ 1Z , concluding our proof. �

We now return to R{ „ where x „ y ðñ x ´ y P Z. Note that each equivalence class is of
the form a` Z for exactly one a P r0, 1q, and 1` Z “ Z, so it seems like R{ „ circles back on itself
when a goes past 1. This is precisely the case, as we shall now prove via Theorem 6.2.
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Let q : R Ñ R{ „ denote the quotient map, and consider f : R Ñ S1 taking a ÞÑ e2πia. Here S1

is the unit circle in C – R2 with the standard (e.g. subspace) topology. The reader may check that
f is a continuous map. The fibers of q are precisely the equivalence classes a` Z, and we see that
for b P Z, fpa ` bq “ e2πipa`bq “ e2πia. Thus f is constant on the fibers of q and we conclude that
there is a unique map g : R{ „Ñ S1 such that g ˝ q “ f .

We now check the additional hypotheses guaranteeing that g is a homeomorphism. The map
f is clearly surjective, and the reader may check that f is in fact a quotient map. (The details are
painful to write down, but more or less obvious.) Moreover, f´1tfpaqu “ a ` Z “ q´1tqpaqu for
all a P R. Thus the second part of Theorem 6.2 tells us that g is a homeomorphism; i.e. R{ „ is a
circle.

Remark 6.3. If you have seen group-theoretic quotients before, you may recognize R{ „ as R{Z
where Z is considered as a subgroup of the additive group R. If you feel comfortable with this, I
highly encourage you to do the supplementary exercises on topological groups on pp.145–146 of
Munkres.

7. FUNCTORS

Category theory tells us that in order to understand mathematical objects, we must understand
the relations (i.e. morphisms) between those objects. If categories themselves are mathematical
objects, then category theory demands that we must study how categories are related. Of course,
this is both possible and useful: a morphism of categories is called a functor.

Definition 7.1. If C and D are categories, then a functor F : C Ñ D consists of assignments
» FOb : Ob C Ñ Ob D , and
» FMor : C pa, bq Ñ C pFOba, FObbq for all a, b P Ob C

satisfying the following properties:
» FMor1a “ 1FOba for all a P Ob C , and
» FMorpg ˝ fq “ pFMorgq ˝ pFMorfq for all composable morphisms f, g P Mor C .

Remark 7.2. In practice, the distinction between FOb and FMor is obvious from context, and we
simply write Fa “ FOba when a P Ob C and Ff “ FMorf when f P Mor C . Abusing notation in
this fashion, we see that properties satisfied by F take the simpler forms:

» F1a “ 1Fa, and
» F pg ˝ fq “ pFgq ˝ pFfq.

It is nice to think of the second property as saying that F takes commutative diagrams in C to
commutative diagrams in D :

a
f //

g˝f ��

b

g

��
c

ÞÝÑ Fa
Ff //

F pg˝fq !!

Fb

Fg
��
Fc

We have encountered many functors in the past, and have even used functorial properties in
arguments. Here are a few pertinent examples.

Example 7.3. Given sets A and B and a function f : A Ñ B, recall the direct image function
f˚ : 2A Ñ 2B and preimage function f˚ : 2B Ñ 2A. You proved that these satisfied the following
compatibilities:

pg ˝ fq˚ “ g˚ ˝ f˚ and pg ˝ fq˚ “ f˚ ˝ g˚

whenever the composition of functions g ˝ f makes sense. Additionally, p1Aq˚ “ 12A “ p1Aq
˚.

Thus we may define a functor F : Set Ñ Set via FA “ 2A and Ff “ f˚, the direct image functor.
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We almost have a preimage functor G as well, given by defining GA “ 2A and Gf “ f˚, but G
“reverses the direction” of morphisms, and Gpg ˝ fq “ Gf ˝ Gg instead of Gg ˝ Gf . (In fact, the
latter composition does not even make sense in general.) Such an assignment gets a name as well.

Definition 7.4. If C and D are categories, thenG is a contravariant functor from C to D if it consists
of assignments

» G : Ob C Ñ Ob D , and
» G : C pa, bq Ñ DpGb,Gaq for all a, b P Ob C

such that
» G1a “ 1Ga for all a P Ob C , and
» Gpg ˝ fq “ Gf ˝Gg for all composable morphisms f, g P Mor C .

We writeG : C op Ñ D whenG is a contravariant functor. In contradistinction, functorsF : C Ñ D
are sometimes called covariant functors.

Clearly, the assignment G : Setop Ñ Set given by GA “ 2A, Gf “ f˚ is a contravariant functor
from Set to Set.

Remark 7.5. Secretly, C op is notation for the opposite category of C . The category C op has the same
objects and morphisms as C , but the source and target functions are swapped. The categorically
inclined reader should spend some time verifying that C op is a category, and checking that a
contravariant functor from C to D is the same thing as a covariant functor C op Ñ D .

Example 7.6. Many familiar categories C have a forgetful functor U : C Ñ Set. For instance,
the forgetful functor U : Top Ñ Set takes a space X to its underlying set UX “ X and takes a
continuous function f : X Ñ Y to the function Uf “ f : UX Ñ UY . It should be clear that this
satisfies the functor properties.

The letter U stands for underlying, and we have such a forgetful functor basically whenever the
objects in a category are sets equipped with extra structure and the morphisms of a category a
special types of functions. There are forgetful functors from groups to sets, from rings to sets,
from vector spaces to sets, etc.

There are also intermediate forgetful functors. For instance, every ring has an underlying (ad-
ditive) abelian group. Since ring homomorphisms are special types of group homomorphisms on
the underlying abelian groups, we get a forgetful functor U : Ring Ñ AbGp. If we then forget all
the way to sets, we get the bizarre equality of functors U ˝ U “ U (where each U is denoting a
different forgetful functor).

Example 7.7. Consider the category of vector spaces Vectk over a field k. Each k-vector space V
has a linear dual V _ “ VectkpV, kq (where k is given the standard k-linear structure). Each k-linear
map f : V Ñ W has a dual f_ : W_ Ñ V _ given by fpαq “ α ˝ f . It is a standard exercise in
linear algebra to check that p q_ is a functor Vectopk Ñ Vectk.

Example 7.8. The dual vector space functor is our first example of a representable functor. Given
a (locally small1) category C and object x P Ob C , there is a functor C p , xq : C op Ñ Set taking
objects a to the set of morphisms C pa, xq and morphisms f : a Ñ b to C pf, xq : C pb, xq Ñ C pa, xq
such that C pf, xqpαq “ α ˝ f . We call C p , xq the functor reprsented by x. The dual vector space
functor is the functor represented by the one-dimensional k-vector space k.

Example 7.9. The categorically inclined reader should define and investigate the corepresentable
functors C px, q for x P Ob C .

1Locally small categories are categories C for which C pa, bq is a set (as opposed to a class or some other set-theoretic
monster) for each a, b P C .
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Example 7.10. Recall that for a space X , π0X denotes the path-connected components of X . In
your homework, you will prove that π0 is a functor Top Ñ Set. The categorically inclined reader
may define the category Hot of topological spaces and homotopy classes of maps between spaces,
and then prove that π0 is the functor Hot Ñ Set corepresented by the unit interval I “ r0, 1s.

7.1. The fundamental group functor. We now turn to our motivation for introducing the lan-
guage of functors: the fundamental group functor. We have already noted that the fundamental
group depends on a choice of basepoint, so we will need to introduce a category of “topological
spaces with basepoint" in order to develop our story. We leave it as an easy exercise to the reader
to check that the following choice of objects and morphisms does indeed define a category.

Definition 7.11. The category Top˚ of based topological spaces has objects which are pairs pX,x0q
where X is a topological space and x0 P X is a point of X . A morphism pX,x0q Ñ pY, y0q in Top˚
is a continuous function f : X Ñ Y such that fpx0q “ y0.

Theorem 7.12. Given a based space pX,x0q, let π1pX,x0q denote the fundamental group ofX based at x0.
Given a based map f : pX,x0q Ñ pY, y0q, let π1f denote the assignment

π1pX,x0q ÝÑ π1pY, y0q

rγ : I Ñ Xs ÞÝÑ rf ˝ γs.

Then π1 is a functor Top˚ Ñ Gp.

Proof sketch. We must check the following:
(1) The assignment π1f : rγs ÞÑ rf ˝ γs is well-defined (i.e. it does not depend on our choice of

path homotopy class representatives).
(2) The function π1f is in fact a group homomorphism.
(3) If 1pX,x0q is the identity map, then π11pX,x0q is the identity homomorphism on π1pX,x0q.
(4) If f : pX,x0q Ñ pY, y0q and g : pY, y0q Ñ pZ, z0q are based maps, then π1pg ˝ fq “ π1g ˝ π1f .

In order to check (1), first note that pf ˝ γqp0q “ fpγp0qq “ fpx0q “ y0, and similarly pf ˝ γqp1q,
so rf ˝ γs P π1pY, y0q. Now suppose that H : γ »p γ

1. The reader may check that f ˝ H is a path
homotopy from f ˝ γ to f ˝ γ1, whence rf ˝ γs “ rf ˝ γ1s. This proves that π1f is well-defined.

To check (2), suppose that rγs and rδs are elements of π1pX,x0q. The reader may check that

pf ˝ γq ˚ pf ˝ δq “ f ˝ pγ ˚ δq,

whence π1fpγq ˚ π1fpδq “ π1fpγ ˚ δq. We conclude that π1f is a group homomorphism from
π1pX,x0q to π1pY, y0q.

The easiest of the properties, (3) holds because pπ11pX,x0qqrγs “ r1 ˝ γs “ rγs.
Finally, we check (4), which asserts that π1 respects composition of based maps. Suppose that

f : pX,x0q Ñ pY, y0q and g : pY, y0q Ñ pZ, z0q are based maps. Then

π1pg ˝ fq : rγs ÞÝÑ rpg ˝ fq ˝ γs

while
π1g ˝ π1f : rγs ÞÝÑ rg ˝ pf ˝ γqs.

Since pg ˝ fq ˝ γ “ g ˝ pf ˝ γq, we conclude that

π1pg ˝ fq “ π1g ˝ π1f.

�

20


	1. Categories
	2. Isomorphisms
	3. Binary products
	4. Monomorphisms and subobjects
	5. General products
	6. Quotients
	7. Groupoids
	8. Functors
	8.1. The fundamental group functor


