
ELLIPTIC FUNCTIONS (WEEK 13)

3. THE WEIERSTRASS ℘-FUNCTION

Following Weierstrass, we now create our first example of an elliptic function. The simplest
examples will have order 2 (the smallest possible order) and necessarily have either a single double
pole with residue zero, or two simple poles with opposite residues. Our example will have a
double pole with residue zero.

We begin with a list of desiderata and their necessary implications. We want ℘ = ℘( ;ω1, ω2) to
be elliptic with a double pole at 0 and periods ω1, ω2 ∈ C× such that ω2/ω1 /∈ R. Thus the leading
term in the Laurent series of ℘ may as well be z−2. Now ℘(z) − ℘(−z) has the same periods and
no singularity, hence is constant. Furthermore ℘(ω1/2) − ℘(−ω1/2 = 0) by ω1-periodicity of ℘, so
℘(z)− ℘(−z) = 0 for all z. We conclude that ℘ is an even function.

Addition of a constant is inconsequential, so let’s demand that ℘’s constant term is 0. Thus we
are on the hunt for a function of the form

℘(z) = z−2 + a1z
2 + a2z

4 + a3z
6 + · · ·

with periods ω1, ω2.
Let L = Zω1 + ω2. We aim to show that

℘(z) =
1

z2
+

∑
ω∈Lr{0}

(
1

(z − ω)2
− 1

ω2

)
.

This is a reasonable formula to guess: we get poles of order 2 at all points in the period lattice, and
1/ω2 is subtracted (making the summands roughly z/ω3) to guarantee uniform convergence on
compact sets. It is not obviously L-periodic (because of the −1/ω2 term), but you can show that

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
.

This function is clearly L-periodic, and you will combine this with evenness of ℘ to prove that ℘
has periods ω1, ω2 in a homework problem.

Having built up our desired properties, we will make one final definition and then state an
omnibus theorem summarizing the properties of ℘.

Definition 3.1. The k-th Eisenstein series of a lattice L is

Gk = Gk(L) =
∑

ω∈Lr{0}

1

ωk
.

Remark 3.2. If k is odd, Gk = 0.

Theorem 3.3. Let ℘ be the Weierstrass function with respect to a lattice L.
(a) The Laurent expansion of ℘, valid for 0 < |z| < min{|ω| | 0 6= ω ∈ L}, is

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2z
2n.
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(b) The functions ℘ and ℘′ satisfy the differential equation

(1) (℘′)2 = 4℘3 − g2℘− g3
where g2 = 60G4 and g3 = 140G6.

(c) If L = Zω1 + Zω2, let ω3 = ω1 + ω2 and set ei = ℘(ωi/2) for i = 1, 2, 3. Then (1) is equivalent to

(2) (℘′)2 = 4(℘− e1)(℘− e2)(℘− e3)

and the ei are distinct.

Some interpretation of (b) and (c) is in order. By (1), we know that the pair (℘(z), ℘′(z)) satisfies
the equation

y2 = 4x3 − g2x− g3
for z ∈ C. It is in fact the case that the assignment

C/L −→ {(x, y) ∈ C2 | y2 = 4x3 − g2x− g3}∗

z + L 7−→ (℘(z), ℘′(z))

is a bijection (where the ∗ indicates adding a point at∞, and L 7→ ∞). The object on the right is
an algebraic geometer’s notion of an elliptic curve, and this bijection explains the duplication of
terminology.

Furthermore, (2) says that the right-hand side has roots e1, e2, e3, giving the equivalent equation

y2 = 4(x− e1)(x− e2)(x− e3).

Since the ei are distinct, we call this equation nonsingular.

Proof of Theorem 3.3 (sketch). For (a), note that for |z| < |ω|, the summand

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z/ω)2
− 1

)
=

1

ω2

∞∑
n=1

(n+ 1)
zn

ωn

where the last equality follows from squaring the geometric series. Thus the summand is equal to
2z/ω3 + 3z2/ω4 + · · · . Reordering the summations gives the desired identity.

For (b), compare the Laurent series in question. We have

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 +O(z6)

and

℘′(z) = − 2

z3
+ 6G4z + 20G6z

3 +O(z5).

By some algebra, both (℘′(z))2 and 4℘(z)3 − g2℘(z)− g3 are of the form

4

z6
− 24G4

z2
− 80G6 +O(z2).

It follows that (℘′(z))2 − (4℘(z)3 − g2℘(z) − g3) is analytic and elliptic, hence constant. Since the
difference is O(z2), it is also equal to 0.

For (c), recall that ℘′ is odd, and suppose that z is a point of order 2 in C/L. Then z ≡ −z
(mod L), and ℘′(z) = ℘′(−z) = −℘′(z), whence ℘′(z) = 0. The order 2 points in C/L are exactly
ω1/2, ω2/2, (ω1 + ω2)/2, and (2) follows from (b). It remains to show that the ei are distinct, but
this follows because each is a double value of ℘ (since ℘′ = 0 at the corresponding z-values) and
℘ has order 2. �
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4. THE DISCRIMINANT AND j-FUNCTION

For τ ∈ h = {z ∈ C | Im z > 0}, set Lτ = Zτ + Z, the lattice with basis (τ, 1). We can turn the
Eisenstein series into functions of the variable τ ∈ h by setting

Gk(τ) = Gk(Lτ ).

For γ =

(
a b
c d

)
∈ SL2(Z), we have

Gk(τ) = Gk(Lτ )

= Gk(γLτ )

= Gk(Z(aτ + b) + Z(cτ + d))

= Gk((cτ + d)

(
aτ + b

cτ + d
Z + Z

)
)

= (cτ + d)−kGk(Lγτ )

= (cτ + d)−kGk(γτ).

Here the second to last equality follows from the elementary observation thatGk(mL) = m−kGk(L).
Summarizing, we get

Gk(γτ) = (cτ + d)kGk(τ)

for γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ h.

We now define the discriminant function
∆ : h −→ C

τ 7−→ g2(τ)3 − 27g3(τ)2

which satisfies the transformation law

∆(γτ) = (cτ + d)12∆(τ).

This permits the definition of Klein’s j-function,
j : h −→ C

τ 7−→ 1728
g2(τ)3

∆(t)

which is SL2(Z)-equivariant:
j(γτ) = j(τ).

In fact, j is a holomorphic isomorphism between X = h∗/SL2(Z) and the Riemann sphere (where
j(∞) = ∞). The space X is the moduli space of elliptic curves, and j specifies its topology and
complex structure.

5. FIELDS OF MEROMORPHIC FUNCTIONS

A Riemann surface is a space in which every point admits an open neighborhood conformally
equivalent to an open subset of C. We have been working with three primary examples: open
subsetes of C, S2, and C/L. A more exotic example is the modular surface h∗/ SL2(Z).

One way to probe a Riemann surface is to understand its functions. Presently, we will concern
ourselves with meromorphic functions on a Riemann surface X . These are the analytic functions
X → S2 which are not constant with value∞. As such, a function like z 7→ ez/z is meromorphic
on C but not on S2. (It has an essential singularity at ∞.) We may pointwise add, subtract,
multiply, and divide meromorphic functions on X (with some care, i.e., limits, in cases like 0 · ∞),
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and this gives the set K(X) of meromorphic functions on X the structure of a field. In general,
functions on compact Riemann surfaces tend to be much simpler than on non-compact surfaces,
and we will currently describe the meromorphic functions on S2 and C/L.

5.1. Functions on the Riemann sphere. Meromorphic functions on S2 = C∪{∞} are particularly
nice. First suppose that f : S2 → S2 restricts to a function f : C → C. This is our old notion of
an entire function with the additional restriction that f has a nonessential singularity at ∞. By
methods similar to one of Exam 2’s problems, we can show that such functions are polynomial.

Now suppose that f : S2 → S2 is analytic and takes the value∞ (i.e. has poles as a function on
C) at z1, . . . , zn ∈ C. If these poles have orders k1, . . . , kn, respectively, then the function

g : S2 −→ S2

z 7−→ g(z)
n∏
i=1

(z − zi)ki

is entire when restricted to C. Thus g is a polynomial function, and

f(z) =
g(z)∏n

i=1(z − zi)ki
.

This proves the following theorem.

Theorem 5.1. The field of meromorphic functions on the Riemann sphere equals the field of rational func-
tions in a single variable, i.e.,

K(S2) = C(z) = {p(z)/q(z) | p, q polynomials with coefficients in C, q 6= 0}.

5.2. Functions on elliptic curves. Fix a lattice L = Zω1 + ω2 and let ℘ = ℘( ;L) be the associ-
ated Weierstrass ℘-function. Miraculously, we only need to know ℘ in order to know all of the
meromorphic functions on C/L.

Theorem 5.2. The field K(C/L) consists of rational functions in ℘ and ℘′, i.e.,

K(C/L) = C(℘, ℘′) =

{
f(℘, ℘′)

g(℘, ℘′)

∣∣∣∣ f, g polynomials in two variable with coefficients in C, g 6= 0

}
.

Furthermore,

C(℘, ℘′) ∼= C(x, y)/(y2 = 4x3 − g2x− g3) = C(x)(
√

4x3 − g2x− g3)
the field of rational functions in two variables x, y subject to the relation y2 = 4x3 − g2x − g3 where
gi = gi(L).

First note that C(℘, ℘′) is clearly a subfield of K(C/L), and the relation

(℘′)2 = 4℘3 − g2℘− g3
of Theorem 3.3 implies the final isomorphism. What is surprising here is that every meromorphic
function on C/L can be expressed in such a fashion, and that is what we will concern ourselves
with in the following sketch.

Proof Sketch. We begin with a reduction step that will allow us to only consider the even elliptic
functions. Suppose f is meromorphic on C/L and let

f1(z) =
f(z) + f(−z)

2
, f2(z) =

f(z)− f(−z)
2℘′(z)

.

Since ℘′ is odd, both of these functions are even, and f = f1 + ℘′ · f2. As such, it suffices to prove
that the field of even meromorphic functions on C/L is C(℘).
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Suppose f : C/L → S2 is meromorphic and even. Our strategy is to produce an even mero-
morphic function ϕ on C/L which is rational in ℘ and has the same order of vanishing as f at all
points. It will then follow that f/ϕ is analytic and elliptic, and thus is constant, from which we
conclude that f = cϕ is rational in ℘ as well.

Let ν0(f) denote the order of vanishing of f near 0. The Laurent series of f about 0 takes the
form

f(z) =
∑

n≥ν0(f)

anz
n

where all powers of n are even and thus ν0(f) is even. Near ω1/2, we have a similar expansion

f(z) =
∑

n≥νω1/2
(f)

bn(z − ω1/2)n.

Define g(z) = f(z + ω/2), which is also meromorphic on C/L. This function is also even since

g(−z) = f(−z + ω1/2) = f(−z − ω1/2 + ω1) = f(−z − ω1/2) = g(z).

Thus ν0(g) is even as well. Additionally, the Laurent expansion of g about 0 is

g(z) =
∑

n≥νω1/2
(f)

bnz
n

so νω1/2(f) is even as well. Via similar arguments, νω2/2(f) and ν(ω1+ω2)/2(f) are even as well.
Let {±z1, . . . ,±zn} be the set of congruence classes of zeros or poles of f not of the form (ε1ω1 +

ε2ω2)/2 for εi = 0 or 1. (The latter classes are precisely those z for which z = −z in C/L.) Let
(C/L)[2] denote these 2-torsion points. Define ϕ by the formula

ϕ(z) =

n∏
i=1

(℘(z)− ℘(zi))
νzi (f)

∏
w∈(C/L)[2]

(℘(z)− ℘(w))νw(f)/2.

(We have seen that νw(f) is even, and this value is 0 whenw is not a zero or pole of f , in which case
the term does not contribute to the product.) Clearly, this is a rational function in ℘. Furthermore,
ϕ has the same order of vanishing as f everywhere since ℘ takes the values in W to order 2 and
takes all other values to order 1. Thus we have produced the desired ϕ and f = cϕ is rational in ℘
as well, completing the argument. �
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