ELLIPTIC FUNCTIONS (WEEK 13)

3. THE WEIERSTRASS g-FUNCTION

Following Weierstrass, we now create our first example of an elliptic function. The simplest
examples will have order 2 (the smallest possible order) and necessarily have either a single double
pole with residue zero, or two simple poles with opposite residues. Our example will have a
double pole with residue zero.

We begin with a list of desiderata and their necessary implications. We want p = p( ;wi,ws) to
be elliptic with a double pole at 0 and periods wy, w2 € C* such that wa/wi ¢ R. Thus the leading
term in the Laurent series of p may as well be 272. Now (z) — p(—z) has the same periods and
no singularity, hence is constant. Furthermore p(w;/2) — p(—w1/2 = 0) by w;-periodicity of p, so
p(z) — p(—2z) = 0 for all z. We conclude that g is an even function.

Addition of a constant is inconsequential, so let’s demand that p’s constant term is 0. Thus we
are on the hunt for a function of the form

p(2) =22+ a12® +agz* +az2® + -

with periods wy, wo.
Let L = Zwi + we. We aim to show that

=z 3 (o a)

weL~{0}

This is a reasonable formula to guess: we get poles of order 2 at all points in the period lattice, and
1/w? is subtracted (making the summands roughly z/w?) to guarantee uniform convergence on
compact sets. It is not obviously L-periodic (because of the —1/w? term), but you can show that

'(z) = -2 Z (Z_lw)g,

This function is clearly L-periodic, and you will combine this with evenness of g to prove that @
has periods wi, ws in a homework problem.

Having built up our desired properties, we will make one final definition and then state an
omnibus theorem summarizing the properties of p.

Definition 3.1. The k-th Eisenstein series of a lattice L is

Gr=Gp(L)= > %

weL~{0}
Remark 3.2. If k is odd, G, = 0.

Theorem 3.3. Let p be the Weierstrass function with respect to a lattice L.
(a) The Laurent expansion of g, valid for 0 < |z| < min{|w| | 0 #w € L}, is

1 o
p(z) = = + Z(Qn + 1)G2n+2z2”.
n=1
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(b) The functions p and ¢’ satisfy the differential equation

(1) () = 49" — 920 — g3

where go = 60G4 and g3 = 140G.
(c) If L = Zwy + Zwa, let w3 = wy + wo and set e; = p(w;/2) for i = 1,2, 3. Then (1) is equivalent to
) (9')? = 4(p — e1)(p — ea)(p — e3)

and the e; are distinct.

Some interpretation of (b) and (c) is in order. By (1), we know that the pair (p(z), p'(z)) satisfies
the equation

Yy’ =4a” — gox — g3
for z € C. It is in fact the case that the assignment
C/L — {(z,y) € C* | y* = 42° — gox — g3}"
2+ L— (p(2), 9'(2))
is a bijection (where the * indicates adding a point at co, and L — oc). The object on the right is
an algebraic geometer’s notion of an elliptic curve, and this bijection explains the duplication of

terminology.
Furthermore, (2) says that the right-hand side has roots e1, ez, €3, giving the equivalent equation

v = 4(x —e1)(x — e2)(x — e3).

Since the e; are distinct, we call this equation nonsingular.

Proof of Theorem |3.3| (sketch). For (a), note that for |z| < |w|, the summand

1 1 1 1 1 & 2"
(z—w)? w? w? ((1—z/w)2 ) w? ;( )w"

where the last equality follows from squaring the geometric series. Thus the summand is equal to
2z /w3 + 32%/wt + - - .. Reordering the summations gives the desired identity.
For (b), compare the Laurent series in question. We have

1
p(2) = = + 3G42% + 5Gs2t + 0(2°)

and
o' (z) = —% + 6G4z + 20G62° + O(2°).

By some algebra, both (p/(2))? and 4¢p(2)% — gap(2) — g3 are of the form

424G

; — 74 — 80G6 + 0(22).

It follows that (p'(2))? — (49(2)3 — g2p(2) — g3) is analytic and elliptic, hence constant. Since the
difference is O(z?), it is also equal to 0.

For (c), recall that ¢’ is odd, and suppose that z is a point of order 2 in C/L. Then z = —=z
(mod L), and ¢'(z) = ¢/(—z) = —¢'(z), whence ¢/(z) = 0. The order 2 points in C/L are exactly
w1/2,w2/2, (w1 + w2)/2, and @ follows from (b). It remains to show that the e; are distinct, but
this follows because each is a double value of p (since ' = 0 at the corresponding z-values) and

o has order 2. O
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4. THE DISCRIMINANT AND j-FUNCTION

Forr e h={z € C|Imz > 0}, set L; = Z7 + Z, the lattice with basis (7,1). We can turn the
Eisenstein series into functions of the variable 7 € h by setting

For v = <CCL Z) € SLy(Z), we have

Gk(T) = Gk:(L‘r)
= Gr(vLr)
= Gi(Z(aT +b) + Z(cT + d))

= Gi((er +d) (:::LLZZ + Z))

= (e1 +d) *Gx(Lyr)
= (er +d)*Gr(y7).

Here the second to last equality follows from the elementary observation that G (mL) = m~*Gy,(L).
Summarizing, we get

Gr(y7) = (e7 + d)*Gi(7)

fory = (Z Z) € SLy(Z) and T € b.
We now define the discriminant function

A:p—C
T ga(7)? = 27g3(7)?
which satisfies the transformation law
A(y7) = (e + d)2A(7).
This permits the definition of Klein's j-function,
j:p—C

g2(7)?

172
T —> 78A(t)

which is SLy(Z)-equivariant:

i) = 3(7).
In fact, j is a holomorphic isomorphism between X = h*/SLy(Z) and the Riemann sphere (where
j(oco) = o0). The space X is the moduli space of elliptic curves, and j specifies its topology and
complex structure.

5. FIELDS OF MEROMORPHIC FUNCTIONS

A Riemann surface is a space in which every point admits an open neighborhood conformally
equivalent to an open subset of C. We have been working with three primary examples: open
subsetes of C, 52, and C/L. A more exotic example is the modular surface h*/ SLy(Z).

One way to probe a Riemann surface is to understand its functions. Presently, we will concern
ourselves with meromorphic functions on a Riemann surface X. These are the analytic functions
X — 82 which are not constant with value co. As such, a function like z + /2 is meromorphic
on C but not on S2. (It has an essential singularity at co.) We may pointwise add, subtract,
multiply, and divide meromorphic functions on X (with some care, i.e., limits, in cases like 0 - c0),
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and this gives the set K (X) of meromorphic functions on X the structure of a field. In general,
functions on compact Riemann surfaces tend to be much simpler than on non-compact surfaces,
and we will currently describe the meromorphic functions on S? and C/L.

5.1. Functions on the Riemann sphere. Meromorphic functions on $? = CU{oc} are particularly
nice. First suppose that f : 5? — S? restricts to a function f : C — C. This is our old notion of
an entire function with the additional restriction that f has a nonessential singularity at co. By
methods similar to one of Exam 2’s problems, we can show that such functions are polynomial.
Now suppose that f : S* — S? is analytic and takes the value oo (i.e. has poles as a function on

C) at 21, ..., z, € C. If these poles have orders k1, . .., k,, respectively, then the function
g:5% — 52
z > g(2) H(z — z;)ki
i=1

is entire when restricted to C. Thus ¢ is a polynomial function, and

_ 9(2)
fz) = [T (z = =)k

This proves the following theorem.

Theorem 5.1. The field of meromorphic functions on the Riemann sphere equals the field of rational func-
tions in a single variable, i.e.,

K(S?) = C(2) = {p(2)/q(2) | p, q polynomials with coefficients in C, ¢ # 0}.

5.2. Functions on elliptic curves. Fix a lattice L = Zw; + wy and let p = p( ; L) be the associ-
ated Weierstrass p-function. Miraculously, we only need to know g in order to know all of the
meromorphic functions on C/L.

Theorem 5.2. The field K (C/L) consists of rational functions in p and ¢', i.e.,
flp. ¢/
K(C/D) = Clo. o) = { 12

9(p, ')
Furthermore,

f, g polynomials in two variable with coefficients in C, g # 0} .

Cp, ¢') = Cla,y)/(y* = 42 — gox — g3) = C(2)(V/4a® — go — g3)
the field of rational functions in two variables x,y subject to the relation y* = 4a® — gox — g3 where
9i = gi(L).
First note that C(p, ¢') is clearly a subfield of K(C/L), and the relation

(¢)* = 4¢° — gap — g3
of Theorem 3.3|implies the final isomorphism. What is surprising here is that every meromorphic

function on C/L can be expressed in such a fashion, and that is what we will concern ourselves
with in the following sketch.

Proof Sketch. We begin with a reduction step that will allow us to only consider the even elliptic
functions. Suppose f is meromorphic on C/L and let

_f) + f(=2) _fz) = f(=2)
fl(z)_ 92 ) fQ(Z) - QQ/(Z) :
Since ¢’ is odd, both of these functions are even, and f = f; + ¢’ - f2. As such, it suffices to prove

that the field of even meromorphic functions on C/L is C(p).
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Suppose f : C/L — S? is meromorphic and even. Our strategy is to produce an even mero-
morphic function ¢ on C/L which is rational in p and has the same order of vanishing as f at all
points. It will then follow that f/ is analytic and elliptic, and thus is constant, from which we
conclude that f = cyp is rational in p as well.

Let vy(f) denote the order of vanishing of f near 0. The Laurent series of f about 0 takes the

form
f(z) = Z anz"
n>vo(f)
where all powers of n are even and thus v (f) is even. Near w; /2, we have a similar expansion

f)= > balz—wi/2)™
n>vy, s2(f)
Define ¢g(z) = f(z + w/2), which is also meromorphic on C/L. This function is also even since
9(=2) = f(—z+w1/2) = f(—z —w1/2+ w1) = f(—2 —w1/2) = g(2).
Thus 14(g) is even as well. Additionally, the Laurent expansion of g about 0 is

g(z) = Z b 2"

TLZle /2 (f)
0 v, /2(f) is even as well. Via similar arguments, v,,,, 5(f) and v(,,, 1u.,)/2(f) are even as well.
Let {£z21,...,£2,} be the set of congruence classes of zeros or poles of f not of the form (e;w; +
gaws)/2 for e; = 0 or 1. (The latter classes are precisely those z for which z = —z in C/L.) Let

(C/L)[2] denote these 2-torsion points. Define ¢ by the formula
o2) = TT(0(2) — o= [ (o(e) = ol

i=1 we(C/L)[2)

(We have seen that v, ( f) is even, and this value is 0 when w is not a zero or pole of f, in which case
the term does not contribute to the product.) Clearly, this is a rational function in p. Furthermore,
¢ has the same order of vanishing as f everywhere since p takes the values in W to order 2 and
takes all other values to order 1. Thus we have produced the desired ¢ and f = cy is rational in p
as well, completing the argument. O
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