ELLIPTIC FUNCTIONS (WEEK 13)

3. THE WEIERSTRASS \wp-FUNCTION

Following Weierstrass, we now create our first example of an elliptic function. The simplest examples will have order 2 (the smallest possible order) and necessarily have either a single double pole with residue zero, or two simple poles with opposite residues. Our example will have a double pole with residue zero.

We begin with a list of desiderata and their necessary implications. We want $\wp=\wp\left(; \omega_{1}, \omega_{2}\right)$ to be elliptic with a double pole at 0 and periods $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$such that $\omega_{2} / \omega_{1} \notin \mathbb{R}$. Thus the leading term in the Laurent series of \wp may as well be z^{-2}. Now $\wp(z)-\wp(-z)$ has the same periods and no singularity, hence is constant. Furthermore $\wp\left(\omega_{1} / 2\right)-\wp\left(-\omega_{1} / 2=0\right)$ by ω_{1}-periodicity of \wp, so $\wp(z)-\wp(-z)=0$ for all z. We conclude that \wp is an even function.

Addition of a constant is inconsequential, so let's demand that $\wp^{\prime} s$ constant term is 0 . Thus we are on the hunt for a function of the form

$$
\wp(z)=z^{-2}+a_{1} z^{2}+a_{2} z^{4}+a_{3} z^{6}+\cdots
$$

with periods ω_{1}, ω_{2}.
Let $L=\mathbb{Z} \omega_{1}+\omega_{2}$. We aim to show that

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in L \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

This is a reasonable formula to guess: we get poles of order 2 at all points in the period lattice, and $1 / \omega^{2}$ is subtracted (making the summands roughly z / ω^{3}) to guarantee uniform convergence on compact sets. It is not obviously L-periodic (because of the $-1 / \omega^{2}$ term), but you can show that

$$
\wp^{\prime}(z)=-2 \sum_{\omega \in L} \frac{1}{(z-\omega)^{3}}
$$

This function is clearly L-periodic, and you will combine this with evenness of \wp to prove that \wp has periods ω_{1}, ω_{2} in a homework problem.

Having built up our desired properties, we will make one final definition and then state an omnibus theorem summarizing the properties of \wp.

Definition 3.1. The k-th Eisenstein series of a lattice L is

$$
G_{k}=G_{k}(L)=\sum_{\omega \in L \backslash\{0\}} \frac{1}{\omega^{k}}
$$

Remark 3.2. If k is odd, $G_{k}=0$.
Theorem 3.3. Let \wp be the Weierstrass function with respect to a lattice L.
(a) The Laurent expansion of \wp, valid for $0<|z|<\min \{|\omega| \mid 0 \neq \omega \in L\}$, is

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n=1}^{\infty}(2 n+1) G_{2 n+2} z^{2 n}
$$

(b) The functions \wp and \wp^{\prime} satisfy the differential equation

$$
\begin{equation*}
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3} \tag{1}
\end{equation*}
$$

where $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$.
(c) If $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, let $\omega_{3}=\omega_{1}+\omega_{2}$ and set $e_{i}=\wp\left(\omega_{i} / 2\right)$ for $i=1,2,3$. Then (1) is equivalent to

$$
\begin{equation*}
\left(\wp^{\prime}\right)^{2}=4\left(\wp-e_{1}\right)\left(\wp-e_{2}\right)\left(\wp-e_{3}\right) \tag{2}
\end{equation*}
$$

and the e_{i} are distinct.
Some interpretation of (b) and (c) is in order. By (1), we know that the pair $\left(\wp(z), \wp^{\prime}(z)\right)$ satisfies the equation

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

for $z \in \mathbb{C}$. It is in fact the case that the assignment

$$
\begin{aligned}
\mathbb{C} / L & \longrightarrow\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=4 x^{3}-g_{2} x-g_{3}\right\}^{*} \\
z+L & \longmapsto\left(\wp(z), \wp^{\prime}(z)\right)
\end{aligned}
$$

is a bijection (where the * indicates adding a point at ∞, and $L \mapsto \infty$). The object on the right is an algebraic geometer's notion of an elliptic curve, and this bijection explains the duplication of terminology.

Furthermore, (2) says that the right-hand side has roots e_{1}, e_{2}, e_{3}, giving the equivalent equation

$$
y^{2}=4\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) .
$$

Since the e_{i} are distinct, we call this equation nonsingular.
Proof of Theorem 3.3 (sketch). For (a), note that for $|z|<|\omega|$, the summand

$$
\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}=\frac{1}{\omega^{2}}\left(\frac{1}{(1-z / \omega)^{2}}-1\right)=\frac{1}{\omega^{2}} \sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\omega^{n}}
$$

where the last equality follows from squaring the geometric series. Thus the summand is equal to $2 z / \omega^{3}+3 z^{2} / \omega^{4}+\cdots$. Reordering the summations gives the desired identity.

For (b), compare the Laurent series in question. We have

$$
\wp(z)=\frac{1}{z^{2}}+3 G_{4} z^{2}+5 G_{6} z^{4}+O\left(z^{6}\right)
$$

and

$$
\wp^{\prime}(z)=-\frac{2}{z^{3}}+6 G_{4} z+20 G_{6} z^{3}+O\left(z^{5}\right) .
$$

By some algebra, both $\left(\wp^{\prime}(z)\right)^{2}$ and $4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}$ are of the form

$$
\frac{4}{z^{6}}-\frac{24 G_{4}}{z^{2}}-80 G_{6}+O\left(z^{2}\right)
$$

It follows that $\left(\wp^{\prime}(z)\right)^{2}-\left(4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}\right)$ is analytic and elliptic, hence constant. Since the difference is $O\left(z^{2}\right)$, it is also equal to 0 .

For (c), recall that \wp^{\prime} is odd, and suppose that z is a point of order 2 in \mathbb{C} / L. Then $z \equiv-z$ $(\bmod L)$, and $\wp^{\prime}(z)=\wp^{\prime}(-z)=-\wp^{\prime}(z)$, whence $\wp^{\prime}(z)=0$. The order 2 points in \mathbb{C} / L are exactly $\omega_{1} / 2, \omega_{2} / 2,\left(\omega_{1}+\omega_{2}\right) / 2$, and (2) follows from (b). It remains to show that the e_{i} are distinct, but this follows because each is a double value of \wp (since $\wp^{\prime}=0$ at the corresponding z-values) and \wp has order 2 .

4. THE DISCRIMINANT AND j-FUNCTION

For $\tau \in \mathfrak{h}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$, set $L_{\tau}=\mathbb{Z} \tau+\mathbb{Z}$, the lattice with basis $(\tau, 1)$. We can turn the Eisenstein series into functions of the variable $\tau \in \mathfrak{h}$ by setting

$$
G_{k}(\tau)=G_{k}\left(L_{\tau}\right)
$$

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\begin{aligned}
G_{k}(\tau) & =G_{k}\left(L_{\tau}\right) \\
& =G_{k}\left(\gamma L_{\tau}\right) \\
& =G_{k}(\mathbb{Z}(a \tau+b)+\mathbb{Z}(c \tau+d)) \\
& =G_{k}\left((c \tau+d)\left(\frac{a \tau+b}{c \tau+d} \mathbb{Z}+\mathbb{Z}\right)\right) \\
& =(c \tau+d)^{-k} G_{k}\left(L_{\gamma \tau}\right) \\
& =(c \tau+d)^{-k} G_{k}(\gamma \tau) .
\end{aligned}
$$

Here the second to last equality follows from the elementary observation that $G_{k}(m L)=m^{-k} G_{k}(L)$. Summarizing, we get

$$
G_{k}(\gamma \tau)=(c \tau+d)^{k} G_{k}(\tau)
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathfrak{h}$.
We now define the discriminant function

$$
\begin{aligned}
\Delta: \mathfrak{h} & \longrightarrow \mathbb{C} \\
\tau & \longmapsto g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}
\end{aligned}
$$

which satisfies the transformation law

$$
\Delta(\gamma \tau)=(c \tau+d)^{12} \Delta(\tau)
$$

This permits the definition of Klein's j-function,

$$
\begin{aligned}
j: \mathfrak{h} & \longrightarrow \mathbb{C} \\
\tau & \longmapsto 1728 \frac{g_{2}(\tau)^{3}}{\Delta(t)}
\end{aligned}
$$

which is $\mathrm{SL}_{2}(\mathbb{Z})$-equivariant:

$$
j(\gamma \tau)=j(\tau) .
$$

In fact, j is a holomorphic isomorphism between $X=\mathfrak{h}^{*} / \mathrm{SL}_{2}(\mathbb{Z})$ and the Riemann sphere (where $j(\infty)=\infty)$. The space X is the moduli space of elliptic curves, and j specifies its topology and complex structure.

5. Fields of meromorphic functions

A Riemann surface is a space in which every point admits an open neighborhood conformally equivalent to an open subset of \mathbb{C}. We have been working with three primary examples: open subsetes of \mathbb{C}, S^{2}, and \mathbb{C} / L. A more exotic example is the modular surface $\mathfrak{h}^{*} / \mathrm{SL}_{2}(\mathbb{Z})$.

One way to probe a Riemann surface is to understand its functions. Presently, we will concern ourselves with meromorphic functions on a Riemann surface X. These are the analytic functions $X \rightarrow S^{2}$ which are not constant with value ∞. As such, a function like $z \mapsto e^{z} / z$ is meromorphic on \mathbb{C} but not on S^{2}. (It has an essential singularity at ∞.) We may pointwise add, subtract, multiply, and divide meromorphic functions on X (with some care, i.e., limits, in cases like $0 \cdot \infty$),
and this gives the set $K(X)$ of meromorphic functions on X the structure of a field. In general, functions on compact Riemann surfaces tend to be much simpler than on non-compact surfaces, and we will currently describe the meromorphic functions on S^{2} and \mathbb{C} / L.
5.1. Functions on the Riemann sphere. Meromorphic functions on $S^{2}=\mathbb{C} \cup\{\infty\}$ are particularly nice. First suppose that $f: S^{2} \rightarrow S^{2}$ restricts to a function $f: \mathbb{C} \rightarrow \mathbb{C}$. This is our old notion of an entire function with the additional restriction that f has a nonessential singularity at ∞. By methods similar to one of Exam 2's problems, we can show that such functions are polynomial.

Now suppose that $f: S^{2} \rightarrow S^{2}$ is analytic and takes the value ∞ (i.e. has poles as a function on \mathbb{C}) at $z_{1}, \ldots, z_{n} \in \mathbb{C}$. If these poles have orders k_{1}, \ldots, k_{n}, respectively, then the function

$$
\begin{aligned}
& g: S^{2} \longrightarrow S^{2} \\
& z \longmapsto g(z) \prod_{i=1}^{n}\left(z-z_{i}\right)^{k_{i}}
\end{aligned}
$$

is entire when restricted to \mathbb{C}. Thus g is a polynomial function, and

$$
f(z)=\frac{g(z)}{\prod_{i=1}^{n}\left(z-z_{i}\right)^{k_{i}}} .
$$

This proves the following theorem.
Theorem 5.1. The field of meromorphic functions on the Riemann sphere equals the field of rational functions in a single variable, i.e.,

$$
K\left(S^{2}\right)=\mathbb{C}(z)=\{p(z) / q(z) \mid p, q \text { polynomials with coefficients in } \mathbb{C}, q \neq 0\} .
$$

5.2. Functions on elliptic curves. Fix a lattice $L=\mathbb{Z} \omega_{1}+\omega_{2}$ and let $\wp=\wp(; L)$ be the associated Weierstrass \wp-function. Miraculously, we only need to know \wp in order to know all of the meromorphic functions on \mathbb{C} / L.

Theorem 5.2. The field $K(\mathbb{C} / L)$ consists of rational functions in \wp and \wp^{\prime}, i.e.,

$$
K(\mathbb{C} / L)=\mathbb{C}\left(\wp, \wp^{\prime}\right)=\left\{\left.\frac{f\left(\wp, \wp^{\prime}\right)}{g\left(\wp, \wp^{\prime}\right)} \right\rvert\, f, g \text { polynomials in two variable with coefficients in } \mathbb{C}, g \neq 0\right\} .
$$

Furthermore,

$$
\mathbb{C}\left(\wp, \wp^{\prime}\right) \cong \mathbb{C}(x, y) /\left(y^{2}=4 x^{3}-g_{2} x-g_{3}\right)=\mathbb{C}(x)\left(\sqrt{4 x^{3}-g_{2} x-g_{3}}\right)
$$

the field of rational functions in two variables x, y subject to the relation $y^{2}=4 x^{3}-g_{2} x-g_{3}$ where $g_{i}=g_{i}(L)$.

First note that $\mathbb{C}\left(\wp, \wp^{\prime}\right)$ is clearly a subfield of $K(\mathbb{C} / L)$, and the relation

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}
$$

of Theorem 3.3 implies the final isomorphism. What is surprising here is that every meromorphic function on \mathbb{C} / L can be expressed in such a fashion, and that is what we will concern ourselves with in the following sketch.

Proof Sketch. We begin with a reduction step that will allow us to only consider the even elliptic functions. Suppose f is meromorphic on \mathbb{C} / L and let

$$
f_{1}(z)=\frac{f(z)+f(-z)}{2}, \quad f_{2}(z)=\frac{f(z)-f(-z)}{2 \wp^{\prime}(z)} .
$$

Since \wp^{\prime} is odd, both of these functions are even, and $f=f_{1}+\wp^{\prime} \cdot f_{2}$. As such, it suffices to prove that the field of even meromorphic functions on \mathbb{C} / L is $\mathbb{C}(\wp)$.

Suppose $f: \mathbb{C} / L \rightarrow S^{2}$ is meromorphic and even. Our strategy is to produce an even meromorphic function φ on \mathbb{C} / L which is rational in \wp and has the same order of vanishing as f at all points. It will then follow that f / φ is analytic and elliptic, and thus is constant, from which we conclude that $f=c \varphi$ is rational in \wp as well.

Let $\nu_{0}(f)$ denote the order of vanishing of f near 0 . The Laurent series of f about 0 takes the form

$$
f(z)=\sum_{n \geq \nu_{0}(f)} a_{n} z^{n}
$$

where all powers of n are even and thus $\nu_{0}(f)$ is even. Near $\omega_{1} / 2$, we have a similar expansion

$$
f(z)=\sum_{n \geq \nu_{\omega_{1} / 2}(f)} b_{n}\left(z-\omega_{1} / 2\right)^{n} .
$$

Define $g(z)=f(z+\omega / 2)$, which is also meromorphic on \mathbb{C} / L. This function is also even since

$$
g(-z)=f\left(-z+\omega_{1} / 2\right)=f\left(-z-\omega_{1} / 2+\omega_{1}\right)=f\left(-z-\omega_{1} / 2\right)=g(z) .
$$

Thus $\nu_{0}(g)$ is even as well. Additionally, the Laurent expansion of g about 0 is

$$
g(z)=\sum_{n \geq \nu_{\omega_{1} / 2}(f)} b_{n} z^{n}
$$

so $\nu_{\omega_{1} / 2}(f)$ is even as well. Via similar arguments, $\nu_{\omega_{2} / 2}(f)$ and $\nu_{\left(\omega_{1}+\omega_{2}\right) / 2}(f)$ are even as well.
Let $\left\{ \pm z_{1}, \ldots, \pm z_{n}\right\}$ be the set of congruence classes of zeros or poles of f not of the form $\left(\varepsilon_{1} \omega_{1}+\right.$ $\left.\varepsilon_{2} \omega_{2}\right) / 2$ for $\varepsilon_{i}=0$ or 1 . (The latter classes are precisely those z for which $z=-z$ in \mathbb{C} / L.) Let $(\mathbb{C} / L)[2]$ denote these 2 -torsion points. Define φ by the formula

$$
\varphi(z)=\prod_{i=1}^{n}\left(\wp(z)-\wp\left(z_{i}\right)\right)^{\nu_{z_{i}}(f)} \prod_{w \in(\mathbb{C} / L)[2]}(\wp(z)-\wp(w))^{\nu_{w}(f) / 2} .
$$

(We have seen that $\nu_{w}(f)$ is even, and this value is 0 when w is not a zero or pole of f, in which case the term does not contribute to the product.) Clearly, this is a rational function in \wp. Furthermore, φ has the same order of vanishing as f everywhere since \wp takes the values in W to order 2 and takes all other values to order 1 . Thus we have produced the desired φ and $f=c \varphi$ is rational in \wp as well, completing the argument.

