ELLIPTIC FUNCTIONS (WEEK 12)

Elliptic functions are doubly periodic meromorphic functions. By doubly periodic, we mean that there are $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$such that $f\left(z+\omega_{1}\right)=f(z)=f\left(z+\omega_{2}\right)$ for all $z \in \mathbb{C}$. If we assume that $\omega_{2} / \omega_{1} \notin \mathbb{R}$, then the set $L=\left\{m \omega_{1}+n \omega_{2} \mid m, n \in \mathbb{Z}\right\}$ is a lattice in \mathbb{C} : a rank 2 free Abelian subgroup of $(\mathbb{C},+)$. Let \mathbb{C} / L denote the corresponding quotient group. Topologically, \mathbb{C} / L is a torus, and with its complex structure it is an elliptic curve. ${ }_{-1}^{1}$ If f is an elliptic function with period lattice L, then it extends across the quotient map $\mathbb{C} \rightarrow \mathbb{C} / L$ to become a function on the elliptic curve \mathbb{C} / L. One way to understand a geometric object is by its functions, whence the importance of elliptic functions.

These notes will closely follow the development of elliptic functions in Chapter 7 of Lars Ahlfors' classic text, Complex Analysis; some of the later portions draw from notes by Jerry Shurman.

1. Singly PERIODIC FUNCTIONS

We should walk before we run, so let's first consider singly periodic functions, i.e., meromorphic functions f for which there exists $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$. We have seen examples before: the exponential function has period $2 \pi i$, and \sin and \cos have period 2π.

Fix $\omega \in \mathbb{C}^{\times}$and suppose $\Omega \subseteq \mathbb{C}$ is an open set which is closed under addition and subtraction of ω : if $z \in \Omega$, then $z \pm \omega \in \Omega$. It follows by induction that $\Omega=\Omega+\mathbb{Z} \omega$. Examples of such regions include \mathbb{C} and an "open strip" parallel to ω. To better describe this open strip, transform it by dividing by ω. This has the effect of scaling by $1 /|\omega|$ and rotating so that the strip is now parallel to the real axis. Thus the strip is determined by real numbers $a<b$ such that $a<\operatorname{Im}(2 \pi z / \omega)<b$ for all z in the strip. (The 2π is a convenient normalization factor, as we shall shortly see.)

The function $z \mapsto \zeta=e^{2 \pi i z / \omega}$ is ω-periodic. If we plug Ω into it, we get an open set in the ζ-plane. If $\Omega=\mathbb{C}$, the result is \mathbb{C}^{\times}. If Ω is the strip given by $a<\operatorname{Im}(2 \pi z / \omega)<b$, the result is the annulus $e^{-b}<|\zeta|<e^{-a}$. (This follows because $e^{2 \pi i z / \omega}=e^{-\operatorname{Im}(2 \pi z / \omega} e^{i \operatorname{Re}(2 \pi z / \omega)}$.)

Proposition 1.1. Suppose that f is meromorphic and ω-periodic on Ω. Then there exists a unique function F on $\Omega^{\prime}=e^{2 \pi i \Omega / \omega}$ such that

$$
\begin{equation*}
f(z)=F\left(e^{2 \pi i z / \omega}\right) \tag{1}
\end{equation*}
$$

Proof. To determine $F(\zeta)$, first note that $\zeta=e^{2 \pi i z / \omega}$ for some $z \in \Omega$, and that z is unique up to addition of an integer-multiple of ω. Since f is ω-periodic, the formula $F(\zeta)=f(z)$ is well-defined, and it is clearly meromorphic in Ω^{\prime}. Uniqueness follows from noting that when F is meromorphic on Ω^{\prime}, equation (1) defines a function f meromorphic on Ω with period ω.

Now suppose that Ω^{\prime} contains an annulus $r<|\zeta|<R$ on which F has is analytic. On this annulus, F has a Laurent series

$$
F(\zeta)=\sum_{n=-\infty}^{\infty} c_{n} \zeta^{n}
$$

whence

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n z / \omega}
$$

[^0]This is the complex Fourier series for f in the strip $-\log (R)<\operatorname{Im}(2 \pi z / \omega)<-\log r$.
By old formulae, we know that for $r<s<R$,

$$
c_{n}=\frac{1}{2 \pi i} \int_{|\zeta|=s} \frac{F(\zeta)}{\zeta^{n+1}} d \zeta
$$

which, by change of variables, is equivalent to

$$
c_{n}=\frac{1}{\omega} \int_{d}^{d+\omega} f(z) e^{-2 \pi i n z / \omega} d z .
$$

Here d is an arbitrary point in the strip corresponding to the annulus, and the integration is along any path from d to $d+\omega$ which remains in the strip. (You will verify the final details of this in your homework.) We have thus proven the following result.

Theorem 1.2. Suppose f is meromorphic and ω-periodic on an open set $\Omega \subseteq \mathbb{C}$ and is analytic on the strip given by $a<\operatorname{Im}(2 \pi z / \omega)<b$. Then

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n z / \omega}
$$

for z in the strip, and

$$
c_{n}=\frac{1}{\omega} \int_{d}^{d+\omega} f(z) e^{-2 \pi i n z / \omega} d z
$$

for d in the strip and the integration along any path from d to $d+\omega$ in the strip. If f is analytic on \mathbb{C}, then the Fourier series is valid on \mathbb{C} as well.

2. Doubly periodic functions

An elliptic function is a meromorphic function on the plane with two periods, $\omega_{1}, \omega_{2} \in \mathbb{C}$ such that $\omega_{2} / \omega_{1} \notin \mathbb{R}$. The significance of the final condition is that one of the periods is not a real scaling of the other. This has the effect of making $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ a rank 2 free Abelian group inside $(\mathbb{C},+)$, as we shall currently show.
2.1. The period lattice. For the moment, forget the condition on ω_{2} / ω_{1} and just suppose that $f\left(z+\omega_{1}\right)=f(z)=f\left(z+\omega_{2}\right)$ for all $z \in \mathbb{C}$. Let $M:=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ denote the period module of f.
Proposition 2.1. If f is not constant with periods $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$, then $M=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is discrete.
Proof. Since $f(\omega)=f(0)$ for all $\omega \in M$, the existence of an accumulation point in M would imply that f is constant (by the Identity Theorem).
Theorem 2.2. A discrete subgroup A of $(\mathbb{C},+)$ is either
(0) $\operatorname{rank} 0: A=\{0\}$,
(1) rank 1: $A=\mathbb{Z} \omega$ for some $\omega \in \mathbb{C}^{\times}$, or
(2) rank 2: $A=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ for some $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$with $\omega_{2} / \omega_{1} \notin \mathbb{R}$.

Proof. We may assume that $A \neq\{0\}$. Take $r>0$ such that $\bar{D}_{r}(0) \cap A$ contains more than just 0 . Since $\bar{D}_{r}(0)$ is compact and A is discrete, the intersection contains only finitely many points. Choose one with minimum nonzero modulus and call it ω_{1}. (You can check that there are always exactly two, four, or six points in A closest to 0 .) Then $\mathbb{Z} \omega_{1} \subseteq A$.

If $A=\mathbb{Z} \omega_{1}$, we are in case (1) and done. Suppose there exists $\omega \in A \backslash \mathbb{Z} \omega_{1}$. Among all such ω, there exists one, ω_{2}, of smallest modulus. Suppose for contradiction that $\omega_{2} / \omega_{1} \in \mathbb{R}$. Then we could find an integer n such that $n<\omega_{2} / \omega_{1}<n+1$. It would follow that $\left|n \omega_{1}-\omega_{2}\right|<\left|\omega_{1}\right|$, a contradiction.

We now aim to show that $A=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$. We claim that every $z \in \mathbb{C}$ may be written as $z=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ with $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. To see this, we attempt to solve the equations

$$
\begin{aligned}
& z=\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2} \\
& \bar{z}=\lambda_{1} \bar{\omega}_{1}+\lambda_{2} \bar{\omega}_{2} .
\end{aligned}
$$

The determinant $\omega_{1} \bar{\omega}_{2}-\omega_{2} \bar{\omega}_{1} \neq 0$ (otherwise ω_{2} / ω_{1} is real) and thus the system has a unique solution $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$. But clearly $\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}\right)$ is a solution as well, so $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$, as desired.

Now choose integers m_{1}, m_{2} such that $\left|\lambda_{1}-m_{1}\right| \leq 1 / 2$ and $\left|\lambda_{2}-m_{2}\right| \leq 1 / 2$. If $z \in A$, then $z^{\prime}=z-m_{1} \omega_{1}-m_{2} \omega_{2} \in A$ as well. Thus $\left|z^{\prime}\right|<\frac{1}{2}\left|\omega_{1}\right|+\frac{1}{2}\left|\omega_{2}\right| \leq\left|\omega_{2}\right|$. (The first inequality is strict since ω_{2} is not a real multiple of ω_{1}.) Since ω_{2} has minimal modulus in $A \backslash \mathbb{Z} \omega_{1}$, we learn that $z^{\prime} \in \mathbb{Z} \omega_{1}$, say $z^{\prime}=n \omega_{1}$. Thus $z=\left(m_{1}+n\right) \omega_{1}+m_{2} \omega_{2} \in \mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, and we conclude that $A=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$.
2.2. The modular group. From now on, we assume that the period lattice has rank 2. Any pair (ω_{1}, ω_{2}) such that $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is called a basis of L (and necessarily satisfies $\omega_{2} / \omega_{1} \notin \mathbb{R}$).

Suppose that $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ is another basis of L. Then there exist $a, b, c, d \in \mathbb{Z}$ such that

$$
\begin{aligned}
\omega_{1}^{\prime} & =a \omega_{1}+b \omega_{2} \\
\omega_{2}^{\prime} & =c \omega_{1}+d \omega_{2} .
\end{aligned}
$$

In matrix form, this is

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\omega_{1}}{\omega_{2}} .
$$

The same relation is valid for the complex conjugates, so

$$
\left(\begin{array}{cc}
\omega_{1}^{\prime} & \bar{\omega}_{1}^{\prime} \\
\omega_{2}^{\prime} & \bar{\omega}_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right) .
$$

Since $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ is also a basis, there are also integers $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ such that

$$
\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right)=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\omega_{1}^{\prime} & \bar{\omega}_{1}^{\prime} \\
\omega_{2}^{\prime} & \bar{\omega}_{2}^{\prime}
\end{array}\right) .
$$

Substituting, we get

$$
\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right)=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right) .
$$

We know that $\operatorname{det}\left(\begin{array}{cc}\omega_{1} & \bar{\omega}_{1} \\ \omega_{2} & \bar{\omega}_{2}\end{array}\right) \neq 0$ (since $\omega_{2} / \omega_{1} \notin \mathbb{R}$), and thus we may multiply on the right by

$$
\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right)^{-1} \text { to get } \quad\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Thus the integer matrices are inverses of each other, and their determinants multiply to give 1. Since both determinants are integers, we see that $a d-b c$ and $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}$ are ± 1. Let $\mathrm{GL}_{2}(\mathbb{Z}):=$ $\left\{m \in M_{2 \times 2}(\mathbb{Z}) \mid \operatorname{det} m= \pm 1\right\}$ denote the General Linear group of 2×2 invertible integer matrices. We have proven the following result.
Theorem 2.3. Suppose $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is a lattice in \mathbb{C} with ordered basis $\left(\omega_{1}, \omega_{2}\right)$. Then the set of all ordered bases of L is the $\mathrm{GL}_{2}(\mathbb{Z})$-orbit of $\left(\omega_{1}, \omega_{2}\right)$, i.e., the set of $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ such that

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\omega_{1}}{\omega_{2}}
$$

for some integers a, b, c, d with $a d-b c= \pm 1$.

The group $\mathrm{GL}_{2}(\mathbb{Z})$ is called the modular group. That term, though, is also sometimes used for $\mathrm{SL}_{2}(\mathbb{Z})$, the 2×2 integer matrices with determinant 1 . This latter group can be thought of as the transformations that change basis in an orientation-preserving fashion.
2.3. The canonical basis. We now single out a nearly unique basis called the canonical basis of a lattice L.

Theorem 2.4. Given a lattice L, there exists a basis $\left(\omega_{1}, \omega_{2}\right)$ such that $\tau=\omega_{2} / \omega_{1}$ satisfies the following conditions:
(i) $\operatorname{Im}(\tau)>0$,
(ii) $-1 / 2<\operatorname{Re}(\tau) \leq 1 / 2$,
(iii) $|\tau| \geq 1$, and
(iv) if $|\tau|=1$, then $\operatorname{Re}(\tau) \geq 0$.

The ratio τ is uniquely determined by these conditions, and there is a choice of two, four, or six corresponding ordered bases.

Proof. Choose ω_{1} and ω_{2} as in the proof of Theorem 2.2. Then $\left|\omega_{1}\right| \leq\left|\omega_{2}\right| \leq\left|\omega_{1} \pm \omega_{2}\right|$. In terms of $\tau=\omega_{2} / \omega_{1}$, the first inequality becomes $|\tau| \geq 1$. Dividing the second inequality by $\left|\omega_{1}\right|$ we get $|\tau| \leq|1 \pm \tau|$. Squaring and expanding by real and imaginary parts gives

$$
\operatorname{Re}(\tau)^{2}+\operatorname{Im}(\tau)^{2} \leq(1 \pm \operatorname{Re}(\tau))^{2}+\operatorname{Im}\left(\tau^{2}\right) .
$$

Canceling, expanding, and rearranging gives

$$
0 \leq 1 \pm 2 \operatorname{Re}(\tau)
$$

i.e., $|\operatorname{Re}(\tau)| \leq 1 / 2$.

If $\operatorname{Im}(\tau)<0$, replace $\left(\omega_{1}, \omega_{2}\right)$ by $\left(-\omega_{1}, \omega_{2}\right)$, making $\operatorname{Im}(\tau)>0$ without changing $\operatorname{Re}(\tau)$. If $\operatorname{Re}(\tau)=-1 / 2$, replace the basis by $\left(\omega_{1}, \omega_{1}+\omega_{2}\right)$, and if $|\tau|=1$ with $\operatorname{Re}(\tau)<0$, replace it by $\left(-\omega_{2}, \omega_{1}\right)$. After these changes, all the conditions are satisfied. Uniqueness will be handled in Theorem 2.6.

There are always at least two bases corresponding to $\tau=\omega_{2} / \omega_{1}$, namely $\left(\omega_{1}, \omega_{2}\right)$ and $\left(-\omega_{1},-\omega_{2}\right)$. We handle the exceptional cases of 4 and 6 bases after the proof of 2.6 .

Definition 2.5. The collection of τ described by Theorem 2.4 is called the fundamental region of the unimodular group.

The unimodular group $\mathrm{GL}_{2}(\mathbb{Z})$ acts on bases $\left(\omega_{1}, \omega_{2}\right)$ via matrix multiplication:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\omega_{2}}{\omega_{1}}=\binom{a \omega_{2}+b \omega_{1}}{c \omega_{2}+d \omega_{1} .}
$$

(We have swapped the usual order of ω_{1} and ω_{2} so as to more closely mirror $\tau=\frac{\omega_{2}}{\omega_{1}}$.) As such, it acts on the quotient $\tau=\omega_{2} / \omega_{1}$ via a linear fractional transformation:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=\frac{a \omega_{2}+b \omega_{1}}{c \omega_{2}+d \omega_{1}}=\frac{a \tau+b}{c \tau+d}
$$

Theorem 2.6. If τ and τ^{\prime} are in the fundamental region and $\tau^{\prime}=(a \tau+b) /(c \tau+d)$ where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{GL}_{2}(\mathbb{Z})$, then $\tau=\tau^{\prime}$.
Proof. Suppose that $\tau^{\prime}=(a \tau+b) /(c \tau+d)$ where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z})$. Then

$$
\operatorname{Im}\left(\tau^{\prime}\right)=\frac{ \pm \operatorname{Im}(\tau)}{|c \tau+d|^{2}}
$$

with sign matching that of $a d-b c= \pm 1$. If τ and τ^{\prime} are in the fundamental region, then the sign must be positive, so $a d-b c=1$. Without loss of generality, $\operatorname{Im}\left(\tau^{\prime}\right) \geq \operatorname{Im}(\tau)$, so $|c \tau+d| \leq 1$.

If $c=0$, then $d= \pm 1$ or 0 . Since $a d-b c=1$, we have $a d=1$, so either $a=d=1$ or $a=d=-1$. Then $\tau^{\prime}=\tau \pm b$, whence $|b|=\left|\operatorname{Re}\left(\tau^{\prime}\right)-\operatorname{Re}(\tau)\right|<1$. Therefore $b=0$ and $\tau=\tau^{\prime}$.

We leave the $c \neq 0$ case as a moral exercise for the reader. The arguments are somewhat intricate, but unsurprising.

Finally, we note that τ corresponds to bases other than $\left(\omega_{1}, \omega_{2}\right)$ and $\left(-\omega_{1},-\omega_{2}\right)$ if and only if τ is a fixed point of some unimodular transformation. This only happens for $\tau=i$ (which is a fixed point of $-1 / \tau$) and $\tau=e^{\pi i / 3}$ (which is a fixed point of $-(\tau+1) / \tau$ and $-1 /(\tau+1)$.) We leave it to the reader to check that these are the only possibilities.
2.4. General properties of elliptic functions. Let f be a meromorphic function on \mathbb{C} with period lattice $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ of rank 2 . (We do not assume that $\left(\omega_{1}, \omega_{2}\right)$ is a canonical basis, nor do we assume that L comprises all periods of f.)

Some notation to ease our upcoming work: write $z_{1} \equiv z_{2}(\bmod L)$ if $z_{1}-z_{2} \in L$. For $a \in \mathbb{C}$, write P_{a} for the "half open" parallelogram with vertices $a, a+\omega_{1}, a+\omega_{2}, a+\omega_{1}+\omega_{2}$ that includes the line segments $\left[a, a+\omega_{1}\right]$ and $\left[a+\omega_{1}, a+\omega_{1}+\omega_{2}\right)$ but does not include the other two sides. Then every point in \mathbb{C} / L (the set of equivalence classes modulo L) contains a unique representative in P_{a}.
Theorem 2.7. If f is an elliptic function without poles, then f is constant.
Proof. If f is analytic on P_{a}, then it is bounded on the closure of P_{a}, and hence bounded and analytic on \mathbb{C}. By Liouville's theorem, f is constant.

Proposition 2.8. An elliptic function has finitely many poles in P_{a}.
Proof. Poles always form a discrete set, and P_{a} is bounded.
Theorem 2.9. The sum of the residues of an elliptic function at poles in a parallelogram P_{a} is zero.
Proof. We may perturb a so that none of the poles lie on ∂P_{a}. Then, by the residue theorem, the sum of the residues at poles in P_{a} equals

$$
\frac{1}{2 \pi i} \int_{\partial P_{a}} f(z) d z
$$

Since f has periods ω_{1} and ω_{2}, the line integrals along opposite sides cancel, and we get that the sum of the residues is 0 .

Corollary 2.10. No elliptic function has a single simple pole (and no other poles) in some P_{a}.
Proof. A simple pole has a nonzero residue, and the sum of the residues is zero.
Theorem 2.11. A nonzero elliptic function has equally many poles and zeros in any P_{a} (where poles and zeroes are counted with multiplicity).

Proof. Fix a nonzero elliptic function f. In the proof of Theorem 4.4.7 we saw that the logarithmic derivative f^{\prime} / f has the zeros and poles of f as simple poles, with residues equal to their (signed) multiplicities. Since f^{\prime} / f is also elliptic, the result follows from Theorem 2.9.

Note that for any constant $c \in \mathbb{C}, f(z)-c$ has the same poles as $f(z)$. It follows that all values are assumed the same number of times by f.

Definition 2.12. The number of incongruent $(\bmod L)$ roots of the equations $f(z)=c$ is called the order of the elliptic function.

Theorem 2.13. The zeros a_{1}, \ldots, a_{n} and poles b_{1}, \ldots, b_{n} of an elliptic function satisfy $a_{1}+\cdots+a_{n} \equiv$ $b_{1}+\cdots+b_{n}(\bmod L)$.

Proof. Choose $a \in \mathbb{C}$ such that none of the zeros or poles are on ∂P_{a}. Also choose zeros and poles inside of P_{a}. By calculus of residues,

$$
\frac{1}{2 \pi i} \int_{\partial P_{a}} \frac{z f^{\prime}(z)}{f(z)} d z=a_{1}+\cdots+a_{n}-b_{1}-\cdots-b_{n}
$$

(Check this!) It remains to prove that the left-hand side is an element of $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$. The portion of the integral contributed by the sides $\left[a, a+\omega_{1}\right]$ and $\left[a+\omega_{2}, a+\omega_{1}+\omega_{2}\right]$ is

$$
\frac{1}{2 \pi i}\left(\int_{a}^{a+\omega_{1}}-\int_{a+\omega_{2}}^{a+\omega_{1}+\omega_{2}}\right) \frac{z f^{\prime}(z)}{f(z)} d z=-\frac{\omega_{2}}{2 \pi i} \int_{a}^{a+\omega_{1}} \frac{f^{\prime}(z)}{f(z)} d z
$$

(Check this!) As z varies in $\left[a, a+\omega_{1}\right]$, the values $f(z)$ describe a closed curve in the plane; call this curve γ. Then the right-hand side of the above expression is manifestly $-\omega_{2} \operatorname{Ind}_{\gamma}(0)$, which is an integer multiple of ω_{2}. A similar argument applies to the other pair of opposite sides. We conclude that

$$
a_{1}+\cdots+a_{n}-b_{1}-\cdots-b_{n}=m \omega_{1}+n \omega_{2}
$$

for some integers m, n, as desired.

[^0]: ${ }^{1}$ Curves are one-dimensional and tori are two-dimensional. What gives? The 'curve' in 'elliptic curve' indicates a single complex dimension.

