
ELLIPTIC FUNCTIONS (WEEK 12)

Elliptic functions are doubly periodic meromorphic functions. By doubly periodic, we mean that
there are ω1, ω2 ∈ C× such that f(z + ω1) = f(z) = f(z + ω2) for all z ∈ C. If we assume that
ω2/ω1 /∈ R, then the set L = {mω1 +nω2 | m,n ∈ Z} is a lattice in C: a rank 2 free Abelian subgroup
of (C,+). Let C/L denote the corresponding quotient group. Topologically, C/L is a torus, and
with its complex structure it is an elliptic curve.1 If f is an elliptic function with period lattice L,
then it extends across the quotient map C → C/L to become a function on the elliptic curve C/L.
One way to understand a geometric object is by its functions, whence the importance of elliptic
functions.

These notes will closely follow the development of elliptic functions in Chapter 7 of Lars Ahlfors’
classic text, Complex Analysis; some of the later portions draw from notes by Jerry Shurman.

1. SINGLY PERIODIC FUNCTIONS

We should walk before we run, so let’s first consider singly periodic functions, i.e., meromorphic
functions f for which there exists ω ∈ C such that f(z + ω) = f(z) for all z ∈ C. We have seen
examples before: the exponential function has period 2πi, and sin and cos have period 2π.

Fix ω ∈ C× and suppose Ω ⊆ C is an open set which is closed under addition and subtraction
of ω: if z ∈ Ω, then z ± ω ∈ Ω. It follows by induction that Ω = Ω + Zω. Examples of such regions
include C and an “open strip” parallel to ω. To better describe this open strip, transform it by
dividing by ω. This has the effect of scaling by 1/|ω| and rotating so that the strip is now parallel
to the real axis. Thus the strip is determined by real numbers a < b such that a < Im(2πz/ω) < b
for all z in the strip. (The 2π is a convenient normalization factor, as we shall shortly see.)

The function z 7→ ζ = e2πiz/ω is ω-periodic. If we plug Ω into it, we get an open set in the
ζ-plane. If Ω = C, the result is C×. If Ω is the strip given by a < Im(2πz/ω) < b, the result is the
annulus e−b < |ζ| < e−a. (This follows because e2πiz/ω = e− Im(2πz/ωeiRe(2πz/ω).)

Proposition 1.1. Suppose that f is meromorphic and ω-periodic on Ω. Then there exists a unique function
F on Ω′ = e2πiΩ/ω such that

(1) f(z) = F (e2πiz/ω).

Proof. To determine F (ζ), first note that ζ = e2πiz/ω for some z ∈ Ω, and that z is unique up to
addition of an integer-multiple of ω. Since f is ω-periodic, the formula F (ζ) = f(z) is well-defined,
and it is clearly meromorphic in Ω′. Uniqueness follows from noting that when F is meromorphic
on Ω′, equation (1) defines a function f meromorphic on Ω with period ω. �

Now suppose that Ω′ contains an annulus r < |ζ| < R on which F has is analytic. On this
annulus, F has a Laurent series

F (ζ) =

∞∑
n=−∞

cnζ
n,

whence

f(z) =
∞∑

n=−∞
cne

2πinz/ω.

1Curves are one-dimensional and tori are two-dimensional. What gives? The ‘curve’ in ‘elliptic curve’ indicates a
single complex dimension.
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This is the complex Fourier series for f in the strip − log(R) < Im(2πz/ω) < − log r.
By old formulae, we know that for r < s < R,

cn =
1

2πi

∫
|ζ|=s

F (ζ)

ζn+1
dζ,

which, by change of variables, is equivalent to

cn =
1

ω

∫ d+ω

d
f(z)e−2πinz/ω dz.

Here d is an arbitrary point in the strip corresponding to the annulus, and the integration is along
any path from d to d+ω which remains in the strip. (You will verify the final details of this in your
homework.) We have thus proven the following result.

Theorem 1.2. Suppose f is meromorphic and ω-periodic on an open set Ω ⊆ C and is analytic on the strip
given by a < Im(2πz/ω) < b. Then

f(z) =

∞∑
n=−∞

cne
2πinz/ω

for z in the strip, and

cn =
1

ω

∫ d+ω

d
f(z)e−2πinz/ω dz

for d in the strip and the integration along any path from d to d+ ω in the strip. If f is analytic on C, then
the Fourier series is valid on C as well. �

2. DOUBLY PERIODIC FUNCTIONS

An elliptic function is a meromorphic function on the plane with two periods, ω1, ω2 ∈ C such
that ω2/ω1 /∈ R. The significance of the final condition is that one of the periods is not a real scaling
of the other. This has the effect of making Zω1 + Zω2 a rank 2 free Abelian group inside (C,+), as
we shall currently show.

2.1. The period lattice. For the moment, forget the condition on ω2/ω1 and just suppose that
f(z + ω1) = f(z) = f(z + ω2) for all z ∈ C. Let M := Zω1 + Zω2 denote the period module of f .

Proposition 2.1. If f is not constant with periods ω1, ω2 ∈ C×, then M = Zω1 + Zω2 is discrete.

Proof. Since f(ω) = f(0) for all ω ∈ M , the existence of an accumulation point in M would imply
that f is constant (by the Identity Theorem). �

Theorem 2.2. A discrete subgroup A of (C,+) is either
(0) rank 0: A = {0},
(1) rank 1: A = Zω for some ω ∈ C×, or
(2) rank 2: A = Zω1 + Zω2 for some ω1, ω2 ∈ C× with ω2/ω1 /∈ R.

Proof. We may assume that A 6= {0}. Take r > 0 such that Dr(0) ∩ A contains more than just
0. Since Dr(0) is compact and A is discrete, the intersection contains only finitely many points.
Choose one with minimum nonzero modulus and call it ω1. (You can check that there are always
exactly two, four, or six points in A closest to 0.) Then Zω1 ⊆ A.

If A = Zω1, we are in case (1) and done. Suppose there exists ω ∈ A r Zω1. Among all such
ω, there exists one, ω2, of smallest modulus. Suppose for contradiction that ω2/ω1 ∈ R. Then we
could find an integer n such that n < ω2/ω1 < n + 1. It would follow that |nω1 − ω2| < |ω1|, a
contradiction.
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We now aim to show that A = Zω1 + Zω2. We claim that every z ∈ C may be written as
z = λ1ω1 + λ2ω2 with λ1, λ2 ∈ R. To see this, we attempt to solve the equations

z = λ1ω1 + λ2ω2

z = λ1ω1 + λ2ω2.

The determinant ω1ω2 − ω2ω1 6= 0 (otherwise ω2/ω1 is real) and thus the system has a unique
solution (λ1, λ2) ∈ C2. But clearly (λ1, λ2) is a solution as well, so (λ1, λ2) ∈ R2, as desired.

Now choose integers m1,m2 such that |λ1 − m1| ≤ 1/2 and |λ2 − m2| ≤ 1/2. If z ∈ A, then
z′ = z − m1ω1 − m2ω2 ∈ A as well. Thus |z′| < 1

2 |ω1| + 1
2 |ω2| ≤ |ω2|. (The first inequality is

strict since ω2 is not a real multiple of ω1.) Since ω2 has minimal modulus in A r Zω1, we learn
that z′ ∈ Zω1, say z′ = nω1. Thus z = (m1 + n)ω1 + m2ω2 ∈ Zω1 + Zω2, and we conclude that
A = Zω1 + Zω2. �

2.2. The modular group. From now on, we assume that the period lattice has rank 2. Any pair
(ω1, ω2) such that L = Zω1 + Zω2 is called a basis of L (and necessarily satisfies ω2/ω1 /∈ R).

Suppose that (ω′1, ω
′
2) is another basis of L. Then there exist a, b, c, d ∈ Z such that

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2.

In matrix form, this is (
ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

)
.

The same relation is valid for the complex conjugates, so(
ω′1 ω′1
ω′2 ω′2

)
=

(
a b
c d

)(
ω1 ω1

ω2 ω2

)
.

Since (ω′1, ω
′
2) is also a basis, there are also integers a′, b′, c′, d′ such that(

ω1 ω1

ω2 ω2

)
=

(
a′ b′

c′ d′

)(
ω′1 ω′1
ω′2 ω′2

)
.

Substituting, we get (
ω1 ω1

ω2 ω2

)
=

(
a′ b′

c′ d′

)(
a b
c d

)(
ω1 ω1

ω2 ω2

)
.

We know that det

(
ω1 ω1

ω2 ω2

)
6= 0 (since ω2/ω1 /∈ R), and thus we may multiply on the right by(

ω1 ω1

ω2 ω2

)−1

to get (
a′ b′

c′ d′

)(
a b
c d

)
=

(
1 0
0 1

)
.

Thus the integer matrices are inverses of each other, and their determinants multiply to give 1.
Since both determinants are integers, we see that ad − bc and a′d′ − b′c′ are ±1. Let GL2(Z) :=
{m ∈M2×2(Z) | detm = ±1} denote the General Linear group of 2× 2 invertible integer matrices.
We have proven the following result.

Theorem 2.3. Suppose L = Zω1 + Zω2 is a lattice in C with ordered basis (ω1, ω2). Then the set of all
ordered bases of L is the GL2(Z)-orbit of (ω1, ω2), i.e., the set of (ω′1, ω

′
2) such that(

ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

)
for some integers a, b, c, d with ad− bc = ±1. �
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The group GL2(Z) is called the modular group. That term, though, is also sometimes used for
SL2(Z), the 2 × 2 integer matrices with determinant 1. This latter group can be thought of as the
transformations that change basis in an orientation-preserving fashion.

2.3. The canonical basis. We now single out a nearly unique basis called the canonical basis of a
lattice L.

Theorem 2.4. Given a lattice L, there exists a basis (ω1, ω2) such that τ = ω2/ω1 satisfies the following
conditions:

(i) Im(τ) > 0,
(ii) −1/2 < Re(τ) ≤ 1/2,

(iii) |τ | ≥ 1, and
(iv) if |τ | = 1, then Re(τ) ≥ 0.

The ratio τ is uniquely determined by these conditions, and there is a choice of two, four, or six corresponding
ordered bases.

Proof. Choose ω1 and ω2 as in the proof of Theorem 2.2. Then |ω1| ≤ |ω2| ≤ |ω1 ± ω2|. In terms
of τ = ω2/ω1, the first inequality becomes |τ | ≥ 1. Dividing the second inequality by |ω1| we get
|τ | ≤ |1± τ |. Squaring and expanding by real and imaginary parts gives

Re(τ)2 + Im(τ)2 ≤ (1± Re(τ))2 + Im(τ2).

Canceling, expanding, and rearranging gives

0 ≤ 1± 2 Re(τ),

i.e., |Re(τ)| ≤ 1/2.
If Im(τ) < 0, replace (ω1, ω2) by (−ω1, ω2), making Im(τ) > 0 without changing Re(τ). If

Re(τ) = −1/2, replace the basis by (ω1, ω1 + ω2), and if |τ | = 1 with Re(τ) < 0, replace it by
(−ω2, ω1). After these changes, all the conditions are satisfied. Uniqueness will be handled in
Theorem 2.6.

There are always at least two bases corresponding to τ = ω2/ω1, namely (ω1, ω2) and (−ω1,−ω2).
We handle the exceptional cases of 4 and 6 bases after the proof of 2.6. �

Definition 2.5. The collection of τ described by Theorem 2.4 is called the fundamental region of the
unimodular group.

The unimodular group GL2(Z) acts on bases (ω1, ω2) via matrix multiplication:(
a b
c d

)(
ω2

ω1

)
=

(
aω2 + bω1

cω2 + dω1.

)
(We have swapped the usual order of ω1 and ω2 so as to more closely mirror τ = ω2

ω1
.) As such, it

acts on the quotient τ = ω2/ω1 via a linear fractional transformation:(
a b
c d

)
τ =

aω2 + bω1

cω2 + dω1
=
aτ + b

cτ + d

Theorem 2.6. If τ and τ ′ are in the fundamental region and τ ′ = (aτ + b)/(cτ + d) where
(
a b
c d

)
∈

GL2(Z), then τ = τ ′.

Proof. Suppose that τ ′ = (aτ + b)/(cτ + d) where
(
a b
c d

)
∈ GL2(Z). Then

Im(τ ′) =
± Im(τ)

|cτ + d|2
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with sign matching that of ad − bc = ±1. If τ and τ ′ are in the fundamental region, then the sign
must be positive, so ad− bc = 1. Without loss of generality, Im(τ ′) ≥ Im(τ), so |cτ + d| ≤ 1.

If c = 0, then d = ±1 or 0. Since ad− bc = 1, we have ad = 1, so either a = d = 1 or a = d = −1.
Then τ ′ = τ ± b, whence |b| = |Re(τ ′)− Re(τ)| < 1. Therefore b = 0 and τ = τ ′.

We leave the c 6= 0 case as a moral exercise for the reader. The arguments are somewhat intricate,
but unsurprising. �

Finally, we note that τ corresponds to bases other than (ω1, ω2) and (−ω1,−ω2) if and only if τ
is a fixed point of some unimodular transformation. This only happens for τ = i (which is a fixed
point of −1/τ ) and τ = eπi/3 (which is a fixed point of −(τ + 1)/τ and −1/(τ + 1).) We leave it to
the reader to check that these are the only possibilities.

2.4. General properties of elliptic functions. Let f be a meromorphic function on C with period
lattice L = Zω1 + Zω2 of rank 2. (We do not assume that (ω1, ω2) is a canonical basis, nor do we
assume that L comprises all periods of f .)

Some notation to ease our upcoming work: write z1 ≡ z2 (mod L) if z1 − z2 ∈ L. For a ∈ C,
write Pa for the “half open” parallelogram with vertices a, a+ω1, a+ω2, a+ω1 +ω2 that includes
the line segments [a, a+ω1] and [a+ω1, a+ω1 +ω2) but does not include the other two sides. Then
every point in C/L (the set of equivalence classes modulo L) contains a unique representative in
Pa.

Theorem 2.7. If f is an elliptic function without poles, then f is constant.

Proof. If f is analytic on Pa, then it is bounded on the closure of Pa, and hence bounded and
analytic on C. By Liouville’s theorem, f is constant. �

Proposition 2.8. An elliptic function has finitely many poles in Pa.

Proof. Poles always form a discrete set, and Pa is bounded. �

Theorem 2.9. The sum of the residues of an elliptic function at poles in a parallelogram Pa is zero.

Proof. We may perturb a so that none of the poles lie on ∂Pa. Then, by the residue theorem, the
sum of the residues at poles in Pa equals

1

2πi

∫
∂Pa

f(z) dz.

Since f has periods ω1 and ω2, the line integrals along opposite sides cancel, and we get that the
sum of the residues is 0. �

Corollary 2.10. No elliptic function has a single simple pole (and no other poles) in some Pa.

Proof. A simple pole has a nonzero residue, and the sum of the residues is zero. �

Theorem 2.11. A nonzero elliptic function has equally many poles and zeros in any Pa (where poles and
zeroes are counted with multiplicity).

Proof. Fix a nonzero elliptic function f . In the proof of Theorem 4.4.7 we saw that the logarithmic
derivative f ′/f has the zeros and poles of f as simple poles, with residues equal to their (signed)
multiplicities. Since f ′/f is also elliptic, the result follows from Theorem 2.9. �

Note that for any constant c ∈ C, f(z) − c has the same poles as f(z). It follows that all values
are assumed the same number of times by f .

Definition 2.12. The number of incongruent (mod L) roots of the equations f(z) = c is called the
order of the elliptic function.
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Theorem 2.13. The zeros a1, . . . , an and poles b1, . . . , bn of an elliptic function satisfy a1 + · · · + an ≡
b1 + · · ·+ bn (mod L).

Proof. Choose a ∈ C such that none of the zeros or poles are on ∂Pa. Also choose zeros and poles
inside of Pa. By calculus of residues,

1

2πi

∫
∂Pa

zf ′(z)

f(z)
dz = a1 + · · ·+ an − b1 − · · · − bn.

(Check this!) It remains to prove that the left-hand side is an element of L = Zω1 + Zω2. The
portion of the integral contributed by the sides [a, a+ ω1] and [a+ ω2, a+ ω1 + ω2] is

1

2πi

(∫ a+ω1

a
−
∫ a+ω1+ω2

a+ω2

)
zf ′(z)

f(z)
dz = − ω2

2πi

∫ a+ω1

a

f ′(z)

f(z)
dz.

(Check this!) As z varies in [a, a + ω1], the values f(z) describe a closed curve in the plane; call
this curve γ. Then the right-hand side of the above expression is manifestly −ω2 Indγ(0), which
is an integer multiple of ω2. A similar argument applies to the other pair of opposite sides. We
conclude that

a1 + · · ·+ an − b1 − · · · − bn = mω1 + nω2

for some integers m,n, as desired. �
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