MATH 311: COMPLEX ANALYSIS HOMEWORK DUE MONDAY WEEK 9

Problem 1. If γ is a simple closed path with -1 and 1 on its inside and f is an entire function, show that

$$
\int_{\gamma} \frac{f(z)}{z^{2}-1} d z=\pi i(f(1)-f(-1))
$$

Problem 2. Let f be analytic on a region A and let γ be a closed curve in A. For any $z_{0} \in A \backslash \gamma(I)$, show that

$$
\int_{\gamma} \frac{f^{\prime}(\zeta)}{\zeta-z_{0}} d \zeta=\int_{\gamma} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{2}} d \zeta
$$

Bonus: Can you think of a way to generalize this result?
Problem 3. Prove that if f is analytic in a disc $D_{r}\left(z_{0}\right)$ except at z_{0}, where it has a pole of order k, then, in the annulus $\left\{z\left|0<\left|z-z_{0}\right|<r\right\}\right.$, the Laurent series expansion for f has only finitely many terms with negative exponent and is of the form $\sum_{n=-k}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ with $c_{-k} \neq 0$.
Problem 4. Find $\int_{|z|=\pi} \tan z d z$.
Problem 5. Find $\int_{|z|=2} e^{z} /\left(z^{2}-1\right) d z$.
Problem 6. Evaluate the contour integral

$$
\int_{\gamma} \frac{e^{-z^{2}}}{z^{2}} d z
$$

where
(a) γ is the positively oriented square with vertices $-1-i, 1-i, 1+i$, and $-1+i$, and
(b) γ is the positively oriented ellipse $\gamma(t)=a \cos t+i b \sin t$, where $a, b>0$ and $0 \leq t \leq 2 \pi$.

