MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 7

Problem 1. Use power series to find a function f such that $f(0)=1$ and $f^{\prime}(x)=x f(x)$ for all x.
Problem 2. Prove the following complex version of l'Hôpital's rule: Let f, g be analytic, both having zeroes of order k at z_{0}. Then f / g has a removable singularity at z_{0} and

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{(k)}\left(z_{0}\right)}{g^{(k)}\left(z_{0}\right)} .
$$

Problem 3. We have seen that $1 /\left(e^{z}-1\right)$ has a Laurent series around $z=0$ of the form

$$
\frac{1}{e^{z}-1}=\frac{b_{1}}{z}+a_{0}+a_{1} z+a_{2} z^{2}+\cdots
$$

(In particular, $1 /\left(e^{z}-1\right)$ has a simple pole at $z=0$.) Determine b_{1}, a_{0}, a_{1}, and a_{2}. (You do not need to give a general expression for a_{n} in this problem.)
Problem 4. Find the residues of the following functions at the indicated points:
(a) $1 /\left(z^{2}-1\right), z=1$
(b) $\left(e^{z}-1\right) / z^{2}, z=0$
(c) $\left(e^{z}-1\right) / z, z=0$

Problem 5. Find where the function $\left|e^{z}\right|$ attains its maximum value on $\bar{D}_{1}(0)$.
Problem 6. Show that $f(z)=(2 z-1) /(z-2)$ is a bi-analytic map $\bar{D}_{1}(0) \rightarrow \bar{D}_{1}(0)$ which takes 0 to $1 / 2$.
Problem 7. Find a harmonic conjugate for $u(x, y)=1 / 2 \log \left(x^{2}+y^{2}\right)$ on $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
Problem 8. Consider the following directed line segments: γ_{1} from -1 to $-1+i, \gamma_{2}$ from 1 to $1+i$, γ_{3} from -1 to $0, \gamma_{4}$ from 0 to $1, \gamma_{5}$ from $-1+i$ to i, γ_{6} from i to $1+i$, and γ_{7} from 0 to i. Let $\Gamma=\gamma_{1}+\gamma_{2}-\gamma_{3}+\gamma_{4}+\gamma_{5}-\gamma_{6}-2 \gamma_{7}$.
(a) Show that Γ is a cycle.
(b) Find a sum of closed paths which is equivalent to Γ.
(c) Find $\operatorname{Ind}_{\Gamma}(z)$ for z in each component of $\mathbb{C} \backslash \Gamma(I)$.

Problem 9. Fix an integer n, let $\gamma(t)=e^{2 \pi n i t}$, and let $\gamma_{1}(t)=2 e^{2 \pi i t}$ for $t \in[0,1]$. Show that the cycle $\gamma-n \gamma_{1}$ is homologous to 0 in $A=\{z \in \mathbb{C}|0<|z|<3\}$.

