MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 6

Problem 1. Use the power series expansion of $1 /(1-z)$ about 0 to find the power series expansion of $1 /(1-z)^{2}$ about 0 .

Problem 2. Determine the raidus of convergence of the power series about $z_{0}=0$ for the function $1 / \cos z$. (You do not need to determine the power series to solve this problem!)

Problem 3. Prove that if f is analytic on the disc $D_{R}\left(z_{0}\right)$ and $|f(z)| \leq M$ for $z \in D_{R}\left(z_{0}\right)$, then $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / R$. (Note that the hypothesis is different from that of Theorem 3.2.9 [Cauchy's Estimates].)
Problem 4. Use Morera's Theorem to show that if f is continuous on an open set U and analytic on $U \backslash E$, where E is either a point or a line segment, then f is actually analytic on all of U.

Problem 5. Prove that if an entire function f is not constant, then $f(\mathbb{C})$ is dense in \mathbb{C}. Hint: If $f(\mathbb{C})$ is not dense, then $f(\mathbb{C}) \cap D_{r}\left(z_{0}\right)=\varnothing$ for some $z_{0} \in \mathbb{C}$ and $r>0$.
Problem 6. Use Cauchy's estimate to prove that the only entire functions f satisfying $|f(z)| \leq$ $A+B|z|^{n}$ for all $z \in \mathbb{C}$ are polynomials of degree at most n. (This completes the proof of Theorem 3.3.10 in the book.)

Problem 7. Fix a positive number K. Show that if f is an entire function and $|f(z)| \leq K\left|e^{z}\right|$ for all $z \in \mathbb{C}$, then $f(z)=C e^{z}$ for some constant $C \in \mathbb{C}$.
Problem 8. Prove that a set E is a discrete subset of an open set U if and only if no sequence of distinct points in E converges to a point in U.
Problem 9. Show that if f is an analytic function with a zero of order k at z_{0}, then there is a neighborhood V of z_{0} and an analytic function g on V such that $f=g^{k}$ on V and $g^{\prime}\left(z_{0}\right) \neq 0$.

Problem 10. For the following functions, analyze each singularity. Is it removable? a pole? essential? If it is a pole, what is its order? If it is removable, what value should you give the function at that point to make it analytic.
(a) $f(z)=\frac{1}{z-z^{3}}$
(b) $g(z)=\frac{e^{z}-1-z}{z^{2}}$
(c) $h(z)=\frac{\log (z)}{(1-z)^{2}}$ where Log is the principal branch of the logarithm

