MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 4

Problem 1. Calculate $\int_{\gamma} d z / z$ if γ is any path in \mathbb{C} joining $-i$ to i which does not cross the nonpositive real axis $\mathbb{R}_{\leq 0}$. (You may use the result of Example 2.2.11 in the book.)
Problem 2. Let Δ be the triangle with vertices $1-i, i$, and $-1-i$ and let S be the square with vertices $1-i, 1+i,-1+i$, and $-1-i$. If f is any function which is analytic on $\mathbb{C} \backslash\{0\}$, prove that

$$
\int_{\partial \Delta} f=\int_{\partial S} f
$$

where $\partial \Delta$ and ∂S are traversed in the counterclockwise direction.
Problem 3. Calculate $\int_{\gamma} d z /\left(1-e^{z}\right)$ where $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $\gamma(t)=2 i+e^{i t}$.
Problem 4. Show that the principal branch of the \log function can be described by the formula $\log (z)=\int_{1}^{z} d w / w$ for $z \in \mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
Problem 5. Use Cauchy's integral formula to calculate

$$
\int_{|z|=1} \frac{e^{z}}{z} d z
$$

