MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 3

Problem 1. Derive the Cauchy-Riemann equations in polar coordinates:

$$
\begin{aligned}
& u_{r}=v_{\theta} / r \\
& u_{\theta}=-r v_{r}
\end{aligned}
$$

by using the change of variable formulas $x=r \cos \theta, y=r \sin \theta$ and the chain rule.
Problem 2. Verify that the function $\log |z|$ is harmonic on $\mathbb{C} \backslash\{0\}$ and find a harmonic conjugate for it on the set $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
Problem 3. Compute the following two Riemann integrals of complex-valued functions:
(a) $\int_{0}^{\pi} e^{i t} d t$,
(b) $\int_{0}^{1} \sin (i t) d t$.

Problem 4. Fix $w \in \mathbb{C}$. Find (by direct computation) $\int_{\gamma} z^{2} d z$ if γ traces the straight line from 0 to w.
Problem 5. Prove (by direct computation) that $\int_{\gamma} p=0$ where $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $\gamma(t)=e^{i t}$ and p is any polynomial function. (This is a special case of Cauchy's Theorem, but you should not assume Cauchy's Theorem in your proof.)
Problem 6. Suppose $\Omega \subseteq \mathbb{C}$ is an open set and $f: \Omega \rightarrow \mathbb{C}$ is a function. A primitive for f on Ω is a function F that is analytic on Ω and such that $F^{\prime}=f$. Suppose f is continuous on Ω with primitive F, and that γ is a smooth path ${ }^{1}$ in Ω that begins at z_{0} and ends at z_{1}. Prove that

$$
\int_{\gamma} f=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

This is the fundamental theorem of calculus for contour integrals.
Problem 7. If $z_{0}, z_{1} \in \mathbb{C}$ and γ is any smooth path which begins at z_{0} and ends at z_{1}, compute $\int_{\gamma} z d z$. (You may use the result from Problem 6 .)

[^0]
[^0]: ${ }^{1}$ The result also holds for piecewise smooth paths, and you are invited to extend your proof to this setting.

