MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 3

Problem 1. Derive the Cauchy-Riemann equations in polar coordinates:

$$u_r = v_\theta / r$$
$$u_\theta = -rv_r$$

by using the change of variable formulas $x = r \cos \theta$, $y = r \sin \theta$ and the chain rule.

Problem 2. Verify that the function $\log |z|$ is harmonic on $\mathbb{C} \setminus \{0\}$ and find a harmonic conjugate for it on the set $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$.

Problem 3. Compute the following two Riemann integrals of complex-valued functions:

- (a) $\int_0^{\pi} e^{it} dt$, (b) $\int_0^1 \sin(it) dt$.

Problem 4. Fix $w \in \mathbb{C}$. Find (by direct computation) $\int_{\gamma} z^2 dz$ if γ traces the straight line from 0 to w.

Problem 5. Prove (by direct computation) that $\int_{\gamma} p = 0$ where $\gamma : [0, 2\pi] \to \mathbb{C}$ is given by $\gamma(t) = e^{it}$ and p is any polynomial function. (This is a special case of Cauchy's Theorem, but you should not assume Cauchy's Theorem in your proof.)

Problem 6. Suppose $\Omega \subseteq \mathbb{C}$ is an open set and $f:\Omega \to \mathbb{C}$ is a function. A *primitive* for f on Ω is a function F that is analytic on Ω and such that F' = f. Suppose f is continuous on Ω with primitive F, and that γ is a smooth path¹ in Ω that begins at z_0 and ends at z_1 . Prove that

$$\int_{\gamma} f = F(z_1) - F(z_0).$$

This is the fundamental theorem of calculus for contour integrals.

Problem 7. If $z_0, z_1 \in \mathbb{C}$ and γ is any smooth path which begins at z_0 and ends at z_1 , compute $\int_{\gamma} z \, dz$. (You may use the result from Problem 6.)

¹The result also holds for piecewise smooth paths, and you are invited to extend your proof to this setting.