MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 2

Problem 1. For which $z \in \mathbb{C}$ does the series $\sum_{n=0}^{\infty} 1 /\left(n^{2}+z^{2}\right)$ converge?
Problem 2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} n z^{n}$.
Problem 3. Determine the values of z for which e^{z} is a real number. Also determine all z such that e^{z} is purely imaginary ${ }^{1}$
Problem 4. Show that $\cos i x=\cosh x$ and $\sin i x=i \sinh x$, where \cosh and \sinh are the hyperbolic cosine and hyperbolic sine functions.
Problem 5. Recall the geometric identity $1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}$. Use this to derive the trigonometric identity

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin (n+1 / 2) \theta}{2 \sin \theta / 2}
$$

Problem 6. Verify the Cauchy-Riemann equations for the function $z \mapsto z^{2}+5 z-1$.
Problem 7. Prove that $z \mapsto|z|$ is not holomorphic.

[^0]
[^0]: ${ }^{1}$ We call $w \in \mathbb{C}$ purely imaginary when $\operatorname{Re} w=0$.

