MATH 311: COMPLEX ANALYSIS HOMEWORK DUE WEDNESDAY WEEK 13

Note: Anyone may take advantage of a free extension to Friday if they would like.

Problem 1. For the following lattices, determine their canonical bases (ω_1, ω_2) , $\tau = \omega_2/\omega_1$, and a matrix $\gamma \in GL_2(\mathbb{Z})$ taking the given basis to the canonical basis.

(a)
$$\mathbb{Z}(1+2i) + \mathbb{Z}(1+i)$$

(b) $\mathbb{Z}(6+i\sqrt{3}) + \mathbb{Z}(3/2+i\sqrt{3}/2)$

Problem 2. Complete the proof of Theorem 2.13 from the Week 12 notes. In particular,

(a) Check that the residue theorem implies that the right-hand side of the first display on p.6 is

$$a_1 + \dots + a_n - b_1 - \dots - b_n.$$

(b) Prove the second displayed formula under the hypotheses of the theorem:

$$\frac{1}{2\pi i} \left(\int_{a}^{a+\omega_{1}} - \int_{a+\omega_{2}}^{a+\omega_{1}+\omega_{2}} \right) \frac{zf'(z)}{f(z)} \, dz = -\frac{\omega_{2}}{2\pi i} \int_{a}^{a+\omega_{1}} \frac{f'(z)}{f(z)} \, dz.$$

Problem 3. Let $L = \mathbb{Z} + \mathbb{Z}i$ denote the Gaussian lattice in \mathbb{C} , let $\wp = \wp(; \mathbb{Z} + \mathbb{Z}i)$, and set $e_1 = \wp(1/2)$, $e_2 = \wp(i/2)$, $e_3 = \wp((1+i)/2)$.

(a) Use properties of \wp to show that $\wp(iz) = -\wp(z)$.

- (b) Use (a) to show that $e_1 = -e_2$ and $e_3 = 0$.
- (c) What does $L = \overline{L}$ tell you about \wp ? Use your observation to show that e_1 is real.
- (d) By (b), it follows that e_1 and e_2 are real. Which one is positive?
- (e) Conclude that the elliptic curve $y^2 = 4(x-e_1)(x-e_2)(x-e_3)$ corresponding to L is of the form

$$y^2 = 4x(x-a)(x+a)$$

for some real number *a*.