MATH 311: COMPLEX ANALYSIS HOMEWORK DUE FRIDAY WEEK 10

Problem 1. Open sets $U, V \subseteq \mathbb{C}$ are called *homeomorphic* if there exists a continuous function $f : U \to V$ admitting a continuous inverse $f^{-1} : V \to U$. Suppose that U, V are homeomorphic open subsets of \mathbb{C} and that U is simply connected. Prove that V is simply connected.

Problem 2. Which of the following open sets in \mathbb{C} are simply connected? (Prove your assertion, perhaps via Theorem 4.6.16.)

- (a) $\mathbb{C} \smallsetminus \{0\}$
- (b) $D_2(0) \smallsetminus [-1,1]$
- (c) $\mathbb{C} \smallsetminus (-\infty, 0]$
- (d) The bounded open set with boundary the line segments joining 1 to 2+2i to i to -2+2i to -1 to -2-2i to -i to 2-2i to 1, consecutively.

Problem 3. Find $\operatorname{Res}(f, 0)$ and $\operatorname{Res}(f, 2)$ if $f(z) = \frac{\cos z}{2z - z^2}$.

Problem 4. Prove that if *f* has a simple pole at z_0 and *g* is analytic in a neighborhood of z_0 , then $\operatorname{Res}(gf, z_0) = g(z_0) \operatorname{Res}(f, z_0)$. Show by example that this is not true if *f* has a pole of degree greater than 1 at z_0 .

Problem 5. Use long division of power series to find the residue at 0 of tanh(z)/z. (You may assume the usual Taylor series for cosh and sinh, but do not assume the power series for tanh.)

Problem 6. Compute the following integrals using the methods of §5.2.

(a)
$$\int_{0}^{2\pi} \frac{d\theta}{10+6\sin\theta}$$

(b) $\int_{0}^{\infty} \frac{x^2}{(1+x^2)^2} dx$