
MATH 202: VECTOR CALCULUS
DETERMINANTS DONE HASTILY

The determinant function from linear algebra has important applications in vector calculus.
Determinants were covered in Math 201 and you can review them in detail in §§3.5-3.9 of CAES,
but we will present a brief recollection here of the aspects of the determinant most important to
our study.

1. ABSTRACT NONSENSE

Throughout, let F be a field and let V be an n-dimensional F -vector space, n < ∞. We write
EndF (V ) = End(V ) for the collection of F -linear endomorphisms of V , that is, F -linear map V → V .
A choice of ordered basis for V allows us to identify End(V ) with Mn(F ), n × n matrices with
entries in F .1 Thinking of an n×n matrix as an n-tuple of its row vectors, we may in turn identify
Mn(F ) (and hence End(V )) with V n.

Defineorem 1.1. The determinant of an n × n matrix A ∈ Mn(F ) is the unique multilinear skew-
symmetric normalized function det : Mn(F )→ F .

Some comments are in order. The word defineorem is a portmanteau of definition and theorem,
and is not standard in the mathematical literature.2 A theorem says that there exists a unique mul-
tilinear skew-symmetric normalized function Mn(F )→ F , and we then define the determinant to
be this function.

We should also recall the meaning of the terms invoked:
» A multilinear function Mn(F )→ F is a function which is linear in each row.
» Such a function is skew-symmetric if exchanging rows multiplies the output of the function

by −1.
» Such a function is normalized if its value on the identity matrix is 1.

Defineorem 1.2. The determinant of a linear transformation L ∈ End(V ) is the determinant of the
matrix associated with L for any choice of basis.

In particular, any choice of basis produces the same linear transformation. This is a consequence
of multiplicativity of the determinant, our next theorem.

Theorem 1.3. For all A,B ∈Mn(F ), det(AB) = det(A) det(B).

Corollary 1.4. A matrix A ∈Mn(F ) is invertible if and only if det(A) 6= 0.

In the above discussion, we privileged multilinearity of det with respect to the rows of a matrix.
In fact, we could have set everything up in terms of columns instead because of the following
theorem. Recall that the transpose of a square matrix A = (aij) is the matrix A> := (aji). We can
think of this as reflection across the diagonal, or as swapping rows and columns.

Theorem 1.5. For all A ∈Mn(F ), det(A>) = det(A).

1If v1, . . . , vn is an ordered basis of V , L ∈ End(V ), and L(vj) =
∑n

i=1 xijvi, then the associated matrix is (xij)
n
i,j=1.

In other words, the j-th column of the matrix is column vector representation of L(vj) in terms of the ordered basis.
2Though, in this author’s opinion, it should be.
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2. FORMULAS

Let Σn be the collection of permutations of {1, 2, . . . , n}, i.e., bijective functions {1, . . . , n} →
{1, . . . , n}. This is called the symmetric group on n letters. Recall that every permutation π has a
sign, denoted sgn(π) or (−1)π in {±1} which is 1 if π is the composition of an even number of
transpositions and is −1 if π is the composition of an odd number of transpositions.

Theorem 2.1. For every A = (aij) ∈Mn(F ),

det(A) =
∑
π∈Σn

sgn(π)a1π(1)a2π(2) · · · anπ(n).

There are n! terms in that expansion. Yikes! Here are some simple low-dimensional cases.

Proposition 2.2. For all a, b, c, d, e, f, g, h, k ∈ R,

det

(
a b
c d

)
= ad− bc

and

det

a b c
d e f
g h k

 = aek + bfg + cdh− afh− bdk − ceg.

A visual mnemonic for the second identity can be found on p.102 of CAES.
We can also compute determinants via Laplace’s formula, aka expansion by minors. The (i, j)−

th minor of an n× n matrix A, denoted Mij(A), is the determinant of the (n− 1)× (n− 1) matrix
created by deleting the i-th row and j-th column from A. If the matrix A is understood by context,
we will shorten this to Mij .

Theorem 2.3 (Laplace’s formula). For any A = (aij) ∈Mn(F ) and 1 ≤ k ≤ n

det(A) =

n∑
j=1

(−1)k+jakjMkj =

n∑
i=1

(−1)i+kaikMik.

The first sum is the expansion along the k-th row, while the second sum is expansion along the
k-th column.

3. VOLUME

In this section, we specialize to the case F = R. Let L ∈ End(Rn) have associated matrix AL
with respect to the standard ordered basis e1, . . . , en. Let U denote the (solid) unit cube in Rn with
vertices ε1e1 +ε2e2 + · · ·+εnen where each εi = 0 or 1. Let us further agree that the volume of U is
vol(U) = 1. We denote the image of U under L by LU and note that this is a (possibly degenerate)
parallelipiped.

Theorem 3.1. For and L ∈ End(Rn),

vol(LU) = | det(L)|.

In fact, for any reasonable notion of volume and a “measurable” set E ⊆ Rn,

vol(LE) = | det(L)| vol(E),

but we won’t get into the details of this assertion in this class.
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4. ORIENTATION

We just recalled that the absolute value of the determinant of a linear mapping is a scaling factor
for how volume transforms under the mapping. What does the sign of the determinant tell us?

Recall that a square matrix is invertible if and only if its determinant is nonzero if and only if
its constituent column vectors are linearly independent. So the determinant is 0 precisely when
there is some linear dependence between the columns. If the columns form a basis of Rn, then the
determinant of the basis will either be positive or negative, and we then lend these terms (positive
or negative) to the ordered basis.

Since det is continuous when considered as a function Mn(R) = Rn2 → R (you’ll prove this in
your homework), the intermediate value theorem tells us that a continuous path of ordered bases
never switches signs. In fact, a basis is positive if and only if there is a continuous path of bases
to the standard basis e1, . . . , en, but we will not prove this here. (If the idea of paths in spaces of
bases sounds exciting, make sure to ask your topology instructor about Stiefel manifolds.)
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