
A BRIEF INTRODUCTION TO DE RHAM COHOMOLOGY

Suppose that A is an open subset of Rn and let ΩkA denote the R-vector space of differential
k-forms on A. (This notation is more standard than the Λk(A) favored by the textbook.) Recall
that the exterior derivative d : ΩkA → Ωk+1A is nilpotent: d ◦ d = 0. As such, every exact form
(ω = dλ) is closed (has derivative 0).

Let ZkA := ker(d : ΩkA → Ωk+1A) be the vector space of closed forms, and let BkA := im(d :
Ωk−1A → ΩkA) be the vector space of exact forms. We have BkA ⊆ ZkA. De Rham cohomology
studies closed forms up to exact forms. In order to make this notion precise, we need to define
quotient vector spaces.

1. QUOTIENT VECTOR SPACES

Definition 1.1. Suppose U is a sub-vector space of V . Then the quotient vector space of V by U is
V/U := {v + U | v ∈ V }where v + U = {v + u | u ∈ U}.

Note that the elements of V/U are particular subsets of V called cosets. To ease notation, write [v]
for v+U . The vector space structure on V/U is given by [v] + [w] = [v+w] and λ[v] = [λv]. (Check
that these operations are well-defined!) The additive identity in V/U is [0] = U , so elements of
V/U are insensitive to addition of U . This is the sense in which V/U measures “V up to U .”

Example 1.2. Let V = R2 and let U = Re1. Then V/U is naturally isomorphic to Re2 via the map
taking [(x, y)] 7→ y. (Check this!)

Example 1.3. Forget for a moment that the integers Z do not form a vector space. Mimicking the
above construction with V = Z and U = nZ (the multiples of n), one recovers the integers modulo
n, Z/nZ.

There is a natural linear map q : V → V/U given by q(v) = [v], and ker q = U . (If q(v) = 0, then
v + U = U ; since 0 ∈ U , v = v + 0 ∈ U .) The quotient V/U is the “largest” vector space admitting
a linear map from V which annihilates U . This is made precise in the following theorem.

Theorem 1.4. Suppose f : V → W is a linear transformation and U ⊆ ker f (i.e., f(U) = {0}). Then
there exists a unique linear transformation f̃ : V/U →W such that f = f̃ ◦ q.

Proof. Any such f̃ must satisfy f̃ [v] = f(v). We must check that the assignment [v] 7→ f(v) is
well-defined and linear. If [v] = [v′], then v′ = v + u for some u ∈ U , hence f(v′) = f(v) + f(u) =
f(v) + 0 = f(v), so the assignment is well-defined. Linearity follows from linearity of f . �

The following result is called the first isomorphism theorem, and provides a correspondence be-
tween quotient vector spaces and images of linear transformations.

Theorem 1.5. Suppose f : V → W is a linear transformation. Then V/ ker f ∼= im f via the assignment
[v] 7→ f(v).

Proof. The assignment is well-defined and linear by the previous theorem. Surjectivity is clear
since a given f(v) ∈ im f is hit by [v]. For injectivity, note that [v] 7→ 0 if and only if f(v) = 0, i.e.,
if and only if v ∈ ker f so [v] = ker f = 0V/ ker f . �

Corollary 1.6. If U is a subspace of a finite dimensional vector space V , then dimV/U = dimV −dimU .

Proof. This follows from the rank-nullity theorem and the previous result. �
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Remark 1.7. It is possible that V and U are both infinite dimensional, but dimV/U < ∞. For in-
stance, let V be the vector spaces of sequences in R, and let U be the sub-vector space of sequences
with first term 0. Then V/U ∼= R via the map taking [(ai)

∞
i=0] 7→ a0.

2. DE RHAM COHOMOLOGY OF EUCLIDEAN SPACE

We are now prepared to make our primary definition. Recall that BkA is the space of exact
forms which sits inside ZkA, the space of closed forms. If k < 0, declare that ΩkA = 0, so that
BkA = 0 for k ≤ 0.

Definition 2.1. The k-th de Rham cohomology group of A is HkA := ZkA/BkA.

As promised, this captures the notion of closed k-forms “up to” exact k-forms. Elements ofHkA
are of the form [ω] = {ω + dλ | λ ∈ Ωk−1A}where ω ∈ ΩkA satisfies dω = 0.

The 0-th de Rham cohomology group captures the number of connected components of A in
the following fashion.

Proposition 2.2. Suppose A has c connected components. Then dimH0A = c.

Proof. Since B0A = 0, we have H0A = ZkA/BkA = ZkA/0 = ZkA = ker(d : Ω0A → Ω1A). A
0-form f : A → R has derivative 0 if and only if it is locally constant, i.e., constant on each con-
nected component. Taking the value of f on each connected component provides an isomorphism
between H0A and Rc. �

Poincaré’s theorem [CAES Theorem 9.11.2] provides us with our first computation of de Rham
cohomology in all degrees.

Theorem 2.3. Suppose A ⊆ Rn is contractible. Then

HkA ∼=

{
R if k = 0,

0 if k 6= 0.

Proof. By Poincare’s theorem, if k > 0 then every closed k-form is exact. Thus ZkA = BkA and
HkA = ZkA/BkA = 0. Contractible spaces have a single connected component, so H0A ∼= R. �

3. FUNCTORIALITY OF DE RHAM COHOMOLOGY

We have already seen that a C∞ map f : A → B induces the pullback linear transformation
f∗ : ΩkB → ΩkA. This is the map which takes ω =

∑
fIdyI to

∑
(fI ◦ f)dfI where df(i1,...,ik) =

dfi1 ∧ · · · ∧ dfik and fi is the i-th component of f . We would like for pullback to descend to a map
on cohomology groups, and this is indeed the case:

Theorem 3.1. If f : A→ B is a C∞ map, then pullback of forms induces a linear transformation

f∗ : HkB → HkA

taking [ω] 7→ f∗[ω] = [f∗ω]. Pullback is compatible with composition of C∞ maps in that (g ◦ f)∗ =
f∗ ◦ g∗ whenever g ◦ f is a well-defined composition of C∞ maps between open subsets of Euclidean space.
Furthermore, id∗ = id.

Proof. It suffices to check that f∗ZkB ⊆ ZkA and f∗BkB ⊆ BkA. (Take a moment to unpack this
and understand why it is true; you will need the first isomorphism theorem for quotient vector
spaces.) Both statements follow from compatibility of pullback with differentiation (f∗◦d = d◦f∗).

Compatibility with composition follows immediately from the analogous statement on forms,
and similarly for id∗ = id. �
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Corollary 3.2. If f : A → B is a diffeomorphism (meaning that f is C∞ and f admits a C∞ two-sided
inverse), then f∗ : HkB → HkA is an isomorphism.

Proof. Let f−1 denote the C∞ inverse of f , so that f ◦ f−1 = idB and f−1 ◦ f = idA. Then

idHkB = id∗B = (f ◦ f−1)∗ = f∗ ◦ (f−1)∗

and similarly
idHkA = (f−1)∗ ◦ f∗.

We conclude that (f−1)∗ is a two-sided linear inverse to f∗, and hence f∗ is an isomorphism, as
desired. �

Corollary 3.2 tells us that de Rham cohomology is a diffeomorphism invariant, i.e., it does not
change under diffeomorphism. This makes it a powerful tool for determining when two spaces
are not diffeomorphic: if they have different cohomologies, then they are genuinely different (non-
diffeomorphic) spaces.

Remark 3.3. More is true. It is actually possible to extend pullback of forms to maps which are
merely continuous (rather than smooth) by approximation by smooth functions. The same func-
toriality properties hold, and thus de Rham cohomology is a homeomorphism invariant. In fact,
it is also a homotopy invariant, the weakest notion of “sameness” in topology. Proving these facts
would take us quite far afield, so we won’t.

4. A CRITERION FOR NONTRIVIALITY OF DE RHAM COHOMOLOGY

In Theorem 2.3, we saw that HkRn = 0 for k > 0. Are there examples of spaces with nonzero de
Rham cohomology? We certainly hope so; otherwise, de Rham cohomology would not be a very
useful invariant.

Nontriviality of de Rham cohomology indicates the existence of closed forms which are not
exact, i.e., forms ω satisfying dω = 0 but for which no λ makes dλ = ω. We might call such a λ an
antiderivative of ω, but it is classical to call λ a potential for ω. Thus HkA 6= 0 precisely when there
is a closed k-form on A which has no potential function.

Note that being closed is a local property: it only depends on the behavior of ω in small regions
around each point. In contrast, exactness is global. The potential function must be simultaneously
defined on the entire domain. Efforts to locally define λ such that dλ = ω will always be successful
by Poincaré’s theorem, but this will not guarantee that λ will be a well-defined form on the en-
tirety of A. This failure of a local-to-global construction measures, in some sense, the topological
complexity of the domain. This is what makes de Rham cohomology a meaningful invariant.

Let C be a k-chain on A such that ∂C = 0. (This more or less means that the image of C has
no (k − 1)-dimensional boundary. For example, C could be a singular 2-cube parametrizing the
surface of a sphere.) Then for any (k − 1)-form λ, the fundamental theorem of integral calculus
tells us that ∫

C
dλ =

∫
∂C
λ =

∫
0
λ = 0.

Suppose now that ω is a k-form such that ∫
C
ω 6= 0.

It immediately follows that ω is not exact, from which we deduce the following theorem.

Theorem 4.1. Suppose ω is a closed k-form on A and there exists a k-chain C in A such that ∂C = 0 and∫
C ω 6= 0. Then HkA 6= 0 (and [ω] is a nonzero element of HkA).

We will use this theorem to find our first nonzero cohomology groups above degree 0.
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Theorem 4.2. Fix n > 0 and let

η0 :=
n∑

i=1

(−1)i−1fi dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn ∈ Ωn−1(Rn r {0})

where the hatted differential is omitted and fi(x) = xi/|x|. Then η0 is a closed form representing a nonzero
class in Hn−1(Rn r {0}).

Proof. The reader may check by computation that dη0 = 0. Let Φ be an (n− 1)-cube parametrizing
the unit sphere in Rn. The reader may also check that

∫
Φ η0 6= 0. �

Corollary 4.3. For all n,m, Rn r {0} is not diffeomorphic (or homeomorphic, or homotopic) to Rm.

Remark 4.4. In fact, Hk(Rnr{0}) is R in degrees 0 and n−1, and is 0 in all other degrees. To prove
this, one needs a tiny bit of homological algebra and the Mayer-Vietoris sequence, which allows
one to compute HkA in terms of HkU , HkV , and Hk(U ∩ V ) when U ∪ V = A (loosely speaking).
This leads to a bevy of further non-diffeomorphism results, such as Rn ∼= Rm if and only if n = m.
(If they are diffeomorphic, then Rn r {0} and Rm r {0} must have the same cohomology in all
degrees.)

5. THE BROUWER FIXED POINT THEOREM

Our fledgling computations in de Rham cohomology lead to some deep and interesting theo-
rems. Let X be a set and let f : X → X be a function. A point x ∈ X is a fixed point of f :iff
f(x) = x.

Theorem 5.1 (Brouwer fixed point theorem). Let Dn denote the unit disc {x ∈ Rn | |x| ≤ 1} in Rn.
Then any continuous map f : Dn → Dn has a fixed point.

Interpretations of Brouwer’s theorem can be quite poetic. Identify the 2-dimensional disc with
the top layer of coffee in your coffee cup. If you stir the coffee in such a way that vertical layers of
coffee do not mix, then at any given time, there is a point that is in the same place that it started.
Alternatively, D2 can be identified with the region represented by a map. Take the map, crumple
up and distort it (without tearing it), then lay it flat somewhere within the region. Some point on
the distorted map sits at the location it represents in the region.

One may even think that Brouwer’s result is obvious, or at least intuitive. Regardless, its coho-
mological proof is quite striking.

Remark 5.2. Our proof of this theorem will assume that continuous functions (in particular, contin-
uous null-homotopies) can be approximated by C∞ functions, allowing us to apply the Poincaré
theorem. See Chapter 7 of CAES for a demonstration of why this is valid.

Proof of the Brouwer fixed point theorem. Suppose that f does not have a fixed point, i.e., f(x) 6= x
for all x ∈ Dn. Let Sn−1 = {x ∈ Rn | |x| = 1} denote the boundary of Dn. Define a function
g : Dn → Sn−1 taking x to the point on Sn−1 which the ray from f(x) through x hits. Note that g
restricts to the identity map on Sn−1 ⊆ Dn. (Such a map has a name: g is a retraction of Dn onto
Sn−1.)

We now use de Rham cohomology to show that no such g can exist. Let A = Rn r {0} and
take r : A → A to be the map defined by r(x) = x/|x|. There is a (continuous — see Remark
5.2) homotopy which moves x to r(x) along a straight line (say for times t from −1 to 0) and then
applies g((1 − t)r(x)) for 0 ≤ t ≤ 1. At the end of this process, all of A has been moved to the
single point g(0), so A is contractible. This contradicts Theorems 2.3 and 4.2. �
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