MATH 202: VECTOR CALCULUS HOMEWORK FOR MONDAY WEEK 9

Let $W \subseteq \mathbb{R}^{3}$ be a solid region with density $\delta: W \rightarrow \mathbb{R}$ and total mass $M=\int_{W} \delta$. The graviational potential of W acting on a point at $\left(x_{0}, y_{0}, z_{0}\right)$ of mass m is

$$
V\left(x_{0}, y_{0}, z_{0}\right)=-\int_{W} \frac{G m \delta(x, y, z)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}} .
$$

Suppose W is the region between two concentric spheres of radii $a<b$, centered at the origin. Assume that W has total mass M and constant density δ. In the following problems, you will compute the gravitational potential $V\left(x_{0}, y_{0}, z_{0}\right)$ of W acting on a point mass m concentrated at $\left(x_{0}, y_{0}, z_{0}\right)$. Note that by the spherical symmetry of W, there is no loss of generality in taking $\left(x_{0}, y_{0}, z_{0}\right)=(0,0, r)$.
Problem 1. Show that if $r \geq b$, then $V(0,0, r)=-G M m / r$. (This is the same potential as if W were a point mass M concentrated at the origin, but you should compute the actual integral for V.)
Problem 2. Show that if $r \leq a$, then gravitational force is 0 . (The gravitational force is $F=-\nabla V$, so it suffices to show that V is constant for $r \leq a$.)
Problem 3. Find $V(0,0, r)$ if $a<r<b$. How does this compare to the previous two answers?

