MATH 202: VECTOR CALCULUS HOMEWORK FOR WEDNESDAY WEEK 2

Problem 1. Show that every multilinear function $(\mathbb{R}^n)^m \to \mathbb{R}$ is continuous. (Here multilinear means that the function is linear in each of its *m* coordinates of the form \mathbb{R}^n .) [*Hint*: Look up *CAES* Exercise 3.6.1 for one potential method.]

Problem 2 (CAES 3.6.10). Show that the Vandermonde matrix

$$\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$$

has determinant (b-a)(c-a)(c-b) without resorting to explicitly expanding the determinant. For what values a, b, c is this matrix invertible? *Bonus*: Generalize the Vandermonde matrix and this determinant identity to $n \times n$ matrices.

Problem 3. Draw a picture of the tetrahedron in \mathbb{R}^3 with vertices at (0,0,0), (1,-1,1), (3,1,-1), and (1,3,0). Use the determinant function to determine its volume.