MATH 202: VECTOR CALCULUS HOMEWORK FOR WEDNESDAY WEEK 2

Problem 1. Show that every multilinear function $\left(\mathbb{R}^{n}\right)^{m} \rightarrow \mathbb{R}$ is continuous. (Here multilinear means that the function is linear in each of its m coordinates of the form \mathbb{R}^{n}.) [Hint: Look up CAES Exercise 3.6.1 for one potential method.]
Problem 2 (CAES 3.6.10). Show that the Vandermonde matrix

$$
\left(\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right)
$$

has determinant $(b-a)(c-a)(c-b)$ without resorting to explicitly expanding the determinant. For what values a, b, c is this matrix invertible? Bonus: Generalize the Vandermonde matrix and this determinant identity to $n \times n$ matrices.
Problem 3. Draw a picture of the tetrahedron in \mathbb{R}^{3} with vertices at $(0,0,0),(1,-1,1),(3,1,-1)$, and $(1,3,0)$. Use the determinant function to determine its volume.

