MATH 202: VECTOR CALCULUS HOMEWORK FOR WEDNESDAY WEEK 13

Problem 1. Use the divergence theorem to evaluate

$$
\int_{\mathcal{C}} z e^{x^{2}} d y \wedge d z+3 y d z \wedge d x+\left(2-y z^{7}\right) d x \wedge d y
$$

where \mathcal{C} consists of the five "upper" faces of $\partial \Delta^{3}$ (so $\Delta_{3,0}^{3}$ is not included in the sum). Note that \mathcal{C} is not the boundary of a solid region, and you will have to close it up in order to apply the divergence theorem.

